宋廣勝,姜敬前,徐 勇,張士宏
?
AZ31鎂合金板材變路徑壓縮對力學性能影響
宋廣勝1,姜敬前1,徐 勇2,張士宏2
(1. 沈陽航空航天大學材料科學與工程學院,沈陽 110036;2. 中國科學院金屬研究所,沈陽 110016)
室溫下,對AZ31鎂合金軋制板材依次沿軋向(RD)、橫向(TD)和法向(ND)壓縮,依據(jù)壓縮路徑的不同,分別對應RD、RD-ND、RD-TD和RD-TD-ND 4種壓縮方式,分析上述壓縮過程鎂合金的力學性能和織構變化,并對上述壓縮變形后的鎂合金分別進行室溫沿RD方向拉伸變形,分析不同壓縮變形方式對拉伸力學性能的影響。結果表明:RD-TD壓縮過程中對應的-二次孿晶大幅度提高屈服強度,試樣經(jīng)RD-TD壓縮后產(chǎn)生強烈的錐面織構和柱面織構。鎂合金經(jīng)RD方向壓縮后,在后續(xù)的RD方向拉伸變形中解孿晶的啟動明顯提高塑性。
鎂合金;變路徑壓縮;織構;拉伸孿晶;解孿晶
鎂合金由于其固有的低對稱性密排六方(HCP)晶體結構,導致其在塑性變形過程所能啟動的獨立滑移系較少,特別是在室溫下,通常只有臨界剪切應力(CRSS)最低的基面滑移系易啟動,但基面滑移只有兩個獨立滑移系,故鎂合金室溫的塑性較差,這是限制鎂合金塑性成形技術發(fā)展的一個重要原因。
為了提高鎂合金的成形能力,研究人員開發(fā)了鎂合金的異步軋制技術(DSR)[1?3]、等徑角擠壓技術(ECAP)[4?5]、鎂合金稀土合金化[6?7]和鎂合金板材反復彎曲技術[8]等,分別從削弱變形織構強度、細化晶粒和第二相強化等方面改善鎂合金的成形性。但上述技術都有其局限性,如DSR技術只能在一定程度上削弱基面織構,對鎂合金的塑性提高不明顯,ECAP技術雖然形成有利于變形的絲織構和細晶組織,但只能生產(chǎn)棒材等型材,并且在尺寸方面也有限制。
眾所周知,CRSS值較低的拉伸孿晶是鎂合金室溫變形的一種重要的微觀變形模式,拉伸孿晶的啟動能夠更好的協(xié)調晶粒間的變形,從而滿足Mises準則。對鎂合金板材進行變路徑壓縮,充分利用了拉伸孿晶和解孿晶明顯改變晶粒取向的特點,改變了鎂合金板材的織構分布,從而改善了鎂合金的后續(xù)成形性。相關研究多集中于鎂合金多向壓縮過程的力學性能和微觀機理等方面[9?12],對于多向壓縮后板材的拉伸或沖壓成形能力及其相關機理的研究,PARK等[13]對鎂合金板材進行RD方向壓縮后,發(fā)現(xiàn)孿晶區(qū)退孿晶的啟動而大幅度提高了板材沖壓成形性。LEE等[14]通過鎂合金板材進行多向壓縮后,大量-二次孿晶的啟動大幅提高了拉伸變形的屈服強度。孿晶和解孿晶只有在鎂合金塑性變形量達到一定值后才能啟動,考慮到鎂合金的室溫低塑性,對于大尺寸的鎂合金板材,變路徑壓縮工藝在板材中心部位不能達到孿晶和解孿晶啟動所需的變形量,但對于小尺寸的鎂合金板材,相關研究表明變路徑壓縮工藝能夠明顯改善其成形性。
本文作者首先對AZ31鎂合金軋制板材進行多向壓縮變形,分析變形過程力學性能和織構演化等,并對多向壓縮后的板材進行室溫沿RD方向的拉伸變形,分析多向壓縮過程對拉伸力學性能影響。
實驗材料為8mm厚的商用AZ31B鎂合金軋制板材,在板材上截取多個尺寸為軋向×橫向×法向(RD×TD×ND)17 mm×15 mm×8 mm的塊狀試樣,試樣經(jīng)(130 ℃, 1 h)退火處理,然后室溫下在材料力學性實驗機上分別沿不同方向進行壓縮變形,考慮到孿晶和解孿晶啟動所需的塑形變形量通常高于 5%[9, 13],并考慮到本實驗中壓縮試樣的尺寸,實驗中每個方向的塑性變形量都高于7%。根據(jù)壓縮方向的變化特征,分別進行了4種壓縮變形,對應的變形方式如表1所列,以試樣4為例,其對應的壓縮方向依次為RD、TD和ND,對應的每次壓縮塑性變形量依次為7.4%、9.4%和7.7%。
