陳詩(shī)軍 綜述 陳余清 審校
干擾素與腫瘤相關(guān)性研究進(jìn)展
陳詩(shī)軍 綜述 陳余清 審校
根據(jù)干擾素蛋白質(zhì)結(jié)構(gòu)和來(lái)源的不同,干擾素(interferon,IFN)可分為I型(IFN-α和IFN-β)、Ⅱ型(IFN-γ)和Ⅲ型(IFN-λ)。高度的同源性和明顯的種族特異性是IFN-α的特點(diǎn)[1],其大約含有165個(gè)氨基酸殘基,無(wú)糖基,分子量約為19kD,主要來(lái)源于B淋巴細(xì)胞及部分巨噬細(xì)胞。IFN-β分子與IFN-α大小相似,約含有166個(gè)氨基酸,有糖基,分子量約為23kD,主要由成纖維細(xì)胞和上皮細(xì)胞產(chǎn)生,部分巨噬細(xì)胞也可以產(chǎn)生。 IFN-γ是一個(gè)含有六螺旋的α螺旋蛋白,主要由抗原刺激T細(xì)胞產(chǎn)生,參與誘導(dǎo)組織相容性抗原(MHC)的表達(dá)和免疫調(diào)節(jié)效應(yīng)。 IFN-λ的主要結(jié)構(gòu)特征是由A-F6個(gè)螺旋環(huán)連接組成一個(gè)標(biāo)準(zhǔn)的四螺旋束, 其構(gòu)成IFN-λ的核心結(jié)構(gòu),主要來(lái)源于漿細(xì)胞樣樹(shù)突細(xì)胞(pDC)[2]。以上三種類(lèi)型的干擾素具有相似的功能,即抗腫瘤、抗病毒疾病、增強(qiáng)機(jī)體免疫等能力[3],其可以通過(guò)與細(xì)胞膜上特異性受體結(jié)合,誘導(dǎo)機(jī)體或細(xì)胞分泌各種活性因子和酶類(lèi),從而間接發(fā)揮作用 。這些物質(zhì)能夠促進(jìn)機(jī)體細(xì)胞和體液免疫對(duì)多種病毒抗原的應(yīng)答,從而抑制病毒的增殖和活性;能夠抑制腫瘤細(xì)胞周期的轉(zhuǎn)化以及激活干擾素調(diào)節(jié)因子等,并可以改變腫瘤細(xì)胞表面的某種性質(zhì),使其更加容易被機(jī)體免疫系統(tǒng)識(shí)別并清除;增強(qiáng)機(jī)體T、B細(xì)胞活性,有利于吞噬細(xì)胞發(fā)揮吞噬功能,增強(qiáng)機(jī)體的免疫應(yīng)答能力。
一、干擾素抑制腫瘤細(xì)胞增殖
二、干擾素促進(jìn)腫瘤細(xì)胞凋亡
促進(jìn)腫瘤細(xì)胞的凋亡也是干擾素發(fā)揮抗腫瘤作用的途徑之一。端粒酶的異?;罨悄[瘤形成和發(fā)展的關(guān)鍵環(huán)節(jié)之一,在肺癌等多數(shù)腫瘤細(xì)胞中端粒酶活性較正常機(jī)體組織明顯增高[10];Bekisz J[11]等研究發(fā)現(xiàn),IFN-α通過(guò)一系列途徑調(diào)節(jié)端粒酶逆轉(zhuǎn)錄酶轉(zhuǎn)錄因子的表達(dá)水平而抑制端粒酶異?;钚?,并且誘導(dǎo)抑癌基因P53表達(dá)和活化PI3K,從而誘導(dǎo)腫瘤細(xì)胞凋亡。 干擾素介導(dǎo)的信號(hào)轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄激活最主要途徑是JAK-STAT[12],干擾素與細(xì)胞表面某些受體結(jié)合,激活JAK/STST信號(hào)轉(zhuǎn)導(dǎo)途徑,誘導(dǎo)干擾素刺激基因表達(dá),從而加速細(xì)胞凋亡的進(jìn)程。同時(shí),干擾素可以提高肺癌等腫瘤細(xì)胞對(duì)Fas-介導(dǎo)細(xì)胞凋亡途徑的敏感性,從而誘導(dǎo)腫瘤細(xì)胞凋亡[13]。進(jìn)一步研究發(fā)現(xiàn)[14],IFN-α和IFN-γ可以通過(guò)與細(xì)胞膜表面的FAS結(jié)合,使細(xì)胞發(fā)生凋亡,其機(jī)制可能是通過(guò)上調(diào)Fas基因、Fas相關(guān)死亡結(jié)構(gòu)域蛋白表達(dá)和激活caspase-8信號(hào)通路,從而增加死亡誘導(dǎo)信號(hào)復(fù)合物形成。Han SM等的研究發(fā)現(xiàn),IFN-β可以通過(guò)誘導(dǎo)Bcl-2等凋亡相關(guān)蛋白表達(dá)而抑制黑色素瘤細(xì)胞生長(zhǎng)和促進(jìn)其凋亡[15]。
