曹 琪, 白 鵬, 章小平△
華中科技大學(xué)同濟(jì)醫(yī)學(xué)院附屬協(xié)和醫(yī)院 1泌尿外科 2心血管外科,武漢 430022
自噬與腎癌發(fā)病相關(guān)性的研究進(jìn)展*
曹 琪1, 白 鵬2, 章小平1△
華中科技大學(xué)同濟(jì)醫(yī)學(xué)院附屬協(xié)和醫(yī)院1泌尿外科2心血管外科,武漢 430022
自噬; 腎癌; 腎癌治療
自噬是真核細(xì)胞中一種高度保守的分解代謝過(guò)程,在維持細(xì)胞穩(wěn)態(tài)和應(yīng)激狀態(tài)下保留細(xì)胞生存能力方面發(fā)揮重要作用[1-2]。細(xì)胞通過(guò)雙層膜狀結(jié)構(gòu)的自噬體包裹待降解底物,并將其運(yùn)輸至溶酶體進(jìn)行降解和回收再利用[3]。自噬主要發(fā)生在缺氧、免疫損傷、應(yīng)激和營(yíng)養(yǎng)缺乏等情況下[4],被認(rèn)為是細(xì)胞對(duì)不良環(huán)境刺激的一種防御機(jī)制[5]。研究表明,自噬參與多種疾病的病理過(guò)程,如腫瘤[6]、神經(jīng)退行性病變[7]、心血管疾病[8]、感染和免疫功能缺陷等[9]。近年來(lái),許多學(xué)者就自噬與腎癌發(fā)病的相關(guān)性進(jìn)行了研究,但是,自噬在腎癌發(fā)病過(guò)程中所發(fā)揮的作用,以及其作用的確切機(jī)制尚不明確。本文就自噬與腎癌發(fā)病的相關(guān)研究進(jìn)展作一綜述,以期從自噬的角度探討腎癌的發(fā)病機(jī)制,同時(shí)為腎癌的治療提供一些線索和途徑。
自噬現(xiàn)象在40多年前就已經(jīng)被學(xué)者觀察到,被認(rèn)為是一個(gè)非特異性的胞內(nèi)大塊物質(zhì)降解過(guò)程[10]。接下來(lái)的研究發(fā)現(xiàn)自噬與細(xì)胞應(yīng)激反應(yīng)有密切的關(guān)系?,F(xiàn)在普遍認(rèn)為,自噬在多層面發(fā)揮多種關(guān)鍵作用,包括細(xì)胞質(zhì)量控制、維持組織穩(wěn)態(tài)、能量供應(yīng)等[11]。近年來(lái),多種關(guān)鍵分子被發(fā)現(xiàn)參與自噬體的形成過(guò)程。該過(guò)程在酵母和人類中表現(xiàn)出高度的進(jìn)化保守性。一系列酵母中的自噬相關(guān)基因(ATGs)被發(fā)現(xiàn),并找到了其哺乳類同源物[12]。
目前發(fā)現(xiàn)主要有以下4個(gè)功能單位參與自噬過(guò)程調(diào)控:①ATG1/unc-51樣激酶(ULK)復(fù)合物,包含ATG13和FIP200[13];②由Vps34、Ⅲ型磷脂酰肌醇3激酶(PI3K)和ATG6/Beclin1組成的復(fù)合物[13];③2個(gè)泛素樣蛋白,即微管相關(guān)蛋白1輕鏈3(LC3)和ATG12[14],LC3鑲嵌在自噬體內(nèi)、外膜上,ATG12與ATG5共軛并與ATG16L相互作用,參與LC3的脂化[15];④跨膜蛋白ATG9和VMP1,ATG9在自噬過(guò)程中的具體作用尚不清楚,VMP1與Beclin1的相互作用是自噬所必需的,過(guò)表達(dá)VMP1可以誘導(dǎo)自噬發(fā)生[16]。
