房志琴,王亞玲,彭 偉
(1.河北北方學(xué)院,河北 張家口 075000;河北北方學(xué)院附屬第一醫(yī)院,河北 張家口 075000)
生命早期高脂飲食誘發(fā)鼠成年后糖代謝異常的機(jī)制研究
房志琴1,王亞玲2,彭 偉1
(1.河北北方學(xué)院,河北 張家口 075000;河北北方學(xué)院附屬第一醫(yī)院,河北 張家口 075000)
生命早期包括孕期和哺乳期營(yíng)養(yǎng)不良對(duì)子代一生有長(zhǎng)遠(yuǎn)影響,早期高脂飲食在成年時(shí)患肥胖、胰島素抵抗、糖尿病等代謝性疾病風(fēng)險(xiǎn)明顯升高,但其發(fā)病機(jī)制尚未完全明確?;蚋淖冎荒懿糠纸忉屘悄虿“l(fā)病率的增加,僅從基因和環(huán)境因素很難解釋糖尿病急劇上升的發(fā)病率。隨著對(duì)中樞胰島素抵抗認(rèn)識(shí)的增加,認(rèn)為中樞對(duì)調(diào)控外周葡萄糖穩(wěn)態(tài)起著極其重要的作用,越來(lái)越多的研究表明這可能是一種表觀遺傳學(xué)機(jī)制。綜述了生命早期高脂飲食誘發(fā)鼠成年后糖代謝異常的機(jī)制。
生命早期;高脂飲食;糖代謝異常
高脂肪高能量的飲食結(jié)構(gòu)導(dǎo)致肥胖發(fā)病率迅速上升,超重及肥胖的孕齡期女性人數(shù)也不斷增加,我國(guó)成年女性的超重率和肥胖率已達(dá)到29.7%和12.1%[1]。20世紀(jì)90年代,英國(guó)南安普敦大學(xué)Barker教授就提出“胎兒代謝編程假說(shuō)”,認(rèn)為生命早期包括孕期和(或)哺乳期營(yíng)養(yǎng)不良對(duì)子代一生有長(zhǎng)遠(yuǎn)影響[2]。
母鼠營(yíng)養(yǎng)過(guò)??梢詫?dǎo)致子鼠肥胖、糖耐量異常、胰島素抵抗和血脂紊亂[3]。孕期和哺乳期高脂飲食對(duì)子代身體結(jié)構(gòu)及代謝有永久性不利影響,促使他們成年后形成代謝綜合征[4]。現(xiàn)綜述生命早期高脂飲食誘發(fā)鼠成年后糖代謝異常的機(jī)制如下。
表觀遺傳學(xué)是在基因組DNA序列不改變的條件下,基因表達(dá)發(fā)生改變導(dǎo)致可遺傳的表現(xiàn)型變化。表觀遺傳學(xué)主要包括DNA甲基化作用、組蛋白修飾作用、染色質(zhì)重塑、遺傳印記等。與表觀遺傳學(xué)相關(guān)的疾病主要有腫瘤、心血管病、精神病和代謝綜合征等。代謝綜合征是多種代謝成分異常聚集的病理狀態(tài),包括:①腹部肥胖或超重;②動(dòng)脈粥樣硬化血脂異常如高甘油三酯(TG)血癥及高密度脂蛋白膽固醇(HDL-C)低下;③高血壓;④胰島素抗性及/或葡萄糖耐量異常等。表觀遺傳學(xué)(epigenetics)可能是早期發(fā)育環(huán)境對(duì)糖代謝影響的關(guān)鍵機(jī)制[5]。
1.1 中樞的表觀遺傳機(jī)制
下丘腦是調(diào)節(jié)內(nèi)分泌活動(dòng)的高級(jí)神經(jīng)中樞,維持能量及體質(zhì)量的平衡,對(duì)外周血糖的調(diào)節(jié)起著非常重要的作用。下丘腦弓狀核(arcuate nucleus of hypothalamus,ARH)富含食欲增強(qiáng)和食欲抑制兩大類神經(jīng)元,神經(jīng)肽Y(neuorpeptide Y,NPY)是主要的食欲增強(qiáng)神經(jīng)肽,阿片促黑皮質(zhì)素原(pro-opiomelanocortin,POMC)則為主要的食欲抑制神經(jīng)肽。當(dāng)機(jī)體處于饑餓狀態(tài)時(shí),NPY分泌增加,刺激機(jī)體產(chǎn)生進(jìn)食行為;當(dāng)機(jī)體處于飽腹?fàn)顟B(tài)時(shí),POMC分泌增多,通過(guò)抑制食欲進(jìn)而控制食物的攝入調(diào)節(jié)能量平衡[6]。