楚 沖, 董念國
1華中科技大學(xué)同濟(jì)醫(yī)學(xué)院附屬協(xié)和醫(yī)院心血管外科,武漢 430022 2Institute for Cardiovascular Prevention Ludwig-Maximilians University Munich,Munich 80336,Germany
動(dòng)脈導(dǎo)管的開閉及其細(xì)胞分子機(jī)制*
楚 沖1,2, 董念國1△
1華中科技大學(xué)同濟(jì)醫(yī)學(xué)院附屬協(xié)和醫(yī)院心血管外科,武漢 4300222Institute for Cardiovascular Prevention Ludwig-Maximilians University Munich,Munich 80336,Germany
前列腺素E2; 動(dòng)脈導(dǎo)管未閉; 先天性心臟??; 離子通道
動(dòng)脈導(dǎo)管是一種連接于降主動(dòng)脈近端和左肺動(dòng)脈起始部的血管結(jié)構(gòu)[1-2]。對(duì)于胎兒循環(huán),動(dòng)脈導(dǎo)管開放是必須的,血液經(jīng)此通路從高壓肺動(dòng)脈流入低壓主動(dòng)脈。出生后10~15 h,伴隨自主呼吸和肺循環(huán)阻力下降,流經(jīng)動(dòng)脈導(dǎo)管血液逐漸減少,管壁平滑肌收縮而自行閉合。80%兒童約在生后3個(gè)月完成動(dòng)脈導(dǎo)管解剖閉合,成為動(dòng)脈韌帶[3],若超過1歲仍未閉合,并出現(xiàn)病理生理改變,即為動(dòng)脈導(dǎo)管未閉(patent ductus arteriosus,PDA)。這種現(xiàn)象雖臨床認(rèn)識(shí)較早,且對(duì)先天性心臟病的研究和診治意義很大,但至今機(jī)制不明,本文就相關(guān)問題作一簡單探討。
單純PDA是一種較常見的簡單先天性心臟病,發(fā)病率可達(dá)先天性心臟病總數(shù)的12%~15%。由于主動(dòng)脈壓高于肺動(dòng)脈壓,導(dǎo)致主動(dòng)脈血經(jīng)未閉合的動(dòng)脈導(dǎo)管持續(xù)流入肺動(dòng)脈,形成體循環(huán)到肺循環(huán)分流[3-4]。
該病變?cè)缙谇曳至髁啃r(shí),癥狀通常較輕,胸骨第2肋間連續(xù)性雜音等臨床表現(xiàn)不明顯,經(jīng)常是在超聲心動(dòng)圖檢查時(shí)被偶然發(fā)現(xiàn)。然而左向右分流使體循環(huán)血流減少,左室代償性作功增加,同時(shí)流入肺循環(huán)血流增多,左室負(fù)荷加重,可引起左室肥厚、擴(kuò)大甚至心衰。若肺循環(huán)血量持續(xù)增加,肺小動(dòng)脈可出現(xiàn)反應(yīng)性痙攣,形成動(dòng)力性肺高壓。隨著肺高壓發(fā)展,右心負(fù)荷明顯加重,可引起右心室肥厚、擴(kuò)大甚至心衰。一旦形成阻力性肺高壓,肺動(dòng)脈壓超過主動(dòng)脈壓,動(dòng)脈導(dǎo)管呈現(xiàn)雙向或逆向分流,即形成Eisenmenger綜合征,此時(shí)單純阻斷動(dòng)脈導(dǎo)管已無法改善病理后果。
對(duì)于某些特殊類型的先天性心臟病,肺循環(huán)或體循環(huán)血液幾乎完全依賴未閉合的動(dòng)脈導(dǎo)管分流,如果動(dòng)脈導(dǎo)管關(guān)閉,患者可能無法存活。此類復(fù)雜先天性心臟病可被分為以下3種[5-7]。