表1 壓縮試樣及其變形方式
壓縮變形后,在表1中的每個壓縮試樣上截取如圖1所示的拉伸試樣,其中試樣厚度為1.5 mm,拉伸試樣在變形前經(jīng)(150 ℃,2 h)退火處理,最后在材料力學性實驗機上進行室溫拉伸變形,拉伸方向全部為RD,變形速度為 1 mm/min。
圖1 拉伸試樣
2.1 變向壓縮
圖2所示為上述試樣在變路徑壓縮過程中的應力應變曲線,其中圖2(a)所示為典型的拉伸孿晶啟動的S型曲線,即試樣1在垂直于晶粒軸的壓應力作用下,在變形初期,拉伸孿晶大量啟動,產(chǎn)生約75 MPa的屈服強度,拉伸孿晶在變形初期很快啟動完畢,而后轉入以滑移為主的變形模式,隨著CRSS值較大的柱面和錐面滑移系的啟動,位錯密度逐漸增大,應力?應變曲線呈現(xiàn)了硬化速率不斷增加的特征。
圖2(b)所示為試樣2依次沿RD和TD壓縮過程的應力?應變曲線,圖中顯示鎂合金板材經(jīng)過RD壓縮后,在后續(xù)的TD壓縮過程中所呈現(xiàn)的屈服強度遠高于前者,實際上,在該TD壓縮過程中,對應的微觀變形模式為-二次孿晶[14?16],即在拉伸孿晶基礎上再次啟動拉伸孿晶,該二次孿晶啟動所對應的屈服強度約為拉伸孿晶的二倍[14, 17]。導致-二次孿晶對應屈服強度大幅提高的微觀機制主要有兩種:1) 前期的拉伸孿晶啟動使晶粒得到細化,根據(jù)Hall-Petch關系,屈服強度將得到提高[18],但拉伸孿晶細化晶粒的前提是變形量不能太大,否則晶?;w將完全轉變?yōu)槔鞂\晶而得不到細化[17];2)的拉伸孿晶啟動提高了位錯密度,增大了-二次孿晶的形核阻力和孿晶界擴展阻力[17],從而導致宏觀屈服強度增大,該微觀機制通常在產(chǎn)生拉伸孿晶的首次變形量較大前提下起主導作用。
圖3所示為原始軋制板材和試樣2經(jīng)過RD壓縮后而在TD壓縮前的組織,圖3(a)顯示原始板材組織由尺寸差別較大的大小晶粒組成,其中小晶粒為再結晶所形成,均勻地分布在大晶粒的晶界間,組織中無孿晶。圖3(b)和(c)分別對應試樣2的RD×TD面上的中心處和沿RD方向邊緣處的顯微組織。由圖3(b)可以看出,一些晶粒內存在相互平行的多條拉伸孿晶帶,相比于原始板材,孿晶帶的存在使晶粒得到明顯細化。而圖3(c)顯示,在試樣邊緣處晶粒內孿晶帶數(shù)量相比于中心處明顯增多,這是由于邊緣處的變形量高于中心處的。當晶粒內變形量持續(xù)增加時,晶?;w將完全轉變?yōu)槔鞂\晶[17, 19]。結合圖3(b)和(c)中所示的組織特征,分析圖2(b)中TD壓縮的屈服強度明顯提高的原因,試樣2經(jīng)過RD壓縮后,試樣2晶粒內存在大量孿晶帶而使晶粒得到細化,成為TD壓縮過程的屈服強度得到提高的主要因素,同時,試樣沿RD方向壓縮后,位錯密度大幅增加,也提高了TD壓縮過程的屈服強度。