胚胎期是下丘腦NPY和POMC形成的關(guān)鍵時(shí)期[7],早期營(yíng)養(yǎng)環(huán)境對(duì)攝食相關(guān)神經(jīng)元正常發(fā)育具有重要影響。下丘腦通過(guò)改變關(guān)鍵神經(jīng)元基因的表達(dá)在調(diào)控外周血糖穩(wěn)定方面發(fā)揮重要作用[8]。A.Plagemann等研究表明在哺乳期高脂飲食的初生Wistar大鼠,通過(guò)NPY基因啟動(dòng)子、胰島素受體基因啟動(dòng)子和阿片促黑皮質(zhì)素原基因啟動(dòng)子甲基化水平發(fā)生改變,使機(jī)體對(duì)瘦素和胰島素敏感性下降,子代易患肥胖和代謝綜合征[9]。
1.2 代謝相關(guān)基因的表觀遺傳
脂肪細(xì)胞因子脂聯(lián)素和瘦素等在葡萄糖和脂肪代謝中發(fā)揮重要作用[10],低脂聯(lián)素血癥與胰島素抵抗有關(guān)[11]。在子代成年動(dòng)物中,一些代謝相關(guān)基因甲基化方式的改變影響代謝綜合征發(fā)展,瘦素啟動(dòng)子去甲基化與脂肪細(xì)胞前體分化緊密相關(guān),DNA甲基化錯(cuò)誤可能會(huì)降低某些基因的表達(dá)而加速2型糖尿病發(fā)展[5]。研究發(fā)現(xiàn),高脂飲食子代脂聯(lián)素和瘦素啟動(dòng)子區(qū)域甲基化水平發(fā)生改變,脂聯(lián)素生成減少,瘦素生成增加,且較正常飲食子代胰島素抵抗明顯,且研究發(fā)現(xiàn)這些脂肪細(xì)胞因子基因表達(dá)的遺傳修飾在子代斷乳之前已經(jīng)發(fā)生,甘油三酯及脂肪細(xì)胞因子調(diào)節(jié)失常出現(xiàn)在糖代謝惡化之前。表明體內(nèi)與代謝相關(guān)的基因表達(dá)在出現(xiàn)疾病相關(guān)癥狀之前已經(jīng)發(fā)生變化[12]。
1976年有報(bào)道指出糖尿病母系遺傳大于父系,可能為宮內(nèi)高糖環(huán)境作用引起[13]。研究發(fā)現(xiàn),糖尿病和肥胖是與遺傳印記變化密切相關(guān)的疾病,基因印記是個(gè)體親源性等位基因的差異性抑制,隸屬表觀遺傳修飾,不涉及序列的改變,主要通過(guò)對(duì)相應(yīng)基因位點(diǎn)即差異甲基化區(qū)域的胞嘧啶和鳥(niǎo)嘌呤二核苷酸的5'-端的胞嘧啶堿基甲基化完成[14]。遺傳印記是否表達(dá)則取決于發(fā)生飾變的基因是來(lái)自母本還是父本[5]。宮內(nèi)環(huán)境因素改變包括營(yíng)養(yǎng)狀態(tài)、化學(xué)物質(zhì)甚至放射線等都會(huì)引起子代基因印記的改變,特別是宮內(nèi)營(yíng)養(yǎng)環(huán)境對(duì)表觀遺傳的調(diào)節(jié)在子代發(fā)育可塑性、疾病易感性和生殖細(xì)胞發(fā)育成熟方面發(fā)揮重要作用[14]。剔除鳥(niǎo)嘌呤核苷酸結(jié)合蛋白Gsa亞基的父系與母系等位基因?qū)δ芰看x產(chǎn)生相反的影響,父系功能的丟失表現(xiàn)肥胖傾向的降低、代謝功能亢進(jìn)、血糖過(guò)低、運(yùn)動(dòng)能力下降以及對(duì)甲狀旁腺素拮抗,而母系功能的丟失表現(xiàn)更嚴(yán)重的肥胖傾向[15]。