①右心梗阻型:例如嚴(yán)重法洛四聯(lián)癥、肺動(dòng)脈重度狹窄、室間隔完整型肺動(dòng)脈閉鎖等。由于右室流出道梗阻,右心室與肺動(dòng)脈不能直接相通,來自動(dòng)脈導(dǎo)管的氧合血對(duì)肺循環(huán)至關(guān)重要。動(dòng)脈導(dǎo)管開放可使體循環(huán)血氧飽和度維持在70%以上,從而保證組織供氧和維持動(dòng)脈血正常pH值;若動(dòng)脈導(dǎo)管閉合,則發(fā)生嚴(yán)重的低氧血癥和代謝性酸中毒,危及生命[8-9]。
②左心梗阻型:例如嚴(yán)重主動(dòng)脈瓣縮窄、二尖瓣閉鎖、主動(dòng)脈弓離斷、左室發(fā)育不良綜合征等。由于左心室基本處于無功能狀態(tài),完全由右心室承擔(dān)體循環(huán)和肺循環(huán)泵血功能,因此依賴動(dòng)脈導(dǎo)管供應(yīng)主動(dòng)脈血流以維持心輸出量和全身灌注[10-11]。
③血液混合型:例如室間隔完整型完全性大血管錯(cuò)位。由于主動(dòng)脈和肺動(dòng)脈位置互換,主動(dòng)脈起始于右心室,肺動(dòng)脈從左心室發(fā)出,形成體循環(huán)和肺循環(huán)生理完全隔離,兩種循環(huán)依賴動(dòng)脈導(dǎo)管交通,依賴其血液混合使體循環(huán)獲得基本氧供[3,12-13]。
一方面,動(dòng)脈導(dǎo)管延遲閉合發(fā)展成為一種左向右分流型先天性心臟病,繼而誘發(fā)肺血管病變;另一方面,某些情況下動(dòng)脈導(dǎo)管是維持生命的必須通道,且動(dòng)脈導(dǎo)管較其他血管結(jié)構(gòu)更容易被誘發(fā)收縮或關(guān)閉,溫度、血壓、飲食、發(fā)育等細(xì)微刺激常誘發(fā)其不恰當(dāng)?shù)拈]合,繼而導(dǎo)致復(fù)雜先天性心臟病,自然預(yù)后不良。因此外科治療時(shí)應(yīng)根據(jù)不同需要,促進(jìn)或阻斷動(dòng)脈導(dǎo)管開放。目前動(dòng)脈導(dǎo)管閉合過程可分為兩個(gè)階段,即功能性閉合和解剖學(xué)閉合[2]。
胎兒動(dòng)脈導(dǎo)管的開閉受多種因素影響,其中研究最多的是環(huán)氧合酶介導(dǎo)的花生四烯酸的代謝產(chǎn)物——前列腺素E2(PGE2)[14]。PGE2由動(dòng)脈導(dǎo)管組織分泌,與前列腺素E受體(prostaglandin E receptor,EP)相結(jié)合,激活細(xì)胞膜上G蛋白偶聯(lián)的腺苷酸環(huán)化酶(AC),誘導(dǎo)三磷酸腺苷(ATP)去磷酸化生成環(huán)腺苷酸(cAMP),細(xì)胞內(nèi)高濃度cAMP抑制肌球蛋白輕鏈激酶的活化,最終抑制導(dǎo)管平滑肌細(xì)胞對(duì)鈣離子的收縮反應(yīng),使動(dòng)脈導(dǎo)管無法正常閉合[15-17]。正常胎兒出生后,通過胎盤和肺對(duì)PGE2的代謝,循環(huán)中高濃度PGE2急速減少,加上導(dǎo)管壁PGE2受體表達(dá)量下降,綜合作用促使動(dòng)脈導(dǎo)管閉合[15,17-18]。環(huán)氧化酶(COX)類中COX-1和COX-2受刺激后合成分泌前列腺素,其中COX-1作用較快,數(shù)分鐘內(nèi)可迅速合成前列腺素,而COX-2在受刺激后數(shù)小時(shí)才能完成[19],所合成的前列腺素進(jìn)入PGE2-EP-cAMP信號(hào)通路,繼而影響動(dòng)脈導(dǎo)管閉合。隨著妊娠期延長,COX-2表達(dá)明顯增高[19-20],但未成熟個(gè)體COX-2表達(dá)程度沒有成熟個(gè)體高,在大鼠動(dòng)物實(shí)驗(yàn)中進(jìn)一步發(fā)現(xiàn)COX-2阻斷劑對(duì)懷孕19 d者誘導(dǎo)動(dòng)脈導(dǎo)管收縮效果明顯弱于對(duì)懷孕21 d者[21]。目前COX-1/COX-2非選擇性阻斷劑(如消炎痛)廣泛用于PDA患兒治療,但該方案不適合未成熟兒。有報(bào)道稱對(duì)未成熟兒PDA,聯(lián)合使用一氧化氮合酶抑制劑和COX抑制劑比單用COX抑制劑可以獲得更好的治療效果[22]。