通常情況下,細(xì)胞中的自噬過(guò)程處于低水平狀態(tài),但卻是維持細(xì)胞基本活動(dòng)所必需的,如蛋白質(zhì)和細(xì)胞器質(zhì)量控制。某些應(yīng)激狀態(tài)會(huì)誘導(dǎo)自噬發(fā)生。營(yíng)養(yǎng)物質(zhì)匱乏是一種典型的自噬激活因素,其主要是通過(guò)哺乳類雷帕霉素靶點(diǎn)(mTOR),尤其是mTOR復(fù)合物1(mTORC1)信號(hào)通路發(fā)揮作用。在營(yíng)養(yǎng)物質(zhì)充足時(shí),mTOR結(jié)合并磷酸化ULK1復(fù)合物,限制其激酶活性,從而抑制自噬起始過(guò)程[17]。反之,營(yíng)養(yǎng)物質(zhì)匱乏時(shí),ULK1被激活,促進(jìn)自噬起始過(guò)程。在低能量狀態(tài)(AMP/ATP升高)下ULK1也可被AMP活化蛋白激酶(AMPK)激活,同時(shí)抑制mTORC1促進(jìn)自噬發(fā)生[18]。自噬起始同樣被Ⅲ型PI3K和Vps34作用的產(chǎn)物磷脂酰肌醇3磷酸(PI3P)激活。在Vps34和ULK1復(fù)合物的下游信號(hào)有ATG5-ATG12和LC3-PE(LC3Ⅱ)這2對(duì)共軛復(fù)合物參與自噬體膜的延伸過(guò)程。
其他的自噬激活因素還包括抗腫瘤治療、活性氧物質(zhì)(ROS)、內(nèi)質(zhì)網(wǎng)應(yīng)激、非折疊蛋白質(zhì)反應(yīng)(UPR)等[16]。各種激活因素所誘導(dǎo)的自噬過(guò)程是否有差異尚不明確,所以期待未來(lái)在待降解產(chǎn)物的選擇、自噬調(diào)控功能單位的參與以及尋找其它的特定自噬激活因素方面有新的發(fā)現(xiàn)。
研究人員發(fā)現(xiàn)在乳腺癌、卵巢癌和前列腺癌細(xì)胞中存在自噬調(diào)節(jié)因子Beclin1(BECN1)等位基因缺失,推測(cè)自噬對(duì)腫瘤形成有抑制效應(yīng)[19]。Liang等[20]發(fā)現(xiàn)在乳腺癌細(xì)胞系中重新表達(dá)BECN1蛋白后,自噬過(guò)程恢復(fù)的同時(shí)抑制了腫瘤發(fā)生。其他自噬相關(guān)調(diào)節(jié)因子的缺失同樣傾向于促進(jìn)腫瘤發(fā)生:ATG4C-/-小鼠在化學(xué)致癌物的誘導(dǎo)下表現(xiàn)出高的纖維肉瘤敏感性[21];UVRAG結(jié)合蛋白BIF1是一種與BECN1相互作用的自噬正向調(diào)節(jié)因子,其完全缺失會(huì)引起小鼠腫瘤自發(fā)形成[22];凋亡缺陷的ATG5-/-永生乳鼠腎細(xì)胞(iBMK)和BECN1+/-永生小鼠乳腺上皮細(xì)胞(iMMECs)相較于自噬功能完全的細(xì)胞更易使裸鼠發(fā)生腫瘤[23];全身ATG5缺失和肝細(xì)胞特異性ATG7缺失均會(huì)導(dǎo)致自噬缺陷肝細(xì)胞發(fā)生肝良性腺瘤[24]。
小鼠自噬基因遺傳相關(guān)研究表明完整功能狀態(tài)的自噬對(duì)細(xì)胞存活和細(xì)胞穩(wěn)態(tài)的維持是必不可少的。Degenhardt等[25]發(fā)現(xiàn)自噬缺陷會(huì)損害凋亡缺陷小鼠細(xì)胞在生長(zhǎng)因子缺乏和代謝應(yīng)激條件下的生存能力。而這一成果和腫瘤有極大的相關(guān)性,因?yàn)樵谥掳┗蚣せ钕履[瘤常常表現(xiàn)出高的代謝需求。腫瘤相對(duì)低氧區(qū)域細(xì)胞表現(xiàn)出更高的自噬激活[24]也支持上述論斷。有學(xué)者認(rèn)為,自噬在腫瘤放化療中發(fā)揮平復(fù)應(yīng)激作用對(duì)腫瘤細(xì)胞的生存是極為重要的,而抑制自噬則提高了腫瘤對(duì)治療的敏感性[26]。
總之,自噬在維持細(xì)胞生存和穩(wěn)態(tài)方面發(fā)揮了重要的作用。其在腫瘤發(fā)生中的作用可能是雙向的:一方面,自噬可以降低氧化應(yīng)激壓力、降解突變及受損的DNA和蛋白質(zhì)而發(fā)揮抑癌作用;另一方面,自噬可以平復(fù)氧化應(yīng)激、受損DNA及蛋白聚集等各種壓力,促進(jìn)細(xì)胞存活,發(fā)揮促癌的作用。這種雙向作用可能與以下因素有關(guān):①腫瘤分期,如起始期、進(jìn)展期、轉(zhuǎn)移期或逐漸發(fā)生的藥物抵抗階段;②腫瘤的組織類型;③腫瘤的遺傳學(xué)改變。了解自噬在腫瘤發(fā)生中的作用毫無(wú)疑問(wèn)對(duì)建立合理的針對(duì)自噬的抗腫瘤治療方案大有裨益。