三、干擾素抑制腫瘤新生血管形成及腫瘤轉(zhuǎn)移
腫瘤新生血管的形成也是腫瘤得以無(wú)限進(jìn)展的基礎(chǔ)條件之一。有研究顯示,干擾素可以抑制血管形成,能夠降低VEGF、血管原蛋白、轉(zhuǎn)化生長(zhǎng)因子-α等血管形成因子的表達(dá)水平;甚至可以直接促進(jìn)腫瘤內(nèi)皮細(xì)胞凋亡,從而抑制腫瘤新生血管生成[16]。孫等[17]通過(guò)構(gòu)建人膽囊癌裸鼠皮下腫瘤模型發(fā)現(xiàn),INF-γ能夠抑制腫瘤相關(guān)巨噬細(xì)胞(TAM)分化形成,降低癌細(xì)胞中 VEGF的濃度,減少癌組織相關(guān)血管的發(fā)生,從而抑制膽囊癌的進(jìn)展。 Mazibrada 等[18]通過(guò)構(gòu)建裸鼠模型,恢復(fù)IFI16蛋白的表達(dá)以此增加頭頸鱗狀癌細(xì)胞的腫瘤負(fù)荷,減少腫瘤新生血管的形成;并且釋放趨化因子募集巨噬細(xì)胞達(dá)到抗腫瘤、抗血管形成作用。 最近研究發(fā)現(xiàn),IFN-α2b可以明顯抑制JAK2V617F陽(yáng)性骨髓增殖性腫瘤(MPN)細(xì)胞增殖,并且呈時(shí)間和劑量依賴(lài)性,其機(jī)制可能是通過(guò)調(diào)控JAK2信號(hào)通路抑制血管內(nèi)皮生長(zhǎng)因子(VEGF)、缺氧誘導(dǎo)因子(HIF-1α)及微血管密度(MVD)表達(dá)和分泌,從而減少腫瘤新生血管形成[19]。
四、干擾素的免疫調(diào)節(jié)
五、干擾素促進(jìn)部分腫瘤的逃逸
一、干擾素與其它藥物聯(lián)合應(yīng)用
干擾素與某些臨床抗癌藥物聯(lián)合使用不僅可以提高這些藥物的利用效率或者提高活性,同時(shí),也可以減少干擾素應(yīng)用的劑量,降低臨床不良反應(yīng)的發(fā)生率。體內(nèi)外實(shí)驗(yàn)證實(shí),當(dāng)IFN-α和索拉菲尼兩者聯(lián)合使用時(shí)能有效抑制肝癌細(xì)胞的活性,從而抑制肝癌細(xì)胞生長(zhǎng)和促進(jìn)肝癌細(xì)胞凋亡[27]。INF-γ聯(lián)合米非司酮誘導(dǎo)人類(lèi)膽管癌細(xì)胞株FRH-0201體外凋亡的研究顯示: 米非司酮加用IFN-γ后,米非司酮誘導(dǎo)細(xì)胞凋亡的效果大幅度增加,細(xì)胞凋亡率顯著高于單純應(yīng)用米非司酮,其機(jī)制可能與INF-γ上調(diào) Fas 表達(dá)有關(guān);并且在一定程度上可減少單獨(dú)應(yīng)用的劑量,降低不良反應(yīng)的發(fā)生率[28]。Katsura等[29]研究發(fā)現(xiàn),IFN 聯(lián)合5-氟尿嘧啶作用于肝癌細(xì)胞株,可明顯抑制腫瘤細(xì)胞生長(zhǎng),其抑制作用高于單獨(dú)使用干擾素。 有研究證實(shí),正常細(xì)胞表面的腫瘤壞死因子相關(guān)凋亡誘導(dǎo)配體(TRAIL)受體分為兩種:DR1和DR2,而腫瘤細(xì)胞則表達(dá) DR4 和 DR5,兩者結(jié)構(gòu)不同,當(dāng)TRAIL 與細(xì)胞表面的 DR 結(jié)合后,腫瘤細(xì)胞可以將凋亡信號(hào)轉(zhuǎn)導(dǎo)到細(xì)胞內(nèi),誘導(dǎo)細(xì)胞凋亡,而正常細(xì)胞則不誘導(dǎo)信號(hào)轉(zhuǎn)導(dǎo),從而保護(hù)正常細(xì)胞[30-31]。同時(shí),進(jìn)一步實(shí)驗(yàn)表明,干擾素可上調(diào)TRAIL及其受體的表達(dá)水平,并且促進(jìn)多發(fā)性骨髓瘤細(xì)胞凋亡[32]。在INF-γ聯(lián)合細(xì)胞毒藥物治療頭頸部鱗癌(HNSCC)的實(shí)驗(yàn)中,INF-γ能夠增強(qiáng)Egr-1基因在頭頸部鱗癌SCC-25細(xì)胞的表達(dá)水平,Egr-1水平上調(diào)使得凝血酶敏感蛋白-1( TSP-1)在頭頸部鱗癌 SCC-25細(xì)胞分泌增加,從而抑制Egr-1基因沉默;同時(shí),INF-γ也可通過(guò)上調(diào)Egr-1基因的表達(dá)介導(dǎo)化療藥物對(duì)頭頸部鱗癌細(xì)胞的凋亡和壞死[33]。