胎兒期動(dòng)脈導(dǎo)管血氧分壓在18~28 mmHg范圍,出生后血氧分壓快速上升至40~60 mmHg左右[16]。通常生理狀態(tài)下,大部分血管平滑肌(除肺動(dòng)脈外)在低氧狀態(tài)下處于松弛狀態(tài),氧分壓升高導(dǎo)致血管收縮,在這一點(diǎn)上動(dòng)脈導(dǎo)管表現(xiàn)得更為明顯[22-23]。近年許多氧分壓升高過程中動(dòng)脈導(dǎo)管收縮機(jī)制研究被報(bào)道,其中氧誘導(dǎo)離子通道電位變化被普遍認(rèn)同。當(dāng)胎兒出生后氧分壓升高,來源于線粒體O2感應(yīng)器-電子傳遞鏈復(fù)合體Ⅰ和Ⅲ激活,使活性氧生成增加?;钚匝醪粌H是一種細(xì)胞毒性代謝產(chǎn)物,而且是細(xì)胞內(nèi)的氧化還原信號(hào)分子,可調(diào)控靶分子結(jié)構(gòu)和功能,包括影響動(dòng)脈導(dǎo)管平滑肌膜上的電壓依賴鉀通道(如Kv1.5和Kv2.1)[24-26]。電壓依賴鉀通道可被活性氧抑制,使平滑肌細(xì)胞膜去極化,繼發(fā)性引起膜上L型電壓依賴鈣通道開放,鈣離子內(nèi)流,導(dǎo)致動(dòng)脈導(dǎo)管平滑肌收縮。在所有L型電壓依賴鈣離子通道中,Cav1.2含量占優(yōu)勢,表達(dá)量高于其他鈣離子通道,因此Cav1.2電位變化作用最突出[27]。在正常氧分壓條件下,阻斷細(xì)胞膜鉀通道,肌質(zhì)網(wǎng)儲(chǔ)存的鈣離子釋放也可引起繼發(fā)性鈣內(nèi)流[28]。
有研究通過轉(zhuǎn)基因的方法,將鉀離子通道蛋白基因?qū)氲皆绠a(chǎn)兔動(dòng)脈導(dǎo)管細(xì)胞之中,在氧誘導(dǎo)條件下觀察,發(fā)現(xiàn)動(dòng)脈導(dǎo)管收縮增強(qiáng),進(jìn)一步說明氧誘導(dǎo)的鉀離子通道在胎兒出生后動(dòng)脈導(dǎo)管閉合過程中發(fā)揮重要作用[17,29]。
研究顯示,隨著胎肺功能增強(qiáng),血氧分壓急劇升高,細(xì)胞色素a3和細(xì)胞色素P450活化可引起動(dòng)脈導(dǎo)管內(nèi)皮細(xì)胞和平滑肌細(xì)胞中內(nèi)皮素-1釋放,刺激內(nèi)皮素A受體,進(jìn)而抑制電壓依賴鉀離子通道,使平滑肌細(xì)胞膜去極化,引起膜上L型電壓依賴鈣通道開放,鈣離子內(nèi)流,隨之動(dòng)脈導(dǎo)管收縮閉合[17,30]。
胎兒出生后,動(dòng)脈導(dǎo)管壁發(fā)生大量重構(gòu),最終導(dǎo)致永久性閉合。內(nèi)膜增厚及內(nèi)膜墊形成(intimal cushion formation,ICF)是動(dòng)脈導(dǎo)管重建過程的一個(gè)重要特點(diǎn)。在高氧環(huán)境刺激下,內(nèi)皮細(xì)胞增多,透明質(zhì)酸累積于內(nèi)皮細(xì)胞下區(qū)域,血管中層平滑肌增殖和遷移,隨后內(nèi)膜墊形成。如果動(dòng)脈導(dǎo)管內(nèi)膜增厚較差,則導(dǎo)致出生后動(dòng)脈導(dǎo)管永久性不閉合[26]。