持續(xù)性激活的PI3K/AKT/mTOR信號(hào)軸是人類腫瘤細(xì)胞一種典型的生存機(jī)制[27]。多種情況下,如腫瘤抑制因子人類第10號(hào)染色體張力蛋白同源基因(PTEN)和結(jié)節(jié)硬化復(fù)合物(TSC)1和TSC2的缺失、Ⅰ型PI3K的突變、AKT的過(guò)表達(dá)、酪氨酸激酶生長(zhǎng)因子受體的持續(xù)激活等均導(dǎo)致此信號(hào)通路的異常激活,最終抑制自噬過(guò)程[28]。PI3K/AKT/mTOR軸的激活不僅抑制自噬,同時(shí)促進(jìn)蛋白質(zhì)翻譯和細(xì)胞生長(zhǎng)增殖。抑制PI3K信號(hào)軸將對(duì)快速增殖的腫瘤細(xì)胞產(chǎn)生不良影響,從而抑制腫瘤生長(zhǎng)。Sourbier等[29]用Western blot法分析后發(fā)現(xiàn),在7種腎癌細(xì)胞系(786-O、UOK-126、UOK-128、A498、ACHN、Caki-1和Caki-2)中,同正常腎組織相比AKT的S473和T308位點(diǎn)磷酸化增多使AKT表達(dá)出現(xiàn)上調(diào),而AKT的表達(dá)與PI3K的表達(dá)呈正比,與PTEN的表達(dá)呈反比。為確認(rèn)PI3K/AKT通路是否參與了腎腫瘤細(xì)胞增殖,該團(tuán)隊(duì)用特異性PI3K抑制劑LY294002處理786-O和Caki-1兩種細(xì)胞系后發(fā)現(xiàn),其細(xì)胞死亡數(shù)相比對(duì)照組明顯增多,且差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。Zheng等[30]則用mTOR抑制劑AZD-2014處理786-O和A498兩種腎癌細(xì)胞系后檢測(cè)細(xì)胞生存能力,發(fā)現(xiàn)與傳統(tǒng)的雷帕霉素相比,該組細(xì)胞生存能力明顯下降,且差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。該學(xué)者認(rèn)為這一結(jié)果表明AZD-2014可以明顯抑制腎腫瘤細(xì)胞生長(zhǎng),進(jìn)一步推測(cè)抑制PI3K信號(hào)軸是抗腎細(xì)胞癌治療的新的有效途徑。
腫瘤抑制因子p53是哺乳動(dòng)物細(xì)胞中一種重要的檢查點(diǎn)蛋白[31],其在DNA損傷、低氧、致癌基因激活等遺傳應(yīng)激條件下激活產(chǎn)生。在這些情況下,p53可以反式激活自噬誘導(dǎo)基因,同時(shí)通過(guò)AMPK和TSC1/TSC2依賴途徑抑制mTOR來(lái)促進(jìn)自噬[32]。p53也可直接作用于損傷調(diào)控自噬調(diào)節(jié)因子(DRAM)靶點(diǎn)誘導(dǎo)自噬[33]。但是,有研究發(fā)現(xiàn)通過(guò)基因或藥物途徑清除胞質(zhì)中p53可以誘導(dǎo)自噬[34],表明核外p53是一種有效的自噬抑制因子。然而,p53在何種環(huán)境下以何種分子途徑激活自噬來(lái)抑制腫瘤細(xì)胞生長(zhǎng)尚不明確。近年來(lái)2項(xiàng)大樣本臨床研究發(fā)現(xiàn)腎細(xì)胞癌標(biāo)本中有p53的過(guò)表達(dá)(36%,n=97;29.5%,n=297)[35-36],推測(cè)p53參與腎細(xì)胞癌的發(fā)生。