桑軍軍,李穎芳,潘煒華,廖萬(wàn)清
上海長(zhǎng)征醫(yī)院皮膚病與真菌病研究所,上海市醫(yī)學(xué)真菌分子生物學(xué)重點(diǎn)實(shí)驗(yàn)室,全軍真菌與真菌病重點(diǎn)實(shí)驗(yàn)室,第二軍醫(yī)大學(xué)附屬長(zhǎng)征醫(yī)院皮膚科,上海 200003
·特約專稿·
病原性真菌蛋白酶致病機(jī)制研究進(jìn)展
桑軍軍,李穎芳,潘煒華,廖萬(wàn)清
上海長(zhǎng)征醫(yī)院皮膚病與真菌病研究所,上海市醫(yī)學(xué)真菌分子生物學(xué)重點(diǎn)實(shí)驗(yàn)室,全軍真菌與真菌病重點(diǎn)實(shí)驗(yàn)室,第二軍醫(yī)大學(xué)附屬長(zhǎng)征醫(yī)院皮膚科,上海 200003
蛋白酶在真菌的生存和生長(zhǎng)過(guò)程中具有重要作用,同時(shí)也被認(rèn)為是病原性真菌的重要毒力因子之一。病原性真菌蛋白酶可能參與真菌對(duì)宿主的黏附、定植和播散以及逃避宿主的免疫應(yīng)答過(guò)程。部分蛋白酶還被認(rèn)為是變應(yīng)原,可誘發(fā)哮喘和過(guò)敏性疾病。在不同的病原性真菌中,蛋白酶作用也不同。研究蛋白酶的致病機(jī)制,可進(jìn)一步了解真菌感染機(jī)制,為診斷及治療真菌感染提供線索。
病原性真菌;蛋白酶;致病機(jī)制;真菌感染
目前地球上已被描述的真菌有10萬(wàn)多種,其中400多種可導(dǎo)致人類感染。人群普遍易患淺部真菌病,全世界患病率高達(dá)20%~25%[1];而系統(tǒng)性真菌感染具有診斷困難、治療費(fèi)用高、病死率高等特點(diǎn)。假絲酵母(又稱念珠菌)是主要侵襲性真菌,但其他侵襲性真菌如曲霉、隱球菌等在造血干細(xì)胞移植及實(shí)體器官移植者中的感染率增高[2]。蛋白酶在真菌的生存和生長(zhǎng)過(guò)程中具有重要作用,同時(shí)也被認(rèn)為是病原性真菌的重要毒力因子之一。研究蛋白酶可能作為治療真菌病的一個(gè)潛在靶點(diǎn),為治療真菌感染提供線索。
蛋白酶是指具有分解肽鍵功能,可將蛋白質(zhì)分解為肽鏈或氨基酸的一類酶。蛋白酶按作用模式和活性部位可分為8類:天冬酰胺蛋白酶、天冬氨酸蛋白酶、半胱氨酸蛋白酶、谷氨酸蛋白酶、金屬蛋白酶、絲氨酸蛋白酶、蘇氨酸蛋白酶及其他未知蛋白酶[3]。Rawlings和Barrett將蛋白酶進(jìn)一步歸為若干個(gè)家族,每個(gè)酶由包含的肽酶催化型的首個(gè)大寫字母和特定的編號(hào)命名(A:天冬氨酸;C:半胱氨酸;G:谷氨酸;M:金屬;N:天冬酰胺;S:絲氨酸;T:蘇氨酸;U:Unknown)。每個(gè)家族又可細(xì)分為亞家族,包含第2個(gè)大寫字母。不同家族具有相同來(lái)源的蛋白酶被歸為同一族。蛋白酶的分類和命名及其相關(guān)基因、底物和抑制劑可在網(wǎng)站http://merops.sanger.ac.uk查詢[4]。蛋白酶又可分為外切蛋白酶和內(nèi)切蛋白酶,外切蛋白酶只識(shí)別并分解多肽N端和C端的肽鍵,而內(nèi)切蛋白酶只分解肽鏈內(nèi)部的肽鍵。
真菌蛋白酶包括胞外蛋白酶、膜結(jié)合蛋白酶和胞內(nèi)蛋白酶。胞外蛋白酶一直被認(rèn)為是病原性真菌的毒力因子之一,很多病原性真菌在體外或感染時(shí)會(huì)分泌蛋白酶[5];膜結(jié)合蛋白酶在真菌感染中的作用也逐漸被認(rèn)識(shí)[6];胞內(nèi)蛋白酶在維持真菌正常生理功能方面起重要作用,在感染過(guò)程中也發(fā)揮一定作用。不同真菌的蛋白酶在感染中的作用并不相同。
2.1 念珠菌蛋白酶致病機(jī)制
念珠菌可引起局部皮膚黏膜感染,還可導(dǎo)致系統(tǒng)性感染。天冬氨酸蛋白酶在念珠菌中研究得最清楚[7]。天冬氨酸蛋白酶家族可能影響念珠菌黏附、定植、營(yíng)養(yǎng)和播散,外分泌的蛋白酶還可通過(guò)激活和刺激白細(xì)胞介素(interleukin,IL)及其他細(xì)胞因子表達(dá)而介導(dǎo)宿主的炎癥免疫應(yīng)答[8]。有研究表明,不具有感染性的念珠菌種類含有較少的SAP基因,具有抗藥性的菌株Sap分泌量高于敏感株[9]。Kantarcioglu等檢測(cè)臨床分離的95株念珠菌,發(fā)現(xiàn)95%具有蛋白酶活性,而部分近平滑念珠菌和熱帶念珠菌未發(fā)現(xiàn)擁有蛋白酶活性[10]。
