張 光 云
(重慶工商大學 數學與統計學院,重慶 400067)
永磁同步電動機模型的動力學研究及其數值仿真
張 光 云
(重慶工商大學 數學與統計學院,重慶 400067)
在已有文獻研究的基礎上,利用微分方程與動力系統的基本理論與方法,首先從解析上推導出永磁同步電動機混沌模型的全局吸引域,然后對這個理論結果進行仿真;理論分析及數值仿真結果表明:該永磁同步電動機混沌模型全局吸引集的研究結果是正確的; 研究結果對保證電機傳動系統的穩(wěn)定運行具有較好的參考價值;同時,為永磁同步電動機混沌系統在工程中的應用和電路設計提供了理論依據。
永磁同步電動機;混沌吸引子;全局吸引域;工程應用
混沌一詞來源于希臘,意味著非預測性,混沌是有序和無序的統一[1]?;煦鐭o處不在,人們并不陌生,它存在于非線性科學領域的很多分支,如物理學、生物學、化學、電子學、醫(yī)學、生命科學、神經網絡、復雜網絡、金融學、經濟學、社會學等。很多專著從多個角度來研究混沌系統的性質及其在非線性科學領域中的應用[1-10]。1977年,在意大利召開了有關混沌的首次國際學術會議,從而混沌控制的研究正式在全球開始。1990年,德國專門舉行了關于混沌分岔的學術會議。1984年,郝柏林院士[2]專著《chaos》出版,書中系統地介紹了有關混沌的前沿學術成果。在數學上存在一些研究混沌系統動力學性質的方法,例如Bifurcation圖、Poincare映射、Poincare截面、平衡點的局部拓撲類型、周期解的存在性和穩(wěn)定性、同宿規(guī)、異宿軌的存在性和保持性等[11-13]。
鑒于混沌系統重要的應用價值,此處將研究一個永磁同步電動機混沌模型,以便為該永磁同步電動機混沌系統在工程中的應用提供理論依據。
經過變換的均勻氣隙永磁同步電動機的數學模型為[14]
(1)
式(1)中,x1,x2,x3為無量綱狀態(tài)變量,分別為d軸定子電流、q軸定子電流和轉子機械角速度;ud,uq和TL分別為d軸定子電壓、q軸定子電壓和負載扭矩;γ>0和σ>0為系統參數。
當ud=uq=TL=0時,可以看作是永磁同步電動機空載運行一段時間后突然斷電,外部輸入項為零的情形,此時永磁同步電動機的數學模型為[14]
(2)
其中γ>0,σ>0為系統(2)的參數,當σ=4,γ=50時,系統(2)進入混沌狀態(tài),混沌吸引子見圖1(圖1中x,y,z分別代表x1,x2,x3)。
圖1 系統(2)在三維空間中的混沌吸引子Fig.1 Chaotic attractor of system (2) in the 3D space
定理1 對任意的?γ>0,σ>0,令
θ=min{σ,1}>0
X(t)=(x1(t),x2(t),x3(t))
X(t0)=(x1(t0),x2(t0),x3(t0))
則當V(X(t))≥L,V(X0)>L(t≥t0)時,系統(1)的正半軌線有估計式:
V(X(t))-L≤[V(X(t0))-L]e-θ(t-t0)
從而,
(3)
為永磁同步電動機系統(1)的一個全局指數吸引集。
證明 記函數:
則有
作廣義Lyapunov函數:
當V(X(t))≥L,V(X0)>L(t≥t0)時,計算V(X(t))對時間t的導數:
2(x1-γ-σ)(-x1+x2x3+ud)+
2x2(-x2-x1x3+γx3+uq)+2x3[σ(x2-x3)-TL]=
2uqx2-2TLx3-2(γ+σ)ud=
g(x3)+(γ+σ)2-2(γ+σ)ud≤
-θV(X)+θL≤-θ(V(X)-L)<0
(4)
當V(X(t))≥L,V(X0)>L(t≥t0)時,對不等式(4)兩邊積分:
V(X(t0))e-θ(t-t0)+L(1-e-θ(t-t0))
(5)
整理得:
V(X(t))-L≤[V(X0)-L]e-θ(t-t0)
(6)
令不等式(6)兩邊t→+∞,取上極限:
從而,
為永磁同步電動機系統(1)的一個全局吸引集。
定理2 對任意的?γ>0,σ>0,令
X(t)=(x1(t),x2(t),x3(t))
X(t0)=(x1(t0),x2(t0),x3(t0))
則當V(X(t))≥L0,V(X0)>L0(t≥t0)時,系統(2)的正半軌線有估計式:
V(X(t))-L0≤[V(X(t0))-L0]e-θ(t-t0)
從而,
(7)
為永磁同步電動機系統(2)的一個全局指數吸引集.