Sinik等[37]發(fā)現(xiàn)p53過(guò)表達(dá)與腎細(xì)胞癌1年死亡率有極大的相關(guān)性(P=0.011)。Zigeuner等[36]還發(fā)現(xiàn)大部分轉(zhuǎn)移期腎細(xì)胞癌存在p53過(guò)表達(dá)(51.8%,n=56,P<0.05)。該學(xué)者還通過(guò)對(duì)130例腎細(xì)胞癌患者的生存分析(Kaplan-Meier曲線)發(fā)現(xiàn)p53過(guò)表達(dá)患者生存率相比非過(guò)表達(dá)患者明顯下降(P=0.0005)。上述研究進(jìn)一步表明p53可能與腎細(xì)胞癌的侵襲和轉(zhuǎn)移有關(guān)。Warburton等[38]用紫外線處理3種腎癌細(xì)胞系(ACHN,Caki-2,A498)介導(dǎo)DNA損傷后發(fā)現(xiàn)p53的轉(zhuǎn)錄活性分別是原來(lái)的1.4倍、2倍、8倍,而且其轉(zhuǎn)錄活性的提高與紫外線劑量呈正相關(guān),以此推測(cè)p53在修復(fù)DNA損傷和維持細(xì)胞生長(zhǎng)方面發(fā)揮了一定作用。上述研究為我們通過(guò)抑制p53來(lái)提高某些藥物對(duì)腎腫瘤的療效提供了一些啟示,而這一作用的發(fā)揮可能與抑制了p53誘導(dǎo)的自噬過(guò)程有關(guān)。
LC3B是一種酵母類自噬相關(guān)蛋白ATG8在哺乳動(dòng)物細(xì)胞中的同源物[39],其C-段甘氨酸與磷脂酰乙醇胺(PE)結(jié)合,形成脂化的LC3(LC3-Ⅱ)。LC3-Ⅱ鑲嵌于自噬體膜上,參與自噬體膜的延長(zhǎng)[40]。Mikhaylova等[41]通過(guò)一系列研究發(fā)現(xiàn)LC3B依賴的自噬是腎細(xì)胞癌生長(zhǎng)所必需的。該團(tuán)隊(duì)將含有抑制LC3B的shRNA慢病毒顆粒注射至裸鼠皮下的腎癌細(xì)胞系786-O型腫瘤中,發(fā)現(xiàn)9 d后的腫瘤體積明顯比對(duì)照組小(P=0.000 7)。而將穩(wěn)定表達(dá)shRNA的786-O注射至裸鼠腎包膜下,4周后發(fā)現(xiàn)腫瘤質(zhì)量也明顯比對(duì)照組小(P<0.05)。相似的結(jié)果同樣出現(xiàn)在另一種腎癌細(xì)胞系A(chǔ)498中,表明LC3B介導(dǎo)的自噬是裸鼠腎細(xì)胞癌生長(zhǎng)所必需的。該團(tuán)隊(duì)用定量免疫印跡法測(cè)得在人腎透明細(xì)胞癌(ccRCC)組織和正常腎組織LC3B的表達(dá)水平,發(fā)現(xiàn)其表達(dá)量與腫瘤分期呈正相關(guān)關(guān)系(P<0.05),進(jìn)一步推測(cè)LC3B介導(dǎo)的自噬是ccRCC進(jìn)展的重要調(diào)節(jié)方式。
MAP1S是細(xì)胞微管相關(guān)蛋白家族1成員之一,其與LC3相互作用,是自噬的一個(gè)正向調(diào)節(jié)因子[42]。MAP1S缺失會(huì)導(dǎo)致自噬缺陷,從而引起線粒體功能障礙,影響細(xì)胞的正常生長(zhǎng)。同時(shí)MAP1S被發(fā)現(xiàn)是腫瘤患者一個(gè)重要的生存相關(guān)基因[43]。MAP1S缺陷小鼠有更大的肝細(xì)胞癌轉(zhuǎn)移傾向[44]。人類前列腺腺癌中MAP1S的低表達(dá)會(huì)減少患者的平均生存時(shí)間[45]。據(jù)此我們認(rèn)為MAP1S介導(dǎo)的自噬可能與腫瘤轉(zhuǎn)移和患者預(yù)后相關(guān)。ccRCC是人類腎細(xì)胞癌中最常見的類型。Xu等[46]發(fā)現(xiàn)4種ccRCC細(xì)胞系(786-O、RCC4、A498、Caki-1)中MAP1S表達(dá)水平明顯低于人正常腎細(xì)胞系(HK-2),而在76位ccRCC患者腫瘤標(biāo)本中癌灶區(qū)MAP1S表達(dá)水平也明顯低于癌旁正常組織。