白念珠菌有10個(gè)SAP基因[11],分為6個(gè)亞群,分別為SAP1~SAP3、SAP4~SAP6、SAP7、SAP8、SAP9、SAP10。Sap1~Sap3在基因水平上有67%的相似性;Sap4~Sap6在基因水平上有89%的相似性;Sap8與Sap1~Sap3和Sap4~Sap6屬于同一族;Sap7與其他同工酶只有20%~27%的相似性;而Sap9和Sap10屬于細(xì)胞膜或壁上的糖基磷脂酰肌醇(glycosylphosphatidylinositol,GPI)錨定蛋白酶。Sap1~Sap3主要在白念珠菌黏附宿主細(xì)胞過(guò)程中發(fā)揮作用,功能主要體現(xiàn)在黏膜感染初級(jí)階段,已在口腔和陰道感染研究中被證實(shí)。SAP1~SAP3在酵母階段時(shí)表達(dá)。Sap2是白念珠菌在用以蛋白為氮源的培養(yǎng)基培養(yǎng)時(shí)大量分泌的蛋白酶,在念珠菌系統(tǒng)性播散感染中起重要作用[12]。Sap4~Sap6可能參與念珠菌對(duì)抗吞噬細(xì)胞的攻擊,主要在系統(tǒng)性念珠菌感染中扮演重要角色,在實(shí)質(zhì)器官感染時(shí)非常重要。有研究表明,Sap4~Sap6僅在菌絲階段產(chǎn)生,而菌絲形成是念珠菌逃避巨噬細(xì)胞吞噬的重要手段。Sap4~Sap6可能在Sap2分泌過(guò)程中起重要作用,但也有研究表明Sap1~Sap6在體外感染重組上皮細(xì)胞時(shí)不是必需的[13]。在體外感染重組上皮細(xì)胞模型中,SAP1~SAP6基因中只有SAP5被激活。SAP1~SAP3基因缺失株和SAP4~SAP6基因缺失株在體外重組上皮細(xì)胞感染模型中并未出現(xiàn)毒力下降。Buu等發(fā)現(xiàn),Sap6在維持白念珠菌細(xì)胞表面完整性方面具有重要作用[14]。SAP7基因在小鼠念珠菌陰道感染模型和人口腔感染中表達(dá)增高,SAP7缺陷株在靜脈感染中表現(xiàn)為毒力下降,而在陰道感染中無(wú)此現(xiàn)象。SAP8的表達(dá)與溫度相關(guān)[15],與37 ℃相比,25 ℃時(shí)其表達(dá)上調(diào)。Sap9和Sap10在維持細(xì)胞壁完整性和白念珠菌黏附宿主細(xì)胞方面有重要作用。Hornbach等發(fā)現(xiàn),Sap9參與激活保護(hù)性的先天性免疫,活化中性白細(xì)胞[16]。Kozik等研究10種Sap對(duì)人激肽釋放的影響,發(fā)現(xiàn)Sap3和Sap9可能與激肽的釋放相關(guān)[17]。
光滑念珠菌具有與釀酒酵母GPI錨定天冬氨酸蛋白酶同源的編碼蛋白酶基因YPS,在侵襲中起一定作用?;蚍治霰砻鳎琘PS基因?qū)饣钪榫S持細(xì)胞壁完整及黏附宿主細(xì)胞是必需的;通過(guò)監(jiān)測(cè)細(xì)胞壁黏附素Epa1,發(fā)現(xiàn)Yps在細(xì)胞壁重構(gòu)過(guò)程中扮演重要角色[18]。對(duì)低pH值環(huán)境中光滑念珠菌轉(zhuǎn)錄水平的分析顯示,7個(gè)CgYps上調(diào)。Bairwa等研究表明,CgYps1在光滑念珠菌調(diào)節(jié)pH平衡方面起作用[19];酸性環(huán)境中光滑念珠菌通過(guò)CgYps1依賴性方式降低細(xì)胞壁總β葡聚糖水平[19]。此外,有研究者發(fā)現(xiàn)一種定位于光滑念珠菌細(xì)胞壁的絲氨酸蛋白酶[20],它不僅是細(xì)胞壁的結(jié)構(gòu)蛋白之一,在β-1,3-葡聚糖酶的作用下還具有分解明膠的功能。
熱帶念珠菌有4個(gè)編碼天冬氨酸蛋白酶的基因SAPT1~SATP4,編碼Sapt1p~Sapt4p[21]。其中與白念珠菌Sap2同源的蛋白Sapt1p是熱帶念珠菌在以牛血清白蛋白(bovine serum albumin,BSA)為氮源的培養(yǎng)基中培養(yǎng)時(shí)分泌,而Sapt2p和Sapt3p未在體外被檢出。
近平滑念珠菌有編碼天冬氨酸蛋白酶的基因SAPP1~SAPP3,編碼Sapp1~Sapp3。近平滑念珠菌天冬氨酸蛋白酶的分泌可能與口腔念珠菌感染相關(guān)[22]。