證明 證明方法與定理1的證明方法類似.
圖2 系統(2)的軌線最終進入Ω1,1之內Fig.2 The trajectory of system (2) finally enters into Ω1,1
研究了永磁同步電動機混沌系統的全局吸引性,研究方法適用于其他混沌系統的研究,研究結果對電機傳動系統的混沌控制的應用將起到一定的參考價值。
[1] 閆振亞.復雜非線性波的構造性理論及其應用[M].北京: 科學出版社,2002
YAN Z Y.The Complex Nonlinear Wave Structure Theory And Its Application[M].Beijing:Science Press,2002
[2] HAO B L.Chaos[M].Singapore:World Scientific,1984
[3] DOEDEL E J,KRAUSKOPF B,OSINGA H M.Global Organization of Phase Space in the Transition to Chaos in the Lorenz System[J].Nonlinearity,2015,28(11):113-139
[4] MESSIAS M.Dynamics at Infinity and the Existence of Singularly Degenerate Heteroclinic Cycles in the Lorenz System[J].Journal of Physics A:Mathematical and Theoretical,2009,42(11):12-30
[5] LEONID A B.Short-and Long-term Forecast for Chaotic and Random Systems (50 Years after Lorenz’S Paper)[J].Nonlinearity,2014,27:51-60
[6] SPARROW C.The Lorenz Equations:Bifurcations,Chaos,and Strange Attractors[M].Springer Science & Business Media,2012
[7] CHEN G R,UETA T.Yet Another Chaotic Attractor[J].International Journal of Bifurcation and Chaos,1999,9(7):1465-1466
[8] LU J H,CHEN G R.A New Chaotic Attractor Coined[J].International Journal of Bifurcation and Chaos,2002,12(3):659-661
[9] WANG X Y,WANG M J.A Hyperchaos Generated from Lorenz System[J].Physica A:Statistical Mechanics and Its Applications,2008,387(14):3751-3758
[10] 蒲浩,劉衍民,黃建文,等.具有非線性脈沖效應的Cohen-Grossberg型神經網絡的指數同步[J].重慶工商大學學報(自然科學版),2016,33(3):1-5
PU H,LIU Y M,HUANG J W,et al.Exponential Synchronization for Cohen-Grossberg Neural Networks with Nonlinear Impulsive Effects[J].Journal of Chongqing Technology and Business University(Natural Science Edition),2016,33(3):1-5[11] ZHANG F C,MU C L,ZHOU S M,et al.New Results of the Ultimate Bound on the Trajectories of The Family of the Lorenz Systems[J].Discrete and Continuous Dynamical Systems-Series B,2015,20(4):1261-1276
[12] ZHANG F C,ZHANG G Y.Further Results on Ultimate Bound on the Trajectories of the Lorenz System[J].Qualitative Theory of Dynamical Systems,2016,15(1):221-235
[13] LIN D,ZHANG F C,LIU J M.Symbolic Dynamics-Based Error Analysis on Chaos Synchronization via Noisy Channels[J].Physical Review E,2014,90:1-7[14] 韋篤取,羅曉曙,方錦清,等.基于微分幾何方法的永磁同步電動機的混沌運動的控制[J].物理學報,2006,55(1):54-59
WEI D Q,LUO X S,FANG J Q,et al.Controlling Chaos in Permanent Magnet Synchronous Motor Based on the Differential Geometry Method[J].Acta Physica Sinica,2006,55(1):54-59
責任編輯:李翠薇
Research on Dynamics of Permanent Magnet Synchronous Motor and Its Numerical Simulation
ZHANG Guang-yun
(School of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 400067, China)
On the basis of the existing literature research, this paper uses the basic theory and method of differential equation and dynamics system to firstly derive the global attraction region of the chaotic model of the permanent magnet synchronous motor and then to make simulation on the theoretical results. The theoretical analysis and numerical simulation results show that the studying result of global attraction set of the chaotic model of this permanent magnet synchronous motor is correct. The studying result has good reference value for the stable operation of the gearing system of the motor, and meanwhile, the research results provide theoretical basis for the motor to be used in circuit design and engineering of the chaotic system of the motor.
permanent magnet synchronous motor; chaotic attractor; global attractive region; engineering application
10.16055/j.issn.1672-058X.2017.0001.008
2016-09-14;
2016-10-23.
張光云(1983-),女,山東臨沂人,助教,碩士,從事外國語言學及應用語言學、常微分方程的理論研究.
TP393
A
1672-058X(2017)01-0041-04