研究顯示,在動(dòng)脈導(dǎo)管形成和發(fā)育過程中,PGE2-EP4具有擴(kuò)張血管和促ICF形成兩大作用[31-33]。慢性刺激產(chǎn)生PGE2,可通過EP4誘導(dǎo)動(dòng)脈導(dǎo)管重構(gòu),促進(jìn)血管腔ICF和結(jié)構(gòu)性閉合。研究發(fā)現(xiàn),激活的PGE2-EP4-cAMP-PKA途徑增強(qiáng)透明質(zhì)酸酶2基因轉(zhuǎn)錄和透明質(zhì)酸產(chǎn)生,而透明質(zhì)酸的積累促進(jìn)動(dòng)脈導(dǎo)管平滑肌細(xì)胞遷移到內(nèi)皮下層,從而引起動(dòng)脈導(dǎo)管內(nèi)膜增厚[31,33]。有趣的是,如果基因干擾透明質(zhì)酸2表達(dá),在小鼠模型中未能觀察到形成類似的內(nèi)膜墊[34]。前面所說到PGE2的這兩個(gè)作用看似相互矛盾,實(shí)際上因?yàn)槌錾鷷r(shí)循環(huán)中PGE2減少,EP4刺激水平迅速下降,減少了對(duì)動(dòng)脈導(dǎo)管的血管舒張作用,導(dǎo)致動(dòng)脈導(dǎo)管快速功能性閉合;而積累的透明質(zhì)酸仍然作用活躍,促進(jìn)平滑肌細(xì)胞遷移,從而促成動(dòng)脈導(dǎo)管的最終解剖學(xué)閉合[33]。
Epac是一種近年被發(fā)現(xiàn)由cAMP激活的交換蛋白。Epac與PKA同屬于PGE2-EP-cAMP信號(hào)通路下游分子,均能誘導(dǎo)ICF。研究發(fā)現(xiàn),Epac在胎兒圍產(chǎn)期時(shí)就被上調(diào),刺激Rap1蛋白進(jìn)而引起纖維連接蛋白表達(dá)增加,促進(jìn)細(xì)胞介導(dǎo)的粘附作用,對(duì)平滑肌細(xì)胞遷移有急性增強(qiáng)作用,可在4 h內(nèi)完成平滑肌細(xì)胞遷移,且不伴透明質(zhì)酸沉積[32]。因此有研究者提出:選擇性激活Epac可以作為治療PDA的一項(xiàng)新治療方法。
高氧分壓誘導(dǎo)下,T型電壓依賴鈣離子通道,尤其是Cav3.1可以提高動(dòng)脈導(dǎo)管收縮和平滑肌細(xì)胞遷移。研究發(fā)現(xiàn),細(xì)胞膜上Cav3.1過度表達(dá)明顯增強(qiáng)了對(duì)大鼠動(dòng)脈導(dǎo)管組織的促氧化作用,免疫組化可觀察到動(dòng)脈導(dǎo)管內(nèi)膜局限性增厚[34]。如果進(jìn)一步對(duì)該模型給予維生素A喂養(yǎng),還可發(fā)現(xiàn)大鼠動(dòng)脈導(dǎo)管中Cav1.2和Cav3.1表達(dá)提高,動(dòng)脈導(dǎo)管內(nèi)膜增厚更加明顯[35]。因此可以認(rèn)為T型電壓依賴鈣離子通道(尤其是Cav3.1)在一定程度上加速了大鼠動(dòng)脈導(dǎo)管內(nèi)膜墊形成和內(nèi)膜增厚,從而有利于動(dòng)脈導(dǎo)管解剖學(xué)閉合。
動(dòng)脈導(dǎo)管延遲閉合是一種重要的病理狀態(tài),可由多種因素引起,功能性閉合和解剖學(xué)閉合兩個(gè)過程相互獨(dú)立卻同時(shí)進(jìn)行。近年研究發(fā)現(xiàn),PGE2和離子通道在此過程中發(fā)揮重要作用,其中PGE2有擴(kuò)張導(dǎo)管和增厚內(nèi)膜雙重作用[31-33],而高氧分壓對(duì)電壓依賴鈣離子通道直接或間接的影響,也可引起動(dòng)脈導(dǎo)管平滑肌細(xì)胞功能性收縮和內(nèi)膜增厚[22-28,34]。在此基礎(chǔ)上,進(jìn)一步研究有關(guān)動(dòng)脈導(dǎo)管閉合的分子機(jī)制,開發(fā)新策略來適時(shí)調(diào)節(jié)動(dòng)脈導(dǎo)管開閉,將有助于改善臨床治療效果。
[1] Schneider D J,Moore J W.Patent ductus arteriosus[J].Circulation,2006,114(17):1873-1882.