該團(tuán)隊(duì)通過(guò)統(tǒng)計(jì)繪制的ccRCC患者Kaplan-Meier生存曲線也發(fā)現(xiàn)高表達(dá)MAP1S患者累計(jì)生存時(shí)間明顯高于低表達(dá)者(P<0.01)。上述研究表明MAP1S介導(dǎo)的自噬與ccRCC的發(fā)展與預(yù)后有關(guān),高水平的MAP1S水平激活自噬,降低細(xì)胞基因組的不穩(wěn)定性,減弱ccRCC的侵襲力,提高患者的生存時(shí)間。
轉(zhuǎn)錄因子NF-E2相關(guān)因子2(NRF2)可激活多種抗氧化目標(biāo)基因的轉(zhuǎn)錄,Kelch樣環(huán)氧氯丙烷相關(guān)蛋白1(KEAP1)是其抑制劑。在通常情況下,KEAP1可以將NRF2“鎖”在胞質(zhì)中,并促進(jìn)其降解[47];該通路在包括急性和慢性腎損傷以及腎臟腫瘤中都發(fā)揮著重要作用[48-49]。研究表明,在缺乏富馬酸水合酶(FH)的Ⅱ型乳頭狀腎細(xì)胞癌中,KEAP1的琥珀化增多、NRF2降解減少,從而激活HMOX1等應(yīng)激反應(yīng)基因,從而促進(jìn)腫瘤細(xì)胞存活[50]。Fabrizio等[51]發(fā)現(xiàn)啟動(dòng)子甲基化后引起的KEAP1基因表達(dá)下降,從而使NRF2表達(dá)增加,在腎透明細(xì)胞癌中起到了重要作用。而p62作為一種自噬的底物蛋白,是NRF2的關(guān)鍵激動(dòng)劑[52]。自噬缺陷的細(xì)胞中,p62降解減少,當(dāng)p62與KEAP1競(jìng)爭(zhēng)性結(jié)合時(shí),NRF2得到釋放,并進(jìn)入細(xì)胞核,激活下游目標(biāo)基因轉(zhuǎn)錄,促進(jìn)腫瘤細(xì)胞存活[53]。這表明自噬相關(guān)的KEAP1/NRF2通路在腎癌的發(fā)展過(guò)程中起著重要的調(diào)控作用。
盡管目前學(xué)術(shù)界就自噬與腎癌的相關(guān)性及相互作用機(jī)制進(jìn)行了較為廣泛的探討,然而自噬與腎癌發(fā)病的確切關(guān)系、自噬通過(guò)何種途徑參與腎癌的發(fā)病尚不明確,仍需要大量的相關(guān)研究。目前,臨床上對(duì)腎癌的治療多采用腎部分切除及腎癌根治術(shù),術(shù)后多采用白細(xì)胞介素及干擾素治療,療效不確切。深入認(rèn)識(shí)自噬的功能并最終將其應(yīng)用于臨床實(shí)踐將會(huì)為腎癌的防治開啟一個(gè)新的方向,雖任重道遠(yuǎn),卻意義重大。
[1] Mizushima N.Autophagy:process and function[J].Genes Dev,2007,21(22):2861-2873.
[2] Yang Z,Klionsky D J.Eaten alive:a history of macroautophagy[J].Nat Cell Biol,2010,12(9):814-822.
[3] Klionsky D J,Emr S D.Autophagy as a regulated pathway of cellular degradation[J].Science,2000,290(5497):1717-1721.
[4] Mizushima N,Ohsumi Y,Yoshimori T.Autophagosome formation in mammalian cells[J].Cell Struct Funct,2002,27(6):421-429.