二、干擾素基因轉(zhuǎn)染與腫瘤
基因轉(zhuǎn)染技術(shù)是利用一定的載體將特定的目的基因轉(zhuǎn)入細(xì)胞內(nèi),并使其在細(xì)胞內(nèi)進(jìn)行表達(dá),從而研究基因、基因產(chǎn)物或蛋白的功能。利用間充質(zhì)干細(xì)胞向腫瘤部位遷移的特性[34],通過(guò)各種載體將干擾素基因轉(zhuǎn)染到間充質(zhì)干細(xì)胞,這樣不僅可以提高腫瘤局部干擾素的濃度,而且還可避免全身用藥的不良反應(yīng),這可能成為干擾素抗腫瘤的一種新途徑。在前列腺癌的研究中,Wang GX等通過(guò)靜脈注射IFN-β-MSCs到免疫缺陷小鼠體內(nèi),并且熒光顯微鏡觀察其對(duì)腫瘤細(xì)胞PC-3生長(zhǎng)影響,結(jié)果表明在體外明顯抑制腫瘤細(xì)胞生長(zhǎng);注射后與對(duì)照組相比,明顯延長(zhǎng)動(dòng)物生存時(shí)間,并且比單用干擾素劑量明顯減少[35]。Dembinski JL等利用間充質(zhì)干細(xì)胞對(duì)腫瘤的趨向特性,通過(guò)腹腔注射IFN-β-MSCs,結(jié)果表明在同系小鼠的卵巢癌腫瘤(id8-r)和人類(lèi)異種移植(OVCAR3、SKOV3)腫瘤模型中,腫瘤細(xì)胞發(fā)生明顯凋亡,其作用機(jī)制可能與caspase依賴(lài)的細(xì)胞凋亡有關(guān)[36]。最近研究表明,SU Y等利用INF-α2b基因修飾的人骨髓間充質(zhì)干細(xì)胞作用于肝癌細(xì)胞株(HepG2和Huh7細(xì)胞),結(jié)果表明:與對(duì)照組比較,腫瘤細(xì)胞停滯在G2/M期,腫瘤細(xì)胞增殖明顯受到抑制;并明顯降低Notch1在體內(nèi)和體外的表達(dá)水平,這在一定程度上抑制腫瘤生長(zhǎng)[37]。在乳腺癌的相關(guān)研究中,有學(xué)者將IFN-β基因轉(zhuǎn)染至神經(jīng)干細(xì)胞中發(fā)現(xiàn),IFN-β基因能靶向的遷移至人乳腺癌細(xì)胞中,誘導(dǎo)細(xì)胞明顯凋亡[38];Ching-Ju Shen等,利用IFN-β基因轉(zhuǎn)染的人臍帶源性間充質(zhì)干細(xì)胞(hucMSCs)與乳腺癌細(xì)胞MD-MB-231或Hs578T共培養(yǎng)后,與對(duì)照組比較,癌細(xì)胞發(fā)生了明顯凋亡[39]。
三、干擾素全身應(yīng)用的不良反應(yīng)
干擾素在臨床上應(yīng)用十分廣泛,在抗腫瘤、抗病毒等方面給患者帶來(lái)了福音,但也帶來(lái)了一定的毒副作用,一定程度上限制了干擾素的廣泛應(yīng)用。干擾素主要的臨床不良反應(yīng)有白細(xì)胞減少癥、中性粒細(xì)胞減少癥、流感樣癥狀、心血管系統(tǒng)并發(fā)癥、疲勞及惡心等[40],不少患者還會(huì)出現(xiàn)抑郁、焦慮等精神障礙[41], 以及缺血性腸炎等罕見(jiàn)并發(fā)癥[42],其中最常見(jiàn)的是流感樣癥狀,嚴(yán)重的有骨髓抑制、精神癥狀等,需及時(shí)停藥。Julia[43]等報(bào)告分析,通過(guò)囊內(nèi)注射IFN-α治療顱咽管瘤時(shí),IFN-α可溢出囊外,對(duì)中樞神經(jīng)系統(tǒng)造成毒性,成為干擾素治療的相對(duì)禁忌癥;與此同時(shí),Bi Q[44]等實(shí)驗(yàn)研究顯示,直接注射IFN-α到大鼠杏仁核,其通過(guò)激活杏仁核的神經(jīng)膠質(zhì)細(xì)胞誘導(dǎo)大鼠聽(tīng)覺(jué)損傷,這進(jìn)一步說(shuō)明干擾素帶來(lái)的副作用。