母代高脂飲食增加后代發(fā)生代謝性疾病的危險(xiǎn)性,可能是因?yàn)槟复鸂I(yíng)養(yǎng)狀況的改變可引起宮內(nèi)環(huán)境的改變,由此在胚胎發(fā)育期或新生兒期造成與相關(guān)器官或組織發(fā)育有關(guān)的一些基因功能的改變,從而引起成年后相關(guān)器官的功能障礙[16]。妊娠期間限制蛋白質(zhì)會(huì)增加小鼠后代胰腺細(xì)胞凋亡的速率,導(dǎo)致胰腺β細(xì)胞量降低和影響下一代胰腺的發(fā)育[5]。胚胎期和胎兒期對(duì)于骨骼肌和脂肪組織的發(fā)育非常重要,在此期間,增殖和分化的骨骼肌和脂肪細(xì)胞對(duì)環(huán)境更敏感,容易影響其基因的表達(dá)[17],PPARG和LPL基因作為早期脂肪發(fā)生的標(biāo)志物在脂肪細(xì)胞分化的早期階段發(fā)揮關(guān)鍵作用[18],GPDH基因在脂肪細(xì)胞轉(zhuǎn)化后期開(kāi)始積累甘油三酯時(shí)被誘導(dǎo)表達(dá),是判斷脂肪細(xì)胞終末分化的酶標(biāo)記物[19],Adipo Q編碼脂聯(lián)素,是一種脂肪特異性基因。研究發(fā)現(xiàn)高脂組中Adipo Q、GPDH和PPARG的表達(dá)顯著下調(diào),且骨骼肌相關(guān)基因Myo D1和Myo G,成肌細(xì)胞分化標(biāo)記Desmin和CKM兩個(gè)基因表達(dá)被明顯抑制,簡(jiǎn)言之,這些成脂和成肌基因的異常表達(dá)可能是造成IR的機(jī)制之一。宮內(nèi)高脂環(huán)境可能通過(guò)抑制骨骼肌形成的早期事件包括成纖維細(xì)胞的增殖和定向及骨骼肌祖細(xì)胞的分化影響骨骼肌發(fā)育[20]。
在中國(guó),BMI超過(guò)24即定義為超重,超過(guò)28即定義為肥胖。亞洲人在較低的BMI下易患2型糖尿病和其他代謝性疾病[21]。鄭佳等發(fā)現(xiàn)高脂飲食子鼠雖然出生體質(zhì)量低,但是3周以后,高脂飲食子鼠體質(zhì)量就高于正常飲食組[22],高脂飲食小鼠的生長(zhǎng)率呈“追趕型生長(zhǎng)”現(xiàn)象,所謂追趕生長(zhǎng)又叫補(bǔ)償性生長(zhǎng),用來(lái)描述因不良因素導(dǎo)致生長(zhǎng)遲緩的個(gè)體在去除這些因素后出現(xiàn)的生長(zhǎng)加速現(xiàn)象。大量證據(jù)顯示追趕生長(zhǎng)能顯著增加肥胖、胰島素抵抗和2型糖尿病的易感性[23]。
肥胖與低度炎癥之間關(guān)系首先被Hotamisligil等報(bào)道,脂肪組織是促炎介質(zhì)的主要來(lái)源,從而啟動(dòng)慢性炎癥及胰島素抵抗[24]。肥胖還伴隨著血中高水平的脂肪因子及炎癥因子,特別是TNF-α和瘦素,它們?cè)谠衅诜逝终T發(fā)子代代謝異常的過(guò)程中起關(guān)鍵作用[25]。脂肪組織由多種細(xì)胞組成,包括成熟脂肪細(xì)胞、前脂肪細(xì)胞、成纖維細(xì)胞、內(nèi)皮細(xì)胞、肥大細(xì)胞、粒細(xì)胞、淋巴細(xì)胞和巨噬細(xì)胞,各種細(xì)胞在炎癥及胰島素抵抗中作用不同[26]?;虮磉_(dá)測(cè)序研究表明脂肪細(xì)胞大小影響炎癥介質(zhì)的表達(dá)[27],飲食誘導(dǎo)胰島素抵抗的肥胖鼠脂肪組織中存在大量T細(xì)胞[28],具有促炎作用的T淋巴細(xì)胞存在于內(nèi)臟脂肪組織,可能有助于巨噬細(xì)胞出現(xiàn)之前局部炎癥細(xì)胞的活化,并且有助于巨噬細(xì)胞實(shí)現(xiàn)滲透,在脂肪組織炎癥的啟動(dòng)、維持以及胰島素抵抗中發(fā)揮重要作用[29]。肥胖脂肪組織中巨噬細(xì)胞的聚集可能對(duì)脂肪因子例如瘦素和脂聯(lián)素等的產(chǎn)生起主要作用[30]。脂肪組織中巨噬細(xì)胞既可以局部清除老的脂肪細(xì)胞控制大量脂肪形成,還在局部及全身促進(jìn)脂肪因子生成及分泌,從而增加肥胖并發(fā)癥及誘導(dǎo)胰島素抵抗[26]。在脂肪組織產(chǎn)生的炎癥分子中,IL-6、IL-8和MCP-1在人類肥胖相關(guān)的代謝、心血管等并發(fā)癥中發(fā)揮主要作用[31-32],TNF-α、IL-6、IL-1b、IL-8及巨噬細(xì)胞活化后產(chǎn)生的分子使胰島素敏感性受損[33]。肥胖婦女4周低能量飲食后,皮下脂肪組織中炎癥因子表達(dá)明顯減少[34]。