[5] Lum J J,DeBerardinis R J,Thompson C B.Autophagy in metazoans:cell survival in the land of plenty[J].Nat Rev Mol Cell Biol,2005,6(6):439-448.
[6] Dikic I,Johansen T,Kirkin V.Selective autophagy in cancer development and therapy[J].Cancer Res,2010,70(9):3431-3434.
[7] Schaeffer V,Lavenir I,Ozcelik S,et al.Stimulation of autophagy reduces neurodegeneration in a mouse model of human tauopathy[J].Brain,2012,135(Pt 7):2169-2177.
[8] Liao X,Sluimer J C,Wang Y,et al.Macrophage autophagy plays a protective role in advanced atherosclerosis[J].Cell Metab,2012,15(4):545-553.
[9] Kim J J,Lee H M,Shin D M,et al.Host cell autophagy activated by antibiotics is required for their effective antimycobacterial drug action[J].Cell Host Microbe,2012,11(5):457-468.
[10] De Duve C,Wattiaux R.Functions of lysosomes[J].Annu Rev Physiol,1966,28:435-492.
[11] Mizushima N,Levine B,Cuervo A M,et al.Autophagy fights disease through cellular self-digestion[J].Nature,2008,451(7182):1069-1075.
[12] Chen N,Karantza-Wadsworth V.Role and regulation of autophagy in cancer[J].Biochim Biophys Acta,2009,1793(9):1516-1523.
[13] Simonsen A,Tooze S A.Coordination of membrane events during autophagy by multiple class III PI3-kinase complexes[J].J Cell Biol,2009,186(6):773-782.
[14] Geng J,Klionsky D J.The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy.‘Protein modifications:beyond the usual suspects’ review series[J].EMBO Rep,2008,9(9):859-864.
[15] Hanada T,Noda N N,Satomi Y,et al.The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy[J].J Biol Chem,2007,282(52):37298-37302.
[16] Kimmelman A C.The dynamic nature of autophagy in cancer[J].Genes Dev,2011,25(19):1999-2010.
[17] Jung C H,Ro S H,Cao J,et al.mTOR regulation of autophagy[J].FEBS Lett,2010,584(7):1287-1295.