圖2(c)所示為試樣3經(jīng)過RD壓縮后的應力?應變曲線。在后續(xù)的ND壓縮過程中,所呈現(xiàn)的屈服強度高于前者,在該ND壓縮過程中,對應的微觀變形模式中應包含了解孿晶,相比于孿晶啟動,解孿晶啟動無形核過程[17, 20],也就不需要額外的形核力,其對應的宏觀屈服強度應該低于拉伸孿晶啟動的對應值[21]。在棱長為5 mm的鎂合金軋制板材RD-ND變路徑壓縮過程中,發(fā)現(xiàn)ND壓縮過程解孿晶啟動對應的宏觀屈服強度低于RD壓縮過程的屈服強度。在鎂合金板材拉壓循環(huán)變形過程中,也發(fā)現(xiàn)解孿晶啟動對應的宏觀屈服強度低于拉伸孿晶的對應 值[22?23]。
分析圖2(c)中解孿晶屈服強度高于孿晶屈服強度的原因,應該是壓縮試樣尺寸較大的原因,如表1所示,試樣3在RD方向對應著8.5%的壓縮量,與同尺寸試樣2的RD方向7.3%的變形量接近。圖3所示為試樣2內晶?;w部分轉變拉伸孿晶,由于試樣3與試樣2的RD方向變形量接近,因此,試樣3經(jīng)RD壓縮后也將呈現(xiàn)圖3所示的組織特征,即試樣3內部分晶粒基體生成拉伸孿晶。在鎂合金軋制板材平行于軋面的壓縮變形過程中,拉伸孿晶啟動使晶粒基體朝壓縮方向偏轉約86°而使晶粒軸與壓縮方向平 行[21, 23]。由此可以大致確定試樣3在RD壓縮后晶粒取向分布特征,如圖4所示,試樣中晶?;w(圖4中晶胞1)的軸與板材ND平行,而孿晶帶內晶?;w(圖4中晶胞2)的軸與RD平行,則在隨后的ND方向壓縮過程中,在孿晶帶內,由于壓縮方向與晶粒軸垂直而符合解孿晶啟動條件[21],而以解孿晶變形模式為主,在晶?;w內則由于晶粒軸與壓縮方向平行的關系,故晶?;w內是以基面滑移和錐面滑移為 主[24],則ND壓縮過程中在試樣3的晶粒內同時啟動解孿晶和滑移的變形模式,滑移系的啟動提高了ND壓縮的宏觀屈服強度,導致ND的壓縮屈服強度高于之前RD的壓縮屈服強度。
圖2 變路徑壓縮過程應力?應變曲線
圖3 鎂合金板材組織
試樣3經(jīng)RD-ND壓縮后的顯微組織如圖5所示。由圖5可以看出,試樣邊緣處組織中的孿晶帶數(shù)量明顯少于試樣中心處的,這是由于試樣3經(jīng)過RD壓縮后,晶粒內形成如圖4所示的兩種取向,則在隨后的ND壓縮過程中,孿晶帶內將發(fā)生解孿晶,由于試樣邊緣處的塑性變形量大于試樣中心處的,而使邊緣處解孿晶更充分,使試樣邊緣處的孿晶帶數(shù)量明顯低于中心處的。
圖4 試樣3沿RD壓縮后晶粒取向
圖5 試樣3在經(jīng)RD-ND壓縮后的顯微組織
圖2(d)所示為鎂合金板材經(jīng)過RD壓縮后,在后續(xù)的TD壓縮過程中,-二次孿晶啟動大幅提高了宏觀屈服強度,但在接下來的ND壓縮過程中,雖然包含著解孿晶微觀變形模式,但所呈現(xiàn)的屈服強度已較RD壓縮中拉伸孿晶和TD壓縮過程中-二次孿晶啟動分別對應的宏觀屈服強度都有明顯提高。圖6所示為試樣4先后經(jīng)過RD和TD壓縮后,試樣的晶粒內形成大量孿晶帶,即大量的拉伸孿晶和二次孿晶啟動,從而導致位錯密度大幅增加[17?18],從而提高隨后的ND壓縮中孿晶界擴展的阻力,另外,與圖4顯示的結果相似,試樣4經(jīng)過RD-TD兩次壓縮后,在試樣的中心區(qū)域存在一定強度基面織構,即部分晶粒基體的軸平行于ND,則試樣4在ND壓縮過程中,中心區(qū)域將同時啟動滑移和解孿晶變形模式,滑移系啟動導致其宏觀屈服強度明顯增加。