4.1 遺傳變異
低出生體質(zhì)量與成年后2型糖尿病、高血壓和心臟病等疾病的發(fā)生相關(guān)。機(jī)制可能為針對(duì)宮內(nèi)環(huán)境胎兒代謝編程假說(shuō)及遺傳變異[35]。有研究表明低出生體質(zhì)量和2型糖尿病具有基因關(guān)聯(lián)性[36],單基因糖尿病支持GCK、INS、INSR、KCNJ11這些基因突變與糖尿病有關(guān)[37]。胎兒胰島素假說(shuō)認(rèn)為胰島素是一種重要的胎兒生長(zhǎng)因子,胎兒遺傳變異減少胰島素分泌或敏感性,也減少出生體質(zhì)量,使成年期易患糖尿病[36]。流行病學(xué)研究表明父母雙親基因使子代低出生體質(zhì)量從而發(fā)生糖尿病,但母親基因?qū)@一過(guò)程的影響目前不清楚,因?yàn)楹茈y區(qū)分是母親遺傳給子代的基因還是母親宮內(nèi)環(huán)境使子代患糖尿病[37]。檢測(cè)母親和子代5個(gè)糖尿病相關(guān)基因的單核苷酸多態(tài)基因型,發(fā)現(xiàn)母親這5個(gè)基因型與子代低出生體質(zhì)量都無(wú)關(guān),而子代基因型中CDKAL1和HHEX-IDE與子代低出生體質(zhì)量正相關(guān)[35],也支持胎兒遺傳變異與低出生體質(zhì)量有關(guān)。母親基因表型與子代基因表型對(duì)子代出生體質(zhì)量具有相反作用[38],若2型糖尿病風(fēng)險(xiǎn)基因在母親體內(nèi)存在,母親血糖升高會(huì)增加胎兒胰島素分泌,促進(jìn)胎兒生長(zhǎng),而并非使胎兒出生體質(zhì)量低。
4.2 下丘腦內(nèi)質(zhì)網(wǎng)應(yīng)激
營(yíng)養(yǎng)過(guò)剩環(huán)境下,下丘腦存在慢性內(nèi)質(zhì)網(wǎng)(ER)應(yīng)激并啟動(dòng)下丘腦非折疊蛋白應(yīng)答信號(hào)路徑,這一路徑反過(guò)來(lái)阻滯瘦素受體信號(hào)路徑,產(chǎn)生瘦素抵抗,從而引起下丘腦激素(瘦素和脂聯(lián)素)失調(diào),導(dǎo)致攝食及體質(zhì)量增加[39]。該研究發(fā)現(xiàn)化學(xué)伴侶家族成員PBA和TUDCA在飲食導(dǎo)致的肥胖模型中具有瘦素增敏作用。該研究結(jié)果可能為治療肥胖提供新的策略。
長(zhǎng)期慢性ER應(yīng)激導(dǎo)致病理變化最終發(fā)生糖尿病這一效應(yīng),并不受急性短時(shí)間ER應(yīng)激影響[40]。有研究用急性藥理方法檢測(cè)腦ER刺激的作用,數(shù)據(jù)表明短期ER應(yīng)激(3 d)動(dòng)物出現(xiàn)全身胰島素抵抗及糖耐受不良和血壓升高,這些指標(biāo)變化都是代謝綜合征的表現(xiàn)。短期腦ER應(yīng)激可能上調(diào)了外周交感頻率,通過(guò)交感路徑直接快速的調(diào)節(jié)2型糖尿病等代謝障礙,但是ER應(yīng)激在大腦其他部位如何調(diào)控糖尿病和其他代謝病尤其是與交感神經(jīng)配合的機(jī)制還需進(jìn)一步探討[41]。