長(zhǎng)久以來(lái),國(guó)內(nèi)外學(xué)者對(duì)干擾素進(jìn)行了多方面研究并取得了明顯的進(jìn)展。干擾素臨床應(yīng)用使無(wú)數(shù)患者受益,但也給患者帶來(lái)一些不良反應(yīng)。干擾素的抗腫瘤作用機(jī)制需要更進(jìn)一步的探索,為研發(fā)臨床抗腫瘤活性高和副作用少的干擾素提供理論基礎(chǔ)。干擾素作為一種具有良好生物活性的細(xì)胞因子是如何發(fā)揮最佳效應(yīng),以及與其它藥物聯(lián)合應(yīng)用等問(wèn)題還有待進(jìn)一步研究和探索。干擾素的高效轉(zhuǎn)染并明顯表達(dá)的載體(如慢病毒、脂質(zhì)體)和適合于臨床的轉(zhuǎn)染方法,以及應(yīng)用于靶向治療仍處于研究階段;如何更高效的將干擾素目的基因整合到靶細(xì)胞基因組中的作用機(jī)制仍不清楚;干擾素應(yīng)用于多種實(shí)體腫瘤(包括腎癌、多發(fā)性骨髓瘤及黑色素瘤等)的臨床療效評(píng)價(jià)仍然不足,這些仍需要更多研究人員及臨床工作者的不懈努力。
[1] Wan L, Chang TW. Site-specific lipophilic modification of interferon-alpha[J]. Protein Chen,2002,21(6):371-381.
[2] Yin Z, Dai J, Deng J,et al. Type Ⅲ IFNs are produced by and stimulate human plasmacytodi dendritic cells[J].J Immunol,2012,189(6):2735-2745.
[3] Fensterl V, Sen GC. Interferons and viral infections [J].Biofactors,2009 ;35(1):14-20.
[4] Hong S, Qian J, Yang J, et al.CpG or IFN-α are more potent adjuvants than GM-CSF to promote anti-tumor immunity following idiotype vaccine in multiple myeloma[J].Cancer Immunol Immunother,2012,61(4):561-71.
[5] Silver RT, Kiladjian JJ, Hasselbalch HC. Interferon and the treatment of polycythemia vera,essential thrombocythemia and myelofibrosis [J]. Expert Rev Hematol,2013,6(1):49-58.
[6] Hasan S, Lacout C,Marty C,et al. JAK2V617F expression in mice amplifies early hematopoietic cells and gives them a competitive advantage that ishampered by IFNα [J]. Blood,2013,122(8):1464-1477.
[7] Xu B, He Y, Wu X, et al. Exploration of the correlations between interferon-γ in patient serum and HEPACAM in bladder transitional cell carcinoma,and the interferon-γ mechanism inhibiting BIU-87 proliferation[J]. J Urol,2012,188(4):1346-53.
[8] Yang M, Gao H, Chen P,et al. Knockdown of interferon-induced transmenbrane protein 3 expression suppresses breast cancer cell growth and colony formation and affects the cell cycle[J]. Oncol Rep,2013,30(1):171-178.