絲氨酸蛋白酶是最大的一類蛋白酶家族,占已知蛋白酶數(shù)量的1/3以上。Portela等研究了從人類免疫缺陷病毒(human immunodeficiency virus,HIV)感染患者體內(nèi)所分離出的念珠菌(包括5株白念珠菌、1株都柏林念珠菌、1株熱帶念珠菌)中絲氨酸蛋白酶的功能[23],結(jié)果提示絲氨酸蛋白酶可能參與最初念珠菌對(duì)宿主的定植。
Rodior等研究了白念珠菌金屬蛋白酶在細(xì)胞外基質(zhì)對(duì)4種構(gòu)成蛋白(Ⅰ型膠原蛋白、Ⅳ型膠原蛋白、層粘連蛋白、纖維連接蛋白)的分解能力,發(fā)現(xiàn)每種蛋白均可被分解。Ⅰ型膠原蛋白和纖維連接蛋白可被完全分解,而Ⅳ型膠原蛋白和層粘連蛋白可部分被分解,提示金屬蛋白酶可能在白念珠菌侵襲中扮演重要角色[24]。
2.2 皮膚癬菌蛋白酶致病機(jī)制
皮膚癬菌是重要的致淺部真菌感染的病原性真菌。在感染過(guò)程中,皮膚癬菌先黏附于皮膚表面,然后將角質(zhì)層分解,進(jìn)而感染[25]。蛋白酶可能在黏附、入侵及在角質(zhì)組織中生長(zhǎng)等方面發(fā)揮作用[26]。皮膚癬菌分泌的蛋白酶多數(shù)為絲氨酸蛋白酶和金屬蛋白酶[5]。有研究表明,皮膚癬菌可分泌亞硝酸鹽作為還原劑。在亞硝酸鹽存在的情況下,角蛋白的二硫鍵會(huì)直接裂解為半胱氨酸和S-磺基半胱氨酸,并阻止蛋白被外切蛋白酶或內(nèi)切蛋白酶進(jìn)一步消化[27]。亞硫酸鹽溶解很可能是先于所有蛋白酶消化角化組織的必需步驟。
犬小孢子菌中有2個(gè)編碼二肽基肽酶的基因,分別編碼DppⅣ和DppⅤ[28]。這兩個(gè)蛋白酶屬絲氨酸蛋白酶,可能在犬小孢子菌致病過(guò)程中起作用。這兩種基因在豚鼠模型及自然感染的貓中均表達(dá),在以蛋白質(zhì)為唯一氮源和碳源的培養(yǎng)基中也表達(dá),但DppⅣ和DppⅤ不能促進(jìn)角蛋白分解,可能作用于小的可溶解的肽鏈??莶輻U菌蛋白酶Sub3可能為犬小孢子菌黏附過(guò)程所必需,而在侵襲發(fā)病中并不必需[29]。Baldo等的研究也證實(shí)Sub3在黏附貓角膜細(xì)胞過(guò)程中起重要作用[30]。金屬蛋白酶已在犬小孢子菌中被鑒定出來(lái),某些被分離和純化[31]。MEP1、MEP2、MEP3是犬小孢子菌中的金屬蛋白酶基因,且Mep3已在畢赤酵母中重組,而豚鼠模型中至少M(fèi)ep2和Mep3在感染過(guò)程中產(chǎn)生[32]。
紅癬毛癬菌有7個(gè)絲氨酸蛋白酶Sub1~Sub7,其中Sub2與曲霉Sub同源,其他(Sub1、Sub3~Sub7)均為皮膚癬菌特有[33]。Sub3和Sub4可在以大豆蛋白為唯一氮源的培養(yǎng)基上清液中發(fā)現(xiàn),在畢赤酵母中重組酶會(huì)被角蛋白激活,提示這兩種蛋白酶可能在侵入角蛋白組織中起重要作用。Sub6被認(rèn)為是遲發(fā)超敏反應(yīng)的主要物質(zhì),并調(diào)節(jié)紅癬毛癬菌蛋白酶的分泌[34]。
Staib等研究了苯黑末節(jié)皮真菌在角蛋白生長(zhǎng)時(shí)基因的表達(dá)情況,發(fā)現(xiàn)23個(gè)蛋白酶基因[34],提示蛋白酶可能是其感染毒力因素之一。
2.3 隱球菌蛋白酶致病機(jī)制
有研究表明,新生隱球菌可通過(guò)分泌蛋白酶在以蛋白質(zhì)為氮源的培養(yǎng)基中生長(zhǎng)[35]。在隱球菌外分泌蛋白的檢測(cè)中也發(fā)現(xiàn)多種蛋白酶[36],已有研究分離并純化了隱球菌體外分泌蛋白酶[37-39]。Rodrigues等研究顯示,隱球菌培養(yǎng)上清液可導(dǎo)致人纖維連接蛋白裂解,此作用可能由絲氨酸蛋白酶介導(dǎo),因?yàn)樵撨^(guò)程可被絲氨酸蛋白酶的特異性抑制劑苯甲基磺酰氟(phenylmethane sulfonyl fluoride,PMSF)完全阻斷,而不能被金屬蛋白酶、天冬氨酸蛋白酶及半胱氨酸蛋白酶抑制劑阻斷[40]。某些絲氨酸蛋白酶可分解宿主基底部細(xì)胞膜相關(guān)蛋白,包括Ⅳ型膠原蛋白、層粘連蛋白、纖維連接蛋白。隱球菌蛋白酶可能在隱球菌從肺泡侵入肺組織過(guò)程中起重要作用[41]。體外培養(yǎng)腦血管內(nèi)皮細(xì)胞經(jīng)絲氨酸蛋白酶或隱球菌培養(yǎng)上清液處理后,通透性增加,該過(guò)程可被抑肽酶抑制。經(jīng)抑肽酶處理的大鼠隱球菌感染模型與單獨(dú)隱球菌感染相比,血腦屏障的通透性得到改善,從而推測(cè)絲氨酸蛋白酶可能在隱球菌通過(guò)血腦屏障中發(fā)揮作用[42]。此外,隱球菌蛋白酶也可分解補(bǔ)體因子,提示其可能參與干擾宿主免疫[43-44]。另外,還發(fā)現(xiàn)一種可能參與隱球菌黑色素合成的絲氨酸蛋白酶(未發(fā)表數(shù)據(jù))。