[18] Gwinn D M,Shackelford D B,Egan D F,et al.AMPK phosphorylation of raptor mediates a metabolic checkpoint[J].Mol Cell,2008,30(2):214-226.
[19] Aita V M,Liang X H,Murty V V,et al.Cloning and genomic organization of beclin 1,a candidate tumor suppressor gene on chromosome 17q21[J].Genomics,1999,59(1):59-65.
[20] Liang X H,Jackson S,Seaman M,et al.Induction of autophagy and inhibition of tumorigenesis by beclin 1[J].Nature,1999,402(6762):672-676.
[21] Marino G,Salvador-Montoliu N,F(xiàn)ueyo A,et al.Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3[J].J Biol Chem,2007,282(25):18573-18583.
[22] Takahashi Y,Coppola D,Matsushita N,et al.Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis[J].Nat Cell Biol,2007,9(10):1142-1151.
[23] Karantza-Wadsworth V,Patel S,Kravchuk O,et al.Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis[J].Genes Dev,2007,21(13):1621-1635.
[24] Takamura A,Komatsu M,Hara T,et al.Autophagy-deficient mice develop multiple liver tumors[J].Genes Dev,2011,25(8):795-800.
[25] Degenhardt K,Mathew R,Beaudoin B,et al.Autophagy promotes tumor cell survival and restricts necrosis,inflammation,and tumorigenesis[J].Cancer Cell,2006,10(1):51-64.
[26] Wang K,Liu R,Li J,et al.Quercetin induces protective autophagy in gastric cancer cells:involvement of Akt-mTOR-and hypoxia-induced factor 1 alpha-mediated signaling[J].Autophagy,2011,7(9):966-978.
[27] LoPiccolo J,Blumenthal G M,Bernstein W B,et al.Targeting the PI3K/Akt/mTOR pathway:effective combinations and clinical considerations[J].Drug Resist Updat,2008,11(1/2):32-50.
[28] Arico S,Petiot A,Bauvy C,et al.The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway[J].J Biol Chem,2001,276(38):35243-35246.
[29] Sourbier C,Lindner V,Lang H,et al.The phosphoinositide 3-kinase/Akt pathway:a new target in human renal cell carcinoma therapy[J].Cancer Res,2006,66(10):5130-5142.
[30] Zheng B,Mao J H,Qian L,et al.Pre-clinical evaluation of AZD-2014,a novel mTORC1/2 dual inhibitor,against renal cell carcinoma[J].Cancer Lett,2015,357(2):468-475.
[31] Levine A J.p53,the cellular gatekeeper for growth and division[J].Cell,1997,88(3):323-331.
[32] Feng Z,Hu W,de Stanchina E,et al.The regulation of AMPK beta1,TSC2,and PTEN expression by p53:stress,cell and tissue specificity,and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways[J].Cancer Res,2007,67(7):3043-3053.
[33] Crighton D,Wilkinson S,O’Prey J,et al.DRAM,a p53-induced modulator of autophagy,is critical for apoptosis[J].Cell,2006,126(1):121-134.
[34] Tasdemir E,Maiuri M C,Galluzzi L,et al.Regulation of autophagy by cytoplasmic p53[J].Nat Cell Biol,2008,10(6):676-687.
[35] Haitel A,Wiener H G,Baethge U,et al.mdm2 expression as a prognostic indicator in clear cell renal cell carcinoma:comparison with p53 overexpression and clinicopathological parameters[J].Clin Cancer Res,2000,6(5):1840-1844.
[36] Zigeuner R,Ratschek M,Rehak P,et al.Value of p53 as a prognostic marker in histologic subtypes of renal cell carcinoma:a systematic analysis of primary and metastatic tumor tissue[J].Urology,2004,63(4):651-655.
[37] Sinik Z,Alkibay T,Ataoglu O,et al.Nuclear p53 overexpression in bladder,prostate,and renal carcinomas[J].Int J Urol,1997,4(6):546-551.