[9] Xie C, Guo B, Liu C,et al. Endogenous IFN-β maintains M1 polarization status and inhibits proliferation and invasion of hepatocellular carcinoma cells [J]. Xi bao yu fen zi mian yi xue za zhi,2016,32(7):865-9.
[10] Cifuentes-Rojas C, Shippen DE. Telomerase regulation [J]. Mutat Res,2012,730(1-2):20-27.
[11] Bekisz J, Baron S, Balinsky C, et al. Antiproliferative properties of Type I and Type Ⅱ Interferon[J]. Pharmaceuticals(Basel),2010,3(4):994-1015.
[12] Stark GR, Darnell JE Jr. The JAK-STAT pathway at twenty[J]. Immunity,2012,36(4):503-14.
[13] Chai JH, Zhang Y, Tan WH, et al. Regulation of hTERT by BCR-ABL at multiple levels in K562 cells[J].BMC Cancer,2011,11(1):512.
[14] Wang XY, Crowston JG, White AJ, et al. Interferon-alpha and interferon-gamma modulate Fas-mediated apoptosis in mitomycin-C-resistant human Tenon’s fibroblasts[J]. Clin Experiment Ophthalmol,2014,42(6):529-38.
[15] Han SM, Park CW, Ahn JO,et al. Pro-apoptotic and Growth -inhibitory Effect of IFN-β-Overexpressing Canine Adipose Tissue-derived Mesenchymal Stem Cells Against Melanoma Cells[J]. Anticancer Res,2015,35(9):4749-56.
[16] Long XS, Wu Q, Song F. The effect of interferon-inducible protein 16 on vascular endothelial cells proliferation [J]. Chin J Hyper-tens, 2013,21(1):29-33.
[17] 孫濤、張明宇、葛春林,等.通過(guò)干擾素-γ素影響腫瘤相關(guān)巨噬細(xì)胞抑制膽囊癌血管發(fā)生的實(shí)驗(yàn)研究[J].山東醫(yī)藥,2011,51(48):25-27.
[18] Mazibrada J, De Andrea M, Borgogna C, et al. In vivo growth inhibition of head and neck squamous cell carcinoma by the interferon-inducible gene IFI16 [J].Cancer Lett,2010,287(1):33-43.
[19] Fu J, Xu Q, Zhao Y, et al. Anti-angiogenic effect of interferon on JAK2V617F positive myeloproliferative neoplasms and its anti-angiogenic mechanisms [J].Chin J Med,2015,95(46):3727-3732.
[20] Chen K, Cao XT. Dual role of interferon in tumor immunology [J]. Chin J Cancer Biother,2013,20(5):507-514.
[21] Rizza P, Moretti F, Belardelli F. Recent advances on the immunomodulatory effects of IFN-alpha: implications for cancer immunotherapy and autoimmunity [J]. Autoimmunity,2010,43(3):204-209.
[22] Jablonska J, Wu CF, Andzinski L,et al. Sociated neutrophil recruitment is regulated by IFN-β [J]. Int J Cancer,2014,134(6):1346-58.
[23] Schreiber RD, Old L J, Smyth MJ. Cancer immunoediting: integrating immunity’s roles cancer suppression and promotion[J]. Science,2011,331(6024):1565-1570.
[24] Wang Gong Chen . The investigation on the effects and mechanisms of Interferon-γ in Immune escape of HCC[J]. Dalian Medical University,2010,4,1.
[25] Müller-Hermelink N, Braumüller H, Pichler B,et al. TNFR1 signaling and IFN-gamma signaling determine whether cells in duce tumor dormancy or promotemultistage carciogenesis [J].Cancer Cell, 2008,13(6):507-18.
[26] Cohen PA, Ko JS, Storkus WJ, et al. Myeloid-derived suppressor cells adhere to physiologic STAT3-vs STAT5-dependent hemato-poietic programming, establishing diverse tumor-mediated mechanisms of immunologic escape [J]. Immunol Invest,2012,41(6/7):680-710.
[27] 王莉靜.干擾素-α和索拉菲尼聯(lián)合治療肝癌及RACK1對(duì)干擾素-α信號(hào)通路調(diào)控的研究[D]. 上海: 復(fù)旦大學(xué),2012.
[28] Sun QL, Zhang XG, Xing QT, et al. A study of mifepristone/IFN-γ-induced apoptosis of human cholangiocarcinoma cell line FRH-0201 in vitro [J]. Onco Targets Ther,2012,5:335-342.
