国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

高中數(shù)學(xué)教學(xué)中數(shù)形結(jié)合法的運用探討

2017-03-01 00:26張艷萍
新教育時代·教師版 2016年41期
關(guān)鍵詞:運用探討數(shù)形結(jié)合高中數(shù)學(xué)

張艷萍

摘 要:現(xiàn)在,高中數(shù)學(xué)固有的教學(xué)方法相對來說較枯燥,學(xué)生通常是在一些壓力下被迫式學(xué)習(xí),這完全不適應(yīng)學(xué)生的全方位進步,高中數(shù)學(xué)教學(xué)中數(shù)形結(jié)合較好地扭轉(zhuǎn)了這個局勢。然而,高中數(shù)學(xué)教育中依舊出現(xiàn)了某些問題。所以,分析高中數(shù)學(xué)教學(xué)中數(shù)形結(jié)合法的應(yīng)用有著十分重要的實際作用。本文重點闡述了數(shù)形結(jié)合的定義,且系統(tǒng)地描述了高中數(shù)學(xué)教學(xué)中出現(xiàn)的問題,探究了高中數(shù)學(xué)教育中數(shù)形結(jié)合方式的靈活應(yīng)用意義。

關(guān)鍵詞:高中數(shù)學(xué) 數(shù)形結(jié)合 運用探討

一、高中數(shù)學(xué)教學(xué)中存在的問題

1.數(shù)學(xué)教育思考的差別性

因為高中學(xué)生的數(shù)學(xué)根基是不同的,所以就導(dǎo)致高中學(xué)生的數(shù)學(xué)思考出現(xiàn)了某些差別性,學(xué)生思考方法的特征也不一樣。所以,如此就會讓學(xué)生關(guān)于相同的數(shù)學(xué)問題看法與見解出現(xiàn)差異,進而導(dǎo)致學(xué)生的數(shù)學(xué)思考不一樣。但是,高中學(xué)生在處理數(shù)學(xué)難題時,通常不重視關(guān)于隱含信息的開采,從而妨礙數(shù)學(xué)難題的處理。

2.數(shù)學(xué)教育思考定勢的阻礙性

目前我國高中學(xué)生的數(shù)學(xué)思考問題還有著固定的阻礙性,這完全是因為高中學(xué)生在有著適當(dāng)?shù)慕忸}經(jīng)驗后而構(gòu)成了死板的數(shù)學(xué)思考方式。所以,數(shù)學(xué)定向思考的形成會影響有些學(xué)生關(guān)于自身看法較為盲目,進而導(dǎo)致其拋棄某些過去的解題方法與數(shù)學(xué)思考,從而就會引發(fā)學(xué)生的數(shù)學(xué)思考出現(xiàn)僵局的事態(tài)。如此就會妨礙學(xué)生處理實踐問題的水平,還會妨礙學(xué)生構(gòu)成正確的數(shù)學(xué)思考,以至于導(dǎo)致高中學(xué)生的數(shù)學(xué)思考發(fā)生扭曲等情況[1]。另外,高中學(xué)生數(shù)學(xué)思考受阻的出現(xiàn),不但會妨礙學(xué)生數(shù)學(xué)思考的深層次發(fā)展,還會妨礙學(xué)生處理實踐數(shù)學(xué)問題的水平發(fā)展。所以,在高中數(shù)學(xué)教育的進行中,必須重視去除學(xué)生的數(shù)學(xué)思考阻礙。

3.數(shù)學(xué)教學(xué)思維的膚淺性

現(xiàn)在,我國高中數(shù)學(xué)教育的進行中,因為學(xué)生關(guān)于數(shù)形結(jié)合思考的定義了解比較膚淺。另外,我國高中數(shù)學(xué)教育思考不夠深入,從而導(dǎo)致高中學(xué)生的數(shù)學(xué)思考不能去除抽象定義的受限性。高中學(xué)生數(shù)學(xué)思考的表面性導(dǎo)致了下面兩個層面的結(jié)果,首先,高中學(xué)生在處理真實數(shù)學(xué)難題時,學(xué)生僅僅依照數(shù)學(xué)問題與難點來分析問題,不重視轉(zhuǎn)變思考的數(shù)學(xué)思考方法,導(dǎo)致學(xué)生缺少探究處理問題的水平[2]。然后,高中學(xué)生缺少充足的抽象思考水平,學(xué)生多數(shù)僅僅是處置某些較為直接的數(shù)學(xué)難題。