Vu等研究表明,一種外分泌金屬蛋白酶mpr1缺陷株不能穿過(guò)體外血腦屏障模型。在動(dòng)物感染模型中,mpr1缺陷株毒力明顯下降,腦部菌量負(fù)荷也明顯減輕。將mpr1基因移入啤酒酵母中表達(dá)時(shí),原本無(wú)法穿過(guò)血腦屏障的啤酒酵母可通過(guò)體外血腦屏障,從而推測(cè)隱球菌Mpr1可能在其通過(guò)血腦屏障中起重要作用[45]。去泛素化酶Ubp5也被發(fā)現(xiàn)在隱球菌對(duì)環(huán)境的應(yīng)激(包括高溫、高壓、抗真菌藥物)中起重要作用[46]。基質(zhì)金屬蛋白酶(matrix metalloproteinase,MMP)可通過(guò)誘導(dǎo)肺部趨化因子來(lái)調(diào)節(jié)炎癥細(xì)胞的浸潤(rùn)[47]。
2.4 曲霉蛋白酶致病機(jī)制
曲霉尤其煙曲霉是重要的經(jīng)空氣傳播的機(jī)會(huì)性致病真菌,可導(dǎo)致免疫缺陷患者罹患嚴(yán)重的曲霉感染[48]。多種蛋白酶包括絲氨酸蛋白酶、天冬氨酸蛋白酶、金屬蛋白酶等已被分離和純化[49-53]。絲氨酸蛋白酶Alp1可裂解補(bǔ)體成分C3、C4、C5和C1q及IgG[54];Alp1還可誘導(dǎo)哮喘發(fā)生[50,55]。Alp2為煙曲霉孢子形成所必需,提示其可能參與煙曲霉侵襲過(guò)程[56]。Monod等從煙曲霉中分離和純化了金屬蛋白酶,并在患者血液中檢測(cè)出相應(yīng)抗體[51]。煙曲霉分泌蛋白酶還被認(rèn)為是誘導(dǎo)氣道過(guò)敏性反應(yīng)的原因之一,金屬蛋白酶Asp f5和絲氨酸蛋白酶Asp f13(Alp1)可誘導(dǎo)小鼠模型炎癥細(xì)胞的募集及氣道的重塑[57]。
2.5 其他病原性真菌蛋白酶致病機(jī)制
組織胞漿菌可導(dǎo)致組織胞漿菌病,主要分布在密西西比河流域[58]。研究組織胞漿菌在不同形態(tài)下的蛋白酶分泌,發(fā)現(xiàn)蛋白酶活性在酵母形態(tài)下高于菌絲形態(tài)[59-60]。組織胞漿菌可分泌DppⅣ,DppⅣ可分解具有免疫調(diào)節(jié)功能的P物質(zhì),提示蛋白酶在組織胞漿菌感染時(shí)可能影響宿主的免疫功能[61]。巴西副球孢子菌中已分離出絲氨酸蛋白酶[62],并證明其具有分解基底膜的能力[63]。枝孢霉的絲氨酸蛋白酶被認(rèn)為是主要的變應(yīng)原[64]。
雖然蛋白酶作為毒力因子在很多真菌中被研究,但對(duì)其在感染宿主中所起作用的認(rèn)識(shí)還十分有限,尤其是在其特異性作用底物方面,因此研究蛋白酶特異性是以后的方向之一。通過(guò)檢測(cè)宿主真菌蛋白酶或其相應(yīng)抗體作為生物標(biāo)記診斷真菌感染,以及以蛋白酶作為真菌感染潛在藥物靶點(diǎn)來(lái)研究現(xiàn)有或新的蛋白酶抑制劑,將對(duì)真菌感染的診治具有積極作用。
[1] Havlickova B, Czaika VA, Friedrich M. Epidemiological trends in skin mycoses worldwide [J]. Mycoses, 2008, 51(Suppl 4): 2-15.
[2] Nucci M, Marr KA. Emerging fungal diseases [J]. Clin Infect Dis, 2005, 41(4): 521-526.
[3] Yike I. Fungal proteases and their pathophysiological effects [J]. Mycopathologia, 2011, 171(5): 299-323.