上述試樣壓縮后織構的XRD譜如圖7所示,圖7(a)顯示軋制鎂合金板材經(jīng)RD壓縮后,形成∥ND的柱面織構,同時保留一定強度的基面織構,晶粒取向特征與如圖4中所示相似,表明經(jīng)RD壓縮后板材內一些晶?;w沒有完全轉變拉伸孿晶,是導致試樣3的ND壓縮過程宏觀屈服強度升高的主要原因。而圖7(b)顯示鎂合金板材經(jīng)RD-TD壓縮后形成較強的∥ND錐面和∥ND柱面織構,同時保留一定強度的基面織構,如上述分析,該基面織構是導致試樣4在ND壓縮過程中屈服強度大幅提高的主要因素。圖7(c)則顯示鎂合金板材經(jīng)RD-ND壓縮后,由于解孿晶啟動而使軋制板材的基面織構得以恢復,同時板材中還保留相對較弱的∥ND柱面和∥ND錐面織構,表明晶粒基體沒有被完全解孿晶,鎂合金板材經(jīng)RD-TD-ND壓縮后的織構特征如圖7(d)所示,圖7(d)中顯示板材中形成強烈的基面織構。
圖6 試樣4經(jīng)RD-TD壓縮后的顯微組織
圖7 壓縮試樣織構的XRD譜
圖8 變路徑壓縮過程晶粒取向變化
2.2 變向壓縮后拉伸
室溫下,鎂合金原始及經(jīng)過上述壓縮后的板材沿RD方向的拉伸變形應力?應變曲線如圖9所示,圖9中顯示鎂合金板材經(jīng)RD-TD、RD-ND或RD-TD-ND壓縮后(分別對應試樣2、3和4),與原始板材的應力應變曲線變化趨勢相同,都是以滑移為主的變形方式,實際上,從微觀變形機理角度分析,都是對應著沿垂直于晶粒軸方向拉伸變形,對應的微觀變形模式為位錯基面和柱面滑移為主[27]。
圖9所示為鎂合金板材經(jīng)RD壓縮后(對應試樣1),再沿RD拉伸則呈現(xiàn)低屈服強度的近S型應力?應變曲線,為典型的鎂合金拉伸孿晶啟動曲線,實際上,鎂合金板材在RD壓縮后再沿RD拉伸,微觀上對應著拉應力平行晶粒C軸的關系,符合拉伸孿晶啟動條件,由于在首次沿RD壓縮過程中,對應著拉伸孿晶微觀變形模式,再沿RD拉伸則對應著解孿晶微觀變形模式,如圖所示,該解孿晶過程對應的屈服強度約為100 MPa,明顯高于RD壓縮中拉伸孿晶啟動而產(chǎn)生的約75 MPa的屈服強度。
圖9 變路徑壓縮試樣拉伸應力?應變曲線
對比圖9中的不同壓縮過程所對應的拉伸力學性能曲線可以看出,鎂合金板材經(jīng)過RD壓縮后,再沿RD拉伸所對應伸長率明顯高于其他壓縮過程,也高于原始板材的伸長率。為了保證上述結果的可信性,對原始板材和上述每種壓縮試樣分別重復進行了3次拉伸變形,結果顯示試樣1的伸長率都接近或高于20%,而其他試樣的伸長率都在10%~16%之間,表明試樣1的塑性明顯好于其他試樣的。圖10顯示了圖9中對應壓縮試樣的拉伸斷口形貌,由圖10可以看出,相比于其他試樣,試樣1的斷口中含有較多的韌窩,且一些韌窩較深,體現(xiàn)出試樣1較好的塑性。
圖9中的系列力學性能曲線對比表明,鎂合金板材經(jīng)RD壓縮后明顯提高了RD方向拉伸變形的塑性,從微觀角度看,實質是在RD方向拉伸過程中解孿晶啟動而產(chǎn)生額外應變的結果。拉伸孿晶或解孿晶啟動后,晶粒將在面上的方向產(chǎn)生0.13的應變量[29],該應變量在晶粒軸方向所產(chǎn)生的應變分量為
對比圖9中各力學性能曲線的伸長率,試樣1的伸長率比其它試樣的伸長率高約4%~10%,上述試樣的壓縮及拉伸過程中晶粒取向變化的分析結果表明,試樣1在后續(xù)的拉伸變形中,由于拉應力平行于晶粒軸而發(fā)生解孿晶,由式(1)的計算結果,解孿晶啟動為試樣1在RD方向(軸方向)提供了約0.0886的應變量,而其他試樣在后續(xù)的RD方向拉伸過程中,載荷方向始終垂直于晶粒軸而沒有啟動解孿晶,對應的微觀變形模式為基面和柱面滑移,相比于試樣1,缺少解孿晶啟動所提供的額外0.0886的應變量。拉伸孿晶或解孿晶雖然能在單個晶粒尺度上沿軸方向產(chǎn)生0.0886的應變量,但在實際變形過程中,為了協(xié)調晶粒間變形等原因,實際所產(chǎn)生的宏觀應變量低于0.0886。