[2] Yokoyama U,Minamisawa S,Ishikawa Y.Regulation of vascular tone and remodeling of the ductus arteriosus[J].J Smooth Muscle Res,2010,46(2):77-87.
[3] Anilkumar M.Patent ductus arteriosus[J].Cardiol Clin,2013,31(3):417-430.
[4] Mitra S,R?nnestad A,Holmstr?m H.Management of patent ductus arteriosus in preterm infants--where do we stand?[J].Congenit Heart Dis,2013,8(6):500-512.
[5] Weichert J,Hartge D R,Axt-Fliedner R.The fetal ductus arteriosus and its abnormalities[J].Congenit Heart Dis,2010,5(5):398-408.
[6] Bennett T D,Klein M B,Sorensen M D,et al.Influence of birth hospital on outcomes of ductal-dependent cardiac lesions[J].Pediatrics,2010,126(6):1156-1164.
[7] Vogel M,Wilkins-Haug L E,McElhinney D B,et al.Reversible ductus arteriosus constriction due to maternal indomethacin after fetal intervention for hypoplastic left heart syndrome with intact/restrictive atrial septum[J].Fetal Diagn Ther,2010,27(1):40-45.
[8] Yoshimura N,Yamaguchi M.Surgical strategy for pulmonary atresia with intact ventricular septum:initial management and definitive surgery[J].Gen Thorac Cardiovasc Surg,2009,57(7):338-346.
[9] Hasan B S,Bautista-Hernandez V,McElhinney D B,et al.Ou-tcomes of transcatheter approach for initial treatment of pulmonary atresia with intact ventricular septum[J].Catheter Cardiovasc Interv,2013,81(1):111-118.
[10] Kimura M,Misaki Y,Kato H,et al.Ascending aortic app-roach for balloon aortic valvuloplasty with concomitant bilateral pulmonary artery banding in a very low-birth-weight neonate with critical aortic stenosis and poor left ventricular function[J].Eur J Cardiothorac Surg,2012,41(1):226-228.
[11] Stellin G,Padalino M,Milanesi O,et al.Repair of congenital mitral valve dysplasia in infants and children:is it always possible?[J].Eur J Cardiothorac Surg,2000,18(1):74-82.
[12] Hraska V,Duncan B W,Mayer J E Jr,et al.Long-term outcome of surgically treated patients with corrected transposition of the great arteries[J].J Thorac Cardiovasc Surg,2005,129(1):182-191.
[13] Shin’oka T,Kurosawa H,Imai Y,et al.Outcomes of definitive surgical repair for congenitally corrected transposition of the great arteries or double outlet right ventricle with discordant atrioventricular connections:risk analyses in 189 patients[J].J Thorac Cardiovasc Surg,2007,133(5):1318-1328.
[14] Coceani F,Baragatti B.Mechanisms for ductus arteriosus closure[J].Semin Perinatol,2012,36(2):92-97.
[15] Pacifici G M.Clinical pharmacology of indomethacin in preterm infants:implications in patent ductus arteriosus closure[J].Paediatr Drugs,2013,15(5):363-376.
[16] Fan F,Ma A,Guan Y,et al.Effect of PGE2on DA tone by EP4 modulating Kv channels with different oxygen tension between preterm and term[J].Int J Cardiol,2011,147(1):58-65.
[17] Gruzdev A,Nguyen M,Kovarova M,et al.PGE2through the EP4 receptor controls smooth muscle gene expression patterns in the ductus arteriosus critical for remodeling at birth[J].Prostaglandins Other Lipid Mediat,2012,97(3/4):109-119.
[18] Chang H Y,Locker J,Lu R,et al.Failure of postnatal ductus arteriosus closure in prostaglandin transporter-deficient mice[J].Circulation,2010,121(4):529-536.
[19] Fan F L,Zhu S,Chen L H,et al.Role of prostaglandin E and its receptors in the process of ductus arteriosus maturation and functional closure in the rabbit[J].Clin Exp Pharmacol Physiol,2010,37(5/6):574-580.