[29] Katsura Y, Wada H, Murakami M, et al. PTK787/ZK222584 combined with interferon alpha and 5-fluorouracil synergistically inhibits VEGF signaling pathway in hepatocellular carcinoma [J]. Ann Surg Oncol, 2013,20(Suppl 3):S517.
[30] MacFarlane M. TRAIL-induced signaling and apoptosis [J]. Toxicol Let,2003,139(2-3):89-97.
[31] Cretney E, Shanker A, Yagita H, et al. TNF-related apoptosis-inducing ligand as a therapeutic agent in autoimmunity and cancer[J]. Immunol Cell Biol,2006,84(1):87-98.
[32] 高彩鳳、劉洪濤、劉慶榮,等.雷利度胺聯(lián)合干擾素對(duì)多發(fā)性骨髓瘤U266細(xì)胞腫瘤壞死因子相關(guān)凋亡誘導(dǎo)配體及其受體表達(dá)的影響 [J].中國(guó)慢性病預(yù)防與控制,2015,23(1):52-53
[33] Xu B, Shu Y, Liu P, et al. IFN-γ sensitizes head and neck squamous cell carcinoma cells to chemotherapy-induced apoptosis and necroptosis through up-regulation of Egr-1 [J]. Histol Histopathol, 2014, 29(11):1437-1443.
[34] Liu S, Ginestier C, Ou SJ,et al. Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks[J]. Cancer Res,2011,71(2):614-624.
[35] Wang GX, Zhan YA, Hu HL, et al. Mesenchymal stem cells modified to express interferon-β inhibit the growth of prostate cancer in a mouse model [J]. J Int Med Res,2012,40(1):317-327.
[36] Dembinski JL, Wilson SM, Spaeth EL,et al. Tumor stroma engraftment of genemodified mesenchymal stem cells as anti-tomor therapy against ovariancancer [J]. Cytotherapy,2013, 15(1):20-32.
[37] Su Y, Cheng R, Zhang J, et al. Interferon-α2b gene-modified human bone marrow mesenchymal stem cells inhibit hepatocellular carcinoma by reducing the Notch1 levels [J]. Life Sci,2015,143:18-26.
[38] Yi BR, Hwang KA, Aboody KS, et al. Selective antitumor effect of neural stem cells expressing cytosine deaminase and interferon-beta against ductal breast cancer cells in cellular and xenograft models [J]. Stem Cell Res,2014,12(1):36-48.
[39] Shen CJ, Chan TF, Chen CC, et al. Human umbilical cord matrix-derived stem cells expressing interferon - gene inhibit breast cancer cells viaapoptosis[J]. Oncotarget,2016,7(23):34172-34179.
[40] Payne MJ, Argyropoulou K, Lorigan P, et al. Phase Ⅱ pilot study of intravenous high-dose interferon with or without maintenance treatment in melanoma at high risk of recurrence[J]. J Clin Oncol, 2014,32(3):185-190.
[41] Ma C, rmstrong AW. Severe adverse events from the treatment of advanced melanoma: a systematic review of severe side effect associated with ipilimumab,vemurafenib,interferon alfa-2b,dacarbazine and interleukin-2[J]. J Dermatolog Treat, 2014,25(5):401-408.
[42] Baik SJ, Kim TH, Yoo K, et al. Ischemic colitis during interferon-ribavirin therapy for chronic hepatitis C: a case report [J]. World J Gastroenterol. 2012,18(31):4233-4236.
[43] Sharma J, Bonfield CM, Singhal A,et al . Intracystic interferon-α treatment leads to neurotoxicity in craniopharyngioma: case report [J].J Neurosurg Pediatr,2015,16(3):301-304 .
[44] Bi Q, Shi L, Yang P, et al. Minocycline attenuates interferon-α-induced impairments in rat fear extinction [J]. J Neuroinflammation, 2016,13(1):172.
10.3969/j.issn.1009-6663.2017.04.044
安徽省自然科學(xué)基金項(xiàng)目(No 1708085QH219);2016年蚌埠醫(yī)學(xué)院研究生科研創(chuàng)新計(jì)劃項(xiàng)目(No Byycx1608)
233000 安徽 蚌埠,蚌埠醫(yī)學(xué)院第一附屬醫(yī)院,呼吸與危重癥醫(yī)學(xué)科
陳余清,E-mail:bbmccyq@126.com
2016-08-16]