圖10 變路徑壓縮試樣拉伸斷口形貌
圖11 拉伸變形過程中解孿晶啟動前后晶粒取向的變化
3) 合金板材經(jīng)RD方向壓縮變形后,在后續(xù)的RD方向拉伸變形過程中,由于解孿晶啟動明顯提高了拉伸變形的塑性。
[1] BISWAS S, KIM D J, SUWAS S. Asymmetric and symmetric rolling of magnesium: Evolution of microstructure, texture and mechanical properties[J]. Materials Science and Engineering A, 2012, 550: 19?30.
[2] CHO J H, KIM H W, KANG S B, HAN T S. Bending behavior, and evolution of texture and microstructure during differential speed warm rolling of AZ31B magnesium alloys[J]. Acta Materialia, 2011, 59: 5638?5651.
[3] 李 振, 蔡慶伍, 江海濤, 孟 強. 異速比對異步軋制AZ31鎂合金板材組織和織構的影響[J]. 北京科技大學學報, 2010, 32(8): 1017?1022. LI Zhen, CAI Qing-wu, JIANG Hai-tao, MENG Qiang. Effects of differential speed ratio on the microstructure and texture of AZ31 magnesium alloy sheets processed by differential speed rolling[J]. Journal of University of Science and Technology Beijing, 2010, 32(8): 1017?1022.
[4] YU X, LI Y L, WEI Q M, GUO Y Z, SUO T, ZHAO F. Microstructure and mechanical behavior of ECAP processed AZ31B over a wide range of loading rates under compression and tension[J]. Mechanics of Materials, 2010, 86: 55?70.
[5] 何運斌, 潘清林, 劉曉艷, 李文斌. 鎂合金等通道轉角擠壓過程中的晶粒細化機制[J]. 中國有色金屬學報,2011, 21(8): 1785?1793. HE Yun-bin, PAN Qing-lin, LIU Xiao-yan, LI Wen-bin.Grain refinement mechanism of magnesium alloy during equal channel angular pressing process[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(8): 1785?1793.