[4] Rawlings ND, Barrett AJ, Bateman A. MEROPS: the database of proteolytic enzymes, their substrates and inhibitors [J]. Nucleic Acids Res, 2012, 40(D1): D343-D350.
[5] Monod M, Capoccia S, Léchenne B, Zaugg C, Holdom M, Jousson O. Secreted proteases from pathogenic fungi [J]. Int J Med Microbiol, 2002, 292(5-6): 405-419.
[6] Edwards DR, Handsley MM, Pennington CJ. The ADAM metalloproteinases [J]. Mol Aspects Med, 2008, 29(5): 258-289.
[7] Hruskova-Heidingsfeldova O. Secreted proteins of Candida albicans [J]. Front Biosci, 2008, 13: 7227-7242.
[8] Naglik JR, Challacombe SJ, Hube B. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis [J]. Microbiol Mol Biol Rev, 2003, 67(3): 400-428.
[9] Silva NC, Nery JM, Dias AL. Aspartic proteinases of Candida spp.: role in pathogenicity and antifungal resistance [J]. Mycoses, 2014, 57(1): 1-11.
[10] Kantarcioglu AS, Yücel A. Phospholipase and protease activities in clinical Candida isolates with reference to the sources of strains [J]. Mycoses, 2002, 45(5-6): 160-165.
[11] Monod M, Togni G, Hube B, Sanglard D. Multiplicity of genes encoding secreted aspartic proteinases in Candida species [J]. Mol Microbiol, 1994, 13(2): 357-368.
[12] De Bernardis F, Arancia S, Morelli L, Hube B, Sanglard D, Sch?fer W, Cassone A. Evidence that members of the secretory aspartyl proteinase gene family, in particular SAP2, are virulence factors for Candida vaginitis [J]. J Infect Dis, 1999, 179(1): 201-208.
[13] Lermann U, Morschh?user J. Secreted aspartic proteases are not required for invasion of reconstituted human epithelia by Candida albicans [J]. Microbiology, 2008, 154(Pt 11): 3281-3295.
[14] Buu LM, Chen YC. Sap6, a secreted aspartyl proteinase, participates in maintenance the cell surface integrity of Candida albicans [J]. J Biomed Sci, 2013, 20: 101. doi: 10.1186/1423-0127-20-101.
[15] Hube B, Naglik J. Candida albicans proteinases: resolving the mystery of a gene family [J]. Microbiology, 2001, 147(Pt 8): 1997-2005.