綜上,生命早期高脂飲食致子代成年后糖代謝異常的機(jī)制可能是因?yàn)槟阁w不良的營(yíng)養(yǎng)狀況使子代糖代謝相關(guān)基因在生命早期發(fā)生了表觀遺傳修飾,影響了胰腺、肝臟、骨骼肌等臟器的發(fā)育。下丘腦攝食神經(jīng)通路的表觀遺傳調(diào)控變化可能造成子代出生后追趕生長(zhǎng)致成年期體質(zhì)量增加,增加成年糖代謝異常疾病的風(fēng)險(xiǎn)。也可能是子代基因表型發(fā)生改變,決定了代謝疾病的發(fā)生。系統(tǒng)化研究生命早期高脂飲食致子代成年后糖代謝異常的機(jī)制,有效管理孕期體質(zhì)量,進(jìn)一步探討母親超重或肥胖影響子代肥胖發(fā)生的具體分子機(jī)制,有望從源頭上控制肥胖的發(fā)生,改善母子兩代人的健康。
[1]Zhang F,Dong L,Zhang C P,et al.Increasing prevalence of gestational diabetes mellitus in Chinese women from 1999 to 2008[J].Diabet Med,2011,28(6):652-657.
[2]Barker D J,Winter P D,Osmond C,et al.Weight in infancy and death from ischaemic heart disease[J].Lancet,1989,2(8663):577-580.
[3]Yokomizo H,Inoguchi T,Sasaki H,et al.Maternal high-fat diet induces insulin resistance and deterioration of pancreatic beta-cell function in adult offspring with sex differences in mice[J].Am J Physiol Endocrinol Metab,2014,306(10):E1163-E1175.
[4]Srinivasan M,Katewa S D,Palaniyappan A,et al.Maternal high-fat diet consumption results in fetal malprogramming predisposing to the onset of metabolic syndrome-like phenotype in adulthood[J].Am J Physiol Endocrinol Metab,2006,291:E792-E799.
[5]李光雷,喻樹(shù)訊,范術(shù)麗,等.表觀遺傳學(xué)研究進(jìn)展[J].生物技術(shù)通報(bào),2011,(1):40-48.
[6]Zheng F,Kim Y J,Chao P T,et al.Overexpression of neuropeptide Y in the dorsomedial hypothalamus causes hyperphagia and obesity in rats[J].Obesity(Silver Spring),2013,21(6):1086-1092.
[7]Chen H,Simar D,Morris M J.Maternal obesity impairs brain glucose metabolism and neural response to hyperglycemia in male rat offspring[J].J Neurochem,2014,129(2):297-303.
[8]Li G,Mobbs C,Scarpace P.Central pro-opiomelanocortin gene delivery results in hypophagia,reduced visceral adiposity,and improved insulin sensitivity in genetically obese Zucker rats[J].Diabetes,2003,52(8):1951-1957.