[38] Warburton H E,Brady M,Vlatkovic N,et al.p53 regulation and function in renal cell carcinoma[J].Cancer Res,2005,65(15):6498-6503.
[39] Tanida I,Ueno T,Kominami E.LC3 conjugation system in mammalian autophagy[J].Int J Biochem Cell Biol,2004,36(12):2503-2518.
[40] Weidberg H,Shvets E,Shpilka T,et al.LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis[J].EMBO J,2010,29(11):1792-1802.
[41] Mikhaylova O,Stratton Y,Hall D,et al.VHL-regulated MiR-204 suppresses tumor growth through inhibition of LC3B-mediated autophagy in renal clear cell carcinoma[J].Cancer Cell,2012,21(4):532-546.
[42] Xie R,Nguyen S,McKeehan K,et al.Microtubule-associated protein 1S(MAP1S)bridges autophagic components with microtubules and mitochondria to affect autophagosomal biogenesis and degradation[J].J Biol Chem,2011,286(12):10367-10377.
[43] Vandin F,Clay P,Upfal E,et al.Discovery of mutated subnetworks associated with clinical data in cancer[J].Pac Symp Biocomput,2012:55-66.
[44] Xie R,Wang F,McKeehan W L,et al.Autophagy enhanced by microtubule-and mitochondrion-associated MAP1S suppresses genome instability and hepatocarcinogenesis[J].Cancer Res,2011,71(24):7537-7546.
[45] Jiang X,Zhong W,Huang H,et al.Autophagy defects suggested by low levels of autophagy activator MAP1S and high levels of autophagy inhibitor LRPPRC predict poor prognosis of prostate cancer patients[J].Mol Carcinog,2015,54(10):1194-1204.
[46] Xu G,Jiang Y,Xiao Y,et al.Fast clearance of lipid droplets through MAP1S-activated autophagy suppresses clear cell renal cell carcinomas and promotes patient survival[J].Oncotarget,2016,7(5):6255-6265.
[47] Tong K I,Padmanabhan B,Kobayashi A,et al.Different electrostatic potentials define ETGE and DLG motifs as hinge and latch in oxidative stress response[J].Mol Cell Biol,2007,27(21):7511-7521.
[48] Lee D F,Kuo H P,Liu M,et al.KEAP1E3 ligase-mediated downregulation of NF-kappaB signaling by targeting IKKbeta[J].Mol Cell,2009,36(1):131-140.
[49] Sporn M B,Liby K T.NRF2 and cancer:the good,the bad and the importance of context[J].Nat Rev Cancer,2012,12(8):564-571.
[50] Kinch L,Grishin N V,Brugarolas J.Succination of Keap1 and activation of Nrf2-dependent antioxidant pathways in FH-deficient papillary renal cell carcinoma type 2[J].Cancer Cell,2011,20(4):418-420.
[51] Fabrizio F P,Costantini M,Copetti M,et al.Keap1/Nrf2 pathway in kidney cancer:frequent methylation of KEAP1 gene promoter in clear renal cell carcinoma[J].Oncotarget,2017,8(7):11187-11198..
[52] Lau A,Wang X J,Zhao F,et al.A noncanonical mechanism of Nrf2 activation by autophagy deficiency:direct interaction between Keap1 and p62[J].Mol Cell Biol,2010,30(13):3275-3285.
[53] Villeneuve N F,Lau A,Zhang D D.Regulation of the Nrf2-Keap1 antioxidant response by the ubiquitin proteasome system:an insight into cullin-ring ubiquitin ligases[J].Antioxid Redox Signal,2010,13(11):1699-1712.
*國(guó)家自然科學(xué)基金資助項(xiàng)目(No.81672528)
曹 琪,男,1992年生,博士研究生,E-mail:curkey@126.com
△通訊作者,Corresponding author,E-mail:xzhang@hust.edu.cn
R737.11
10.3870/j.issn.1672-0741.2017.06.021
(2017-03-29 收稿)