二、高中數(shù)學(xué)教學(xué)中數(shù)形結(jié)合方式的有效應(yīng)用意義

1.數(shù)形相互的關(guān)聯(lián)與轉(zhuǎn)換

高中數(shù)學(xué)中,數(shù)形結(jié)合在幾何問題里使用得十分普遍,很多幾何問題都能夠利用“數(shù)”和“形”相互的轉(zhuǎn)變來處理,使得數(shù)形結(jié)合的學(xué)習(xí)方式獲得了完全的展現(xiàn)。幾何里的數(shù)學(xué)問題,能夠利用觀看圖形,構(gòu)建“數(shù)”和“形”的相對關(guān)聯(lián),尋找處理問題的方式。也能夠利用幾何圖形把數(shù)目的關(guān)聯(lián)形象化的展現(xiàn)出,在圖形中探究數(shù)目相互的關(guān)聯(lián),從而處理問題。幾何圖案與數(shù)目關(guān)聯(lián)是一個相輔存在的關(guān)聯(lián),數(shù)目能夠在圖形中表現(xiàn)出來,也能夠通過數(shù)目關(guān)聯(lián)來表述一個圖形中的聯(lián)聯(lián)。特別要強調(diào)的一點,在應(yīng)用數(shù)量關(guān)聯(lián)處理幾何難題時,盡量的去把圖形轉(zhuǎn)變成一個函數(shù)關(guān)系式,再通過函數(shù)、不等式或方程,把最后的結(jié)果處理好[3]。必須靈活使用圖形與表達式彼此的關(guān)聯(lián),才可以較為精準與迅速的處理難題。尤其是運動改變與量變的經(jīng)過,利用圖案與數(shù)目相互之間轉(zhuǎn)變且彼此依存的關(guān)聯(lián),在圖形中找到規(guī)律,應(yīng)用公式來處理問題。全部的學(xué)習(xí)都無法脫離生活,處理實際中各種問題是全部階段學(xué)習(xí)的最后目的,學(xué)習(xí)數(shù)學(xué)也是這樣,應(yīng)用題是處理實際問題的形象表現(xiàn),在具體的處理問題的過程中,通常并非簡便的一兩個公式就可以處理完成的,必須老師具備適當(dāng)有邏輯的表現(xiàn)圖案與表達式彼此的關(guān)聯(lián),利用圖形尋找處理問題的重點,利用關(guān)鍵點完成慢慢推理,最后成功處理問題。

2.靈活應(yīng)用關(guān)于媒體形象表現(xiàn)數(shù)形相互的關(guān)聯(lián)

抽象、繁雜是高中數(shù)學(xué)擁有的特征,在課堂中老師較難僅是利用語言來描述數(shù)學(xué)理論。因此,老師能夠應(yīng)用多媒體來展現(xiàn)這類實質(zhì),多媒體是當(dāng)代的一項高科技,能夠通過動畫的方法展現(xiàn)出一個模擬動態(tài)的經(jīng)過,能夠利用巧妙多變的動畫或繪圖改變展現(xiàn)數(shù)學(xué)公式或其它實質(zhì),把知識形象的表現(xiàn)在學(xué)生眼前。尤其是跟曲線運動或是移動有關(guān)的難點,能夠在多媒體中十分直白的表現(xiàn)改變的經(jīng)過,協(xié)助學(xué)生較好的了解與想象,尋找處理問題的重點,培育學(xué)生充分的構(gòu)想力與發(fā)散思考水平[4]。數(shù)形結(jié)合的處理問題的方法也可以使學(xué)生把初中數(shù)學(xué)理論跟高中數(shù)學(xué)成功相結(jié)合,是一個不錯的轉(zhuǎn)變。初中數(shù)學(xué)相對學(xué)生來說較為簡單,效仿性很大,不需很強的邏輯思考水平。高中數(shù)學(xué)跟初中數(shù)學(xué)就不一樣了,知識點較為單一,教授的實質(zhì)也抽象的多,高中數(shù)學(xué)需要學(xué)生有著適當(dāng)?shù)目臻g思考水平,能夠有較多的圖形理論根基。因此,學(xué)生步入高中學(xué)習(xí)時期,最先需要的一個了解的經(jīng)過,這也是一個全新的認識經(jīng)過。例如,在學(xué)習(xí)三角函數(shù)的進行中,老師能夠一邊表現(xiàn)圖形,一邊教授三角函數(shù)的屬性、定義與公式,另外闡述公式的緣由,在圖形是如何正確體現(xiàn)的。