[9]Plagemann A,Harder T,Brunn M,et al.Hypothalamic pro-opiomelanocortin promoter methylation becomes altered by early overfeeding:An epigenetic model of obesity and the metabolic syndrome[J].J Physiol,2009,587(Pt 20):4963-4976.
[10]Hilzendeger A M,Morgan D A,Brooks L,et al.A brain leptin-renin angiotensin system interaction in the regulation of sympathetic nerve activity[J].Am J Physiol Heart Circ-Physiol,2012,303(2):197-206.
[11]Fasshauer M,Paschke R.Regulation of adipocytokines and insulin resistance[J].Diabetologia,2003,46:1594-1603.
[12]Masuyama H,Hiramatsu Y.Effects of a high-fat diet exposure in uterus on the metabolic syndrome-like phenomenon in mouse offspring through epigenetic changes in adipocytokine gene expression[J].Endocrinology,2012,153(6):2823-2830.
[13]Dorner G,Mohnike A.Further evidence for a predominantly maternal transmission of maturity-onset type diabetes[J].Endokrinologie,1976.68,121-124.
[14]于國(guó)蓮.宮內(nèi)高糖環(huán)境對(duì)子代親源性基因印記的影響及其遺傳效應(yīng)機(jī)制的研究[D].杭州:浙江大學(xué),2011.
[15]Jiang Y,Lang L B,Lubin F D,et al.Epigenetics in the nervous system[J].J Neurosci,2008,28(46):11753-11759.
[16]Velloso L A.Maternal consumption of high-fat diet disturbs hypothalamic neuronal function in the offspring:Implications for the genesis of obesity[J].2012,153(2):543-545.
[17]Grefte S,Kuijpers-Jagtman A M,Torenmsa R,et al.Skeletal muscle development and regeneration[J].Stem Cells Dev,2007,16(5):857-868.
[18]Gregorie F M,Smas C M,Sul H S.Understanding adipocyte differentiation[J].Physiol Rev,1998,78(3):783-809.
[19]Samuelsson L,Str mberg K,Vikman K,et al.The CCAAT/enhancer binding protein and its role in adipocyte differentiation:Evidence for direct involvement in terminal adipocyte development[J].Embro J,1991,10(12):3787-3793.
[20]賴明,楊瀟,劉振平,等.母鼠高脂飲食致子代大鼠胰島素抵抗的研究[J].食品科學(xué),2013,(23):282-289.
[21]Zhou B.Predictive values of body mass index and waist circumference to risk factors of related diseases in Chinese adult population[J].Zhong Hua Liu Xing Bing Xue Za Zhi,2002,23(1):5-10.
[22]鄭佳,肖新華,張茜,等.母代高脂飲食誘導(dǎo)子代在小鼠生命早期出現(xiàn)糖脂代謝紊亂且具有雄性易感性[J].中國(guó)實(shí)驗(yàn)動(dòng)物學(xué)報(bào),2014,22(4):7-11.
[23]Ong K K,Petry C J,Emmett P M,et al.Insulin sensitivity and secretion in normal children related to size at birth,postnatal-growth,and plasma insulin-like growth factor-I levels[J].Diabetologia,2004,47(6):1064-1070.
[24]Hotamisligil G S,Shargill N S,Spiegelman B M.Adipose expression of tumor necrosis factor-alpha:Direct role in obesity-linked insulin resistance[J].Science,1993,259,87-91.
[25]Dong M,Zheng Q,Ford S P,et al.Maternal obesity,lipotoxicity and cardiovascular diseases in offspring[J].J Mol Cell Cardiol.2013,55:111-116.
[26]Calder P C,Ahluwalia N,Brouns F,et al.Dietary factors and low-grade inflammation in relation to overweight and obesity[J].Br J Nutr,2011,106:5-78.
[27]Jernas M,Palming J,Sjoholm K,et al.Separation of human adipocytes by size:Hypertrophic fat cells display distinct gene expression[J].FASEB J,2006,20,1540-1542.
[28]Wu H,Ghosh S,Perrard X D,et al.T-cell accumulation and regulation on activation,normal T cell expressed and secreted upregulation in adipose tissue in obesity[J].Circulation,2007,115,1029-1038.