[20] Basaran A,Gyimadu A,Gü?er S,et al.Cyclooxygenase immunohistochemical staining in the human ductus arteriosus after 24 weeks of gestational age[J].J Obstet Gynaecol,2012,32(2):120-123.
[21] Toyoshima K,Takeda A,Imamura S,et al.Constriction of the ductus arteriosus by selective inhibition of cyclooxygenase-1 and-2 in near-term and preterm fetal rats[J].Prostaglandins Other Lipid Mediat,2006,79(1/2):34-42.
[22] Reese J,O’Mara P W,Poole S D,et al.Regulation of the fetal mouse ductus arteriosus is dependent on interaction of nitric oxide and COX enzymes in the ductal wall[J].Prostaglandins Other Lipid Mediat,2009,88(3/4):89-96.
[23] Cogolludo A L,Moral-Sanz J,van der Sterren S,et al.Maturation of O2sensing and signaling in the chicken ductus arteriosus[J].Am J Physiol Lung Cell Mol Physiol,2009,297(4):L619-L630.
[24] Sun F,Hayama E,Katsube Y,et al.The role of the large-conductance voltage-dependent and calcium-activated potassium(BK(Ca))channels in the regulation of rat ductus arteriosus tone[J].Heart Vessels,2010,25(6):556-564.
[25] Leonhardt A,Glaser A,Wegmann M,et al.Expression of prostanoid receptors in human ductus arteriosus[J].Br J Pharmacol,2003,138(4):655-659.
[26] Wu C,Hayama E,Imamura S,et al.Developmental changes in the expression of voltage-gated potassium channels in the ductus arteriosus of the fetal rat[J].Heart Vessels,2007,22(1):34-40.
[27] Yokoyama U,Minamisawa S,Adachi-Akahane S,et al.Multiple transcripts of Ca2+channel alpha1-subunits and a novel spliced variant of the alpha1 C-subunit in rat ductus arteriosus[J].Am J Physiol Heart Circ Physiol,2006,290(4):H1660-H1670.
[28] Hong Z,Hong F,Olschewski A,et al.Role of store-operated calcium channels and calcium sensitization in normoxic contraction of the ductus arteriosus[J].Circulation,2006,114(13):1372-1379.
[29] Thébaud B,Michelakis E D,Wu X C,et al.Oxygen-sensitive Kv channel gene transfer confers oxygen responsiveness to preterm rabbit and remodeled human ductus arteriosus:implications for infants with patent ductus arteriosus[J].Circulation,2004,110(11):1372-1379.
[30] Grass B,Baumann P,Arlettaz R,et al.Cardiovascular biomarkers pro-atrial natriuretic peptide and pro-endothelin-1 to monitor ductus arteriosus evolution in very preterm infants[J].Early Hum Dev,2014,90(6):293-298.
[31] Yokoyama U,Minamisawa S,Katayama A,et al.Differential regulation of vascular tone and remodeling via stimulation of type 2 and type 6 adenylyl cyclases in the ductus arteriosus[J].Circ Res,2010,106(12):1882-1892.
[32] Yokoyama U,Minamisawa S,Quan H,et al.Prostaglandin E2-activated Epac promotes neointimal formation of the rat ductus arteriosus by a process distinct from that of cAMP-dependent protein kinase A[J].J Biol Chem,2008,283(42):28702-28709.
[33] Yokoyama U,Minamisawa S,Quan H,et al.Chronic activation of the prostaglandin receptor EP4 promotes hyaluronan-mediated neointimal formation in the ductus arteriosus[J].J Clin Invest,2006,116(11):3026-3034.
[34] Akaike T,Jin M H,Yokoyama U,et al.T-type Ca2+channels promote oxygenation-induced closure of the rat ductus arteriosus not only by vasoconstriction but also by neointima formation[J].J Biol Chem,2009,284(36):24025-24034.
[35] Yokoyama U,Sato Y,Akaike T,et al.Maternal vitamin A alters gene profiles and structural maturation of the rat ductus arteriosus[J].Physiol Genomics,2007,31(1):139-157.
*國家自然科學(xué)基金重點(diǎn)項(xiàng)目資助(No.31330029)
楚 沖,男,1988年生,醫(yī)學(xué)博士,主治醫(yī)師,E-mail:875003638@qq.com
△通訊作者,Corresponding author,E-mail:dongnianguo@hotmail.com
R541.13
10.3870/j.issn.1672-0741.2017.06.023
(2017-01-12 收稿)