[16] Hornbach A, Heyken A, Schild L, Hube B, L?ffler J, Kurzai O. The glycosylphosphatidylinositol-anchored protease Sap9 modulates the interaction of Candida albicans with human neutrophils [J]. Infect Immun, 2009, 77(12): 5216-5224.
[17] Kozik A, Gogol M, Bochenska O, Karkowska-Kuleta J, Wolak N, Kamysz W, Aoki W, Ueda M, Faussner A, Rapala-Kozik M. Kinin release from human kininogen by 10 aspartic proteases produced by pathogenic yeast Candida albicans [J]. BMC Microbiol, 2015, 15: 60. doi: 10.1186/s12866-015-0394-8.
[18] Kaur R, Ma B, Cormack BP. A family of glycosylphosphatidylinositol-linked aspartyl proteases is required for virulence of Candida glabrata [J]. Proc Natl Acad Sci USA, 2007, 104(18): 7628-7633.
[19] Bairwa G, Kaur R. A novel role for a glycosylpho-sphatidylinositol-anchored aspartyl protease, CgYps1, in the regulation of pH homeostasis in Candida glabrata [J]. Mol Microbiol, 2011, 79(4): 900-913.
[20] P?rn?nen P, Meurman JH, Nikula-Ij?s P. A novel Candida glabrata cell wall associated serine protease [J]. Biochem Biophys Res Commun, 2015, 457(4): 676-680.
[21] Zaugg C, Borg-Von Zepelin M, Reichard U, Sanglard D, Monod M. Secreted aspartic proteinase family of Candida tropicalis [J]. Infect Immun, 2001, 69(1): 405-412.
[22] Silva S, Henriques M, Oliveira R, Azeredo J, Malic S, Hooper SJ, Williams DW. Characterization of Candida parapsilosis infection of an in vitro reconstituted human oral epithelium [J]. Eur J Oral Sci, 2009, 117(6): 669-675.
[23] Portela MB, Souza IP, Abreu CM, Bertolini M, Holandino C, Alviano CS, Santos AL, Soares RM. Effect of serine-type protease of Candida spp. isolated from linear gingival erythema of HIV-positive children: critical factors in the colonization [J]. J Oral Pathol Med, 2010, 39(10): 753-760.
[24] Rodier MH, el Moudni B, Kauffmann-Lacroix C, Daniault G, Jacquemin JL. A Candida albicans metallopeptidase degrades constitutive proteins of extracellular matrix [J]. FEMS Microbiol Lett, 1999, 177(2): 205-210.
[25] Baldo A, Monod M, Mathy A, Cambier L, Bagut ET, Defaweux V, Symoens F, Antoine N, Mignon B. Mechanisms of skin adherence and invasion by dermatophytes [J]. Mycoses, 2012, 55(3): 218-223.
[26] Vermout S, Tabart J, Baldo A, Mathy A, Mignon B. Pathogenesis of dermatophytosis [J]. Mycopathologia, 2008, 166(5-6): 267-275.
[27] Léchenne B, Reichard U, Zaugg C, Fratti M, Kunert J, Boulat O, Monod M. Sulphite efflux pumps in Aspergillus fumigatus and dermatophytes [J]. Microbiology, 2007, 153(Pt 3): 905-913.
[28] Vermout S, Baldo A, Tabart J, Losson B, Mignon B. Secreted dipeptidyl peptidases as potential virulence factors for Microsporum canis [J]. FEMS Immunol Med Microbiol, 2008, 54(3): 299-308.
[29] Baldo A, Mathy A, Tabart J, Camponova P, Vermout S, Massart L, Maréchal F, Galleni M, Mignon B. Secreted subtilisin Sub3 from Microsporum canis is required for adherence to but not for invasion of the epidermis [J]. Br J Dermatol, 2010, 162(5): 990-997.
[30] Baldo A, Tabart J, Vermout S, Mathy A, Collard A, Losson B, Mignon B. Secreted subtilisins of Microsporum canis are involved in adherence of arthroconidia to feline corneocytes [J]. J Med Microbiol, 2008, 57(Pt 9): 1152-1156.
[31] Brouta F, Descamps F, Fett T, Losson B, Gerday C, Mignon B. Purification and characterization of a 43.5 kDa keratinolytic metalloprotease from Microsporum canis [J]. Med Mycol, 2001, 39(3): 269-275.
[32] Brouta F, Descamps F, Monod M, Vermout S, Losson B, Mignon B. Secreted metalloprotease gene family of Microsporum canis [J]. Infect Immun, 2002, 70(10): 5676-5683.
[33] Jousson O, Léchenne B, Bontems O, Mignon B, Reichard U, Barblan J, Quadroni M, Monod M. Secreted subtilisin gene family in Trichophyton rubrum [J]. Gene, 2004, 339: 79-88.