[29]Kintscher U,Hartge M,Hess K,et al.T-lymphocyte infiltration in visceral adipose tissue:A primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance[J].Arterioscler Thromb Vasc Biol,2008,28,1304-1310.
[30]Trujillo M E,Scherer P E.Adipose tissue-derived factors:Impact on health and disease[J].Endocr Rev,2006,27,762-778.
[31]Malavazos A E,Cereda E,Morricone L,et al.Monocyte chemoattractant protein 1:A possible link between visceral adipose tissue-associated inflammation and subclinical echocardiographic abnormalities in uncomplicated obesity[J].Eur J Endocrinol,2005,153,871-877.
[32]Malavazos A E,Corsi M M,Ermetici F,et al.Proinflammatory cytokines and cardiac abnormalities in uncomplicated obesity:Relationship with abdominal fat deposition[J].Nutr Metab Cardiovasc Dis,2007,17,294-302.
[33]de Luca C,Olefsky J M.Stressed out about obesity and insulin resistance[J].Nat Med,2006,12,41-42.
[34]Clement K,Viguerie N,Poitou C,et al.Weight loss regulates inflammation-related genes in white adipose tissue of obese subjects[J].FASEB J,2004,18,1657-1669.
[35]Freathy R M,Bennett A J,Ring S M,et al.Type 2 diabetes risk alleles are associated with reduced size at birth[J].Diabetes,2009,58:1428-1433.
[36]Hattersley A T,Tooke J E.The fetal insulin hypothesis:An alternative explanation of the association of low birthweight with diabetes and vascular disease[J].Lancet,1999,353:1789-1792.
[37]Zhao J,Li M,Bradfield J P,et al.Examination of type 2 diabetes loci implicates CDKAL1 as a birth weight gene[J].Diabetes,2009,58:2414-2418.
[38]Hattersley A T,Beards F,Ballantyne E,et al.Mutations in the glucokinase gene of the fetus result in reduced birth weight[J].Nat Genet 1998,19:268-270.
[39]Ozcan L.Endoplasmic reticulum stress plays a central role in development of leptin resistance[J].Cell Metab,2009,9:35-51.
[40]Zhang X.Hypothalamic IKKβ/NF-κB and ER stress link overnutrition to energy imbalance and obesity[J].Cell,2008,135:61-73.
[41]Purkayastha S,Zhang H,Zhang G,et al.Neural dysregulation of peripheral insulin action and blood pressure by brain endoplasmic reticulum stress[J].Proc Natl Acad Sci U S A,2011,108(7):2939-2944.
[責(zé)任編輯:李薊龍 英文編輯:劉彥哲]
Abnormal Glucose Metabolism Induced by High-fat Diet during Early Life of Adult Rats
FANG Zhi-qin1,WANG Ya-ling2,PENG Wei1
(1.Hebei North University,Zhangjiakou,Hebei 075000,Hebei China;2.The First Affiliated Hospital of Hebei North University,Zhangjiakou,Hebei 075000,China)
Malnutrition in early life including pregnancy and lactation has long-term effects on children life.A high-fat diet in early life makes a significant increase in adult metabolic diseases such as obesity,insulin resistance,and diabetes,but its pathogenesis is not completely clear.Genetic change can only partly explain the increase of the incidence of diabetes,and the sharp rise in incidence of diabetes is difficult to be explained only from the genetic and environmental factors.With increasing knowledge on the central insulin resistance,the central nervous system plays an important role in the regulation of peripheral glucose homeostasis,and a growing body of research suggests that this may be a mechanism of epigenetics.This paper reviews the mechanism of sugar metabolism disorders inducedby a high-fat diet during early life in adult rats.
early Life;high-fat diet;abnormal glucose metabolism
河北省2015年研究生創(chuàng)新資助項(xiàng)目(No.204)
房志琴(1989-),女,河北張家口人,河北北方學(xué)院2014級(jí)研究生,研究方向:心血管內(nèi)科。
彭偉(1959-),男,河北石家莊人,教授,碩士生導(dǎo)師,研究方向:心血管內(nèi)科及衛(wèi)生事業(yè)管理。
R 589.1
C
10.3969/j.issn.1673-1492.2017.04.020
來(lái)稿日期:2017-02-27