[6] SOLAZ V H, MANRIQUE P H, PéREZ-PRADO M T, LETZIG D. Effect of rare earth additions on the critical resolved shear stresses of magnesium alloys[J]. Materials Letters, 2014, 128: 199?203.
[7] 毛萍莉, 于金程, 劉 正, 董 陽, 席 通. 擠壓態(tài)Mg-Gd-Y鎂合金動態(tài)壓縮力學性能與失效行為[J]. 中國有色金屬學報,2013, 23(4): 889?897. MAO Ping-li, YU Jin-cheng, LIU Zheng, DONG Yang, XI Tong. Dynamic mechanical property and failure behavior of extruded Mg-Gd-Y alloy under high strain rate compression[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(4): 889?897.
[8] 張 雷, 楊續(xù)躍, 霍慶歡, 田 放, 張玉晶, 周小杰, 陳 佳. AZ31鎂合金板材低溫雙向反復彎曲變形及退火過程的組織演化[J]. 金屬學報, 2011, 47(8): 990?996. ZHANG Li, YANG Xu-yue, HUO Qing-huan, TIAN Fang, ZHANG Yu-jing. Structure evolution of AZ31 Mg alloy sheet during bidirectional cyclic bending at low temperature and subsequent annealing[J]. Acta Metallurgica Sinica, 2011, 47(8): 990?996.
[9] HE J J, LIU T M, ZHANG Y, TAN J. Twin characteristics and flow stress evolution in extruded magnesium alloy AZ31 subjected to multiple loads[J]. Journal of Alloys and Compounds, 2013, 578: 536?542.
[10] XIN Y C, ZHOU X J, CHEN H W, NIE J F, ZHANG H, ZHANG Y Y, LIU Q. Annealing hardening in detwinning deformation of Mg-3Al-1Zn alloy[J]. Materials Science and Engineering A, 2014, 594: 287?291.
[11] XIN Y C, ZHOU X J, LIU Q. Suppressing the tension- compression yield asymmetry of Mg alloy by hybrid extension twins structure[J]. Materials Science and Engineering A, 2013, 567: 9?13.
[12] PARK S H, HONG S G, LEE J H, LEE C S. Multiple twinning modes in rolled Mg-3Al-1Zn alloy and their selection mechanism[J]. Materials Science and Engineering A, 2012, 532: 401?406.
[13] PARK S H, HONG S G, LEE C S. Enhanced stretch formability of rolled Mg-3Al-1Zn alloy at room temperature by initial {10-12} twins[J]. Materials Science and Engineering A, 2013, 578: 271?276.
[14] LEE J H, LEE T, SONG S W, PARK S H, LEE C S. Enhancing yield strength by suppressing detwinning in a rolled Mg-3Al-1Zn alloy with {10-12} twins [J]. Materials Science and Engineering A, 2014, 619: 328?333.
[15] SHI Z Z, ZHANG Y D, WAGNER F, RICHETON T, JUAN P A, LECOMTE J S, CAPOLUNGO L, BERBENNI S. Sequential double extension twinning in a magnesium alloy: Combined statistical and micromechanical analyses[J]. Acta Materialia, 2015, 96: 333?343.
[16] MOLODOV K D, SAMMAN T A, MOLODOV D A, GOTTSTEIN G. Mechanisms of exceptional ductility of magnesium single crystal during deformation at room temperature: Multiple twinning and dynamic recrystallization[J]. Acta Materialia, 2014, 76: 314?330.
[17] SARKER D, CHEN D L. Dependence of compressive deformation on pre-strain and loading direction in an extruded magnesium alloy: Texture, twinning and de-twinning[J]. Materials Science and Engineering A, 2014, 596: 134?144.
[18] XIN Y C, WANG M Y, ZENG Z, NIE M