[34] Staib P, Zaugg C, Mignon B, Weber J, Grumbt M, Pradervand S, Harshman K, Monod M. Differential gene expression in the pathogenic dermatophyte Arthroderma benhamiae in vitro versus during infection [J]. Microbiology, 2010, 156(Pt3): 884-895.
[35] Aoki S, Ito-Kuwa S, Nakamura K, Kato J, Ninomiya K, Vidotto V. Extracellular proteolytic activity of Cryptococcus neoformans [J]. Mycopathologia, 1994, 128(3): 143-150.
[36] Campbell LT, Simonin AR, Chen C, Ferdous J, Padula MP, Harry E, Hofer M, Campbell IL, Carter DA. Cryptococcus strains with different pathogenic potentials have diverse protein secretomes [J]. Eukaryot Cell, 2015, 14(6): 554-563.
[37] Yoo JI, Lee YS, Song CY, Kim BS. Purification and characterization of a 43-kilodalton extracellular serine proteinase from Cryptococcus neoformans [J]. J Clin Microbiol, 2004, 42(2): 722-726.
[38] Rao S, Mizutani O, Hirano T, Masaki K, Iefuji H. Purification and characterization of a novel aspartic protease from basidiomycetous yeast Cryptococcus sp. S-2 [J]. J Biosci Bioeng, 2011, 112(5): 441-446.
[39] Pinti M, Orsi CF, Gibellini L, Esposito R, Cossarizza A, Blasi E, Peppoloni S, Mussini C. Identification and characterization of an aspartyl protease from Cryptococcus neoformans [J]. FEBS Lett, 2007, 581(20): 3882-3886.
[40] Rodrigues ML, dos Reis FC, Puccia R, Travassos LR, Alviano CS. Cleavage of human fibronectin and other basement membrane-associated proteins by a Cryptococcus neoformans serine proteinase [J]. Microb Pathog, 2003, 34(2): 65-71.
[41] Goldman D, Lee SC, Casadevall A. Pathogenesis of pulmonary Cryptococcus neoformans infection in the rat [J]. Infect Immun, 1994, 62(11): 4755-4761.
[42] Xu CY, Zhu HM, Wu JH, Wen H, Liu CJ. Increased permeability of blood-brain barrier is mediated by serine protease during Cryptococcus meningitis [J]. J Int Med Res, 2014, 42(1): 85-92.
[43] Eigenheer RA, Jin LY, Blumwald E, Phinney BS, Gelli A. Extracellular glycosylphosphatidylinositol-anchored mannoproteins and proteases of Cryptococcus neoformans [J]. FEMS Yeast Res, 2007, 7(4): 499-510.
[44] Carruthers VB, Blackman MJ. A new release on life: emerging concepts in proteolysis and parasite invasion [J]. Mol Microbiol, 2005, 55(6): 1617-1630.
[45] Vu K, Tham R, Uhrig JP, Thompson GR 3rd, Na Pombejra S,Jamklang M, Bautos JM, Gelli A. Invasion of the central nervous system by Cryptococcus neoformans requires a secreted fungal metalloprotease [J]. MBio, 2014, 5(3): e01101-14. doi: 10.1128/mBio.01101-14.
[46] Meng Y, Zhang C, Yi J, Zhou Z, Fa Z, Zhao J, Yang Y, Fang W, Wang Y, Liao WQ. Deubiquitinase Ubp5 is required for the growth and pathogenicity of Cryptococcus gattii [J]. PLoS One, 2016, 11(4): e0153219.
[47] Supasorn O, Sringkarin N, Srimanote P, Angkasekwinai P. Matrix metalloproteinases contribute to the regulation of chemokine expression and pulmonary inflammation in Cryptococcus infection [J]. Clin Exp Immunol, 2016, 183(3): 431-440.
[48] Denning DW. Invasive aspergillosis [J]. Clin Infect Dis, 1998, 26(4): 781-803.
[49] Reichard U, Cole GT, Rüchel R, Monod M. Molecular cloning and targeted deletion of PEP2 which encodes a novel aspartic proteinase from Aspergillus fumigatus [J]. Int J Med Microbiol, 2000, 290(1): 85-96.
[50] Reichard U, Büttner S, Eiffert H, Staib F, Rüchel R. Purification and characterisation of an extracellular serine proteinase from Aspergillus fumigatus and its detection in tissue [J]. J Med Microbiol, 1990, 33(4): 243-251.
[51] Monod M, Paris S, Sanglard D, Jaton-Ogay K, Bille J, Latgé JP. Isolation and characterization of a secreted metalloprotease of Aspergillus fumigatus [J]. Infect Immun, 1993, 61(10): 4099-4104.