3.集合是數(shù)形結(jié)合的正確表現(xiàn),通過數(shù)形結(jié)合正確處理函數(shù)難題

集合是高中數(shù)學(xué)學(xué)習(xí)的根基,另外,集合也是可以借助圖形來形象展現(xiàn)的一個較好的實例。數(shù)形結(jié)合通俗的講,就是把繁雜與抽象的數(shù)學(xué)關(guān)系通過簡便的圖形直白地展現(xiàn)出來的一個方式。韋恩圖就是圖形應(yīng)用的一個比較好的實例,韋恩圖可以生動的表現(xiàn)集合相互的關(guān)聯(lián)。因此在碰到集合有關(guān)的難題時,能夠借助韋恩圖來說明集合問題生動的表現(xiàn),從而成功處理。合適地構(gòu)建坐標系可以把圖形的各個因素表現(xiàn)得較為生動[5]。在處理函數(shù)難題時,必須尤其重視的是,學(xué)生一定要先具備適當(dāng)?shù)暮瘮?shù)根基,靈活了解不同函數(shù)跟不同圖形相互的對照關(guān)聯(lián),這也是關(guān)于學(xué)生很高的需要,不然即便明白解處理問題的方式,也無法去處理問題,獲得最后正確的結(jié)果。

三、結(jié)語

綜上所述,高中數(shù)學(xué)教育進行中,數(shù)形結(jié)合是一個比較好的教學(xué)方式,在教學(xué)中正確使用數(shù)形結(jié)合的教育方式,不僅可以協(xié)助學(xué)生簡單方便式的處理數(shù)學(xué)難題,也可以提升學(xué)生的學(xué)習(xí)積極性,培育學(xué)生正確的學(xué)習(xí)水平,了解學(xué)習(xí)的實質(zhì),提升邏輯思考水平。

參考文獻

[1] 陳大偉.高中數(shù)學(xué)教學(xué)中數(shù)形結(jié)合法的運用探討[J].中國校外教育,2014(S1).

[2] 韓雪麗.數(shù)形結(jié)合思想方法在高中數(shù)學(xué)教學(xué)中的研究與實踐[D].遼寧師范大學(xué),2013.

[3] 趙磊.上海高中數(shù)學(xué)教材中數(shù)形結(jié)合思想方法的研究[D].上海師范大學(xué),2012.

[4] 趙琳.高等數(shù)學(xué)數(shù)形結(jié)合教學(xué)法的探索[J].科技創(chuàng)新導(dǎo)報,2016(13).

[5] 林惠章.數(shù)形結(jié)合在解題中的應(yīng)用[J].數(shù)學(xué)學(xué)習(xí)與研究,2016(12).

猜你喜歡
運用探討數(shù)形結(jié)合高中數(shù)學(xué)
高中數(shù)學(xué)教學(xué)中數(shù)形結(jié)合法的運用初探
互動式教學(xué)策略在初中英語課堂教學(xué)中的運用探討
數(shù)形結(jié)合在解題中的應(yīng)用
網(wǎng)球教學(xué)中傳統(tǒng)與現(xiàn)代教學(xué)法的運用探討
淺析數(shù)形結(jié)合方法在高中數(shù)學(xué)教學(xué)中的應(yīng)用
用聯(lián)系發(fā)展的觀點看解析幾何
高中數(shù)學(xué)數(shù)列教學(xué)中的策略選取研究
調(diào)查分析高中數(shù)學(xué)課程算法教學(xué)現(xiàn)狀及策略
基于新課程改革的高中數(shù)學(xué)課程有效提問研究
妙用數(shù)形結(jié)合思想優(yōu)化中職數(shù)學(xué)解題思維探討
罗定市| 西宁市| 无锡市| 桐庐县| 诏安县| 枣强县| 玉环县| 康平县| 本溪| 简阳市| 改则县| 毕节市| 黑龙江省| 五家渠市| 确山县| 华池县| 安国市| 莱阳市| 普宁市| 武鸣县| 怀集县| 武冈市| 马龙县| 甘谷县| 新龙县| 浦县| 云和县| 若羌县| 修文县| 綦江县| 上饶县| 昌平区| 固原市| 施秉县| 盖州市| 平昌县| 清河县| 陆河县| 合江县| 通化县| 内黄县|