[52] Markaryan A, Morozova I, Yu H, Kolattukudy PE. Purification and characterization of an elastinolytic metalloprotease from Aspergillus fumigatus and immunoelectron microscopic evidence of secretion of this enzyme by the fungus invading the murine lung [J]. Infect Immun, 1994, 62(6): 2149-2157.
[53] Kolattukudy PE, Lee JD, Rogers LM, Zimmerman P, Ceselski S, Fox B, Stein B, Copelan EA. Evidence for possible involvement of an elastolytic serine protease in aspergillosis [J]. Infect Immun, 1993, 61(6): 2357-2368.
[54] Behnsen J, Lessing F, Schindler S, Wartenberg D, Jacobsen ID, Thoen M, Zipfel PF, Brakhage AA. Secreted Aspergillus fumigatus protease Alp1 degrades human complement proteins C3, C4, and C5 [J]. Infect Immun, 2010, 78(8): 3585-3594.
[55] Balenga NA, Klichinsky M, Xie Z, Chan EC, Zhao M, Jude J, Laviolette M, Panettieri RA Jr, Druey KM. A fungal protease allergen provokes airway hyper-responsiveness in asthma [J]. Nat Commun, 2015, 6: 6763. doi: 10.1038/ncomms7763.
[56] Reichard U, Cole GT, Hill TW, Rüchel R, Monod M. Molecular characterization and influence on fungal development of ALP2, a novel serine proteinase from Aspergillus fumigatus [J]. Int J Med Microbiol, 2000, 290(6): 549-558.
[57] Namvar S, Warn P, Farnell E, Bromley M, Fraczek M, Bowyer P, Herrick S. Aspergillus fumigatus proteases, Asp f 5 and Asp f 13, are essential for airway inflammation and remodelling in a murine inhalation model [J]. Clin Exp Allergy, 2015, 45(5): 982-993.
[58] Kauffman CA. Histoplasmosis: a clinical and laboratory update [J]. Clin Microbiol Rev, 2007, 20(1): 115-132.
[59] Okeke CN, Müller J. In vitro production of extracellular elastolytic proteinase by Histoplasma capsulatum var. duboisii and Histoplasma capsulatum var. capsulatum in the yeast phase [J]. Mycoses, 1991, 34(11-12): 461-467.
[60] Muotoe-Okafor FA, Gugnani HC, Obidoa OO. Extracellular proteolytic enzyme activity of Histoplasma capsulatum var. duboisii [J]. Mycopathologia, 1996, 133(3): 129-133.
[61] Cooper KG, Zarnowski R, Woods JP. Histoplasma capsulatum encodes a dipeptidyl peptidase active against the mammalian immunoregulatory peptide, substance P [J]. PLoS One, 2009, 4(4): e5281.
[62] Carmona AK, Puccia R, Oliveira MC, Rodrigues EG, Juliano L, Travassos LR. Characterization of an exocellular serine-thiol proteinase activity in Paracoccidioides brasiliensis [J]. Biochem J, 1995, 309 (Pt 1): 209-214.
[63] Puccia R, Carmona AK, Gesztesi JL, Juliano L, Travassos LR. Exocellular proteolytic activity of Paracoccidioides brasiliensis: cleavage of components associated with the basement membrane [J]. Med Mycol, 1998, 36(5): 345-348.
[64] Chou H, Tam MF, Lee LH, Chiang CH, Tai HY, Panzani RC, Shen HD. Vacuolar serine protease is a major allergen of Cladosporium cladosporioides [J]. Int Arch Allergy Immunol, 2008, 146(4): 277-286.
. LIAO Wanqing, E-mail: liaowanqing@sohu.com
The pathogenetic mechanism of proteases from pathogenic fungi
SANG Junjun, LI Yingfang, PAN Weihua, LIAO Wanqing
InstituteofDermatologyandMycoses,ShanghaiKeyLaboratoryofMedicalMolecularMycology,KeyLaboratoryofFungalDiseases,DepartmentofDermatology,ChangzhengHospital,TheSecondMilitaryMedicalUniversity,Shanghai200003,China
Proteases play an important role in fungal physiology and growth and in infection of pathogenic fungi as well. Fungal proteases may be involved in adhesion, colonization, spreading and escaping from the host immune response. Some proteases are considered as allergens, which can induce asthma and allergic diseases. Knowledge of the pathogenesis of the proteases will increase our understanding about the action of each fungal protease and will help to provide clues for the diagnosis and treatment of fungal infection.
Pathogenic fungus;Protease;Pathogenetic mechanism;Fungal infection
國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(2013CB531601),上海市醫(yī)學(xué)真菌分子生物學(xué)實(shí)驗(yàn)室基金(14DZ2272900)
廖萬(wàn)清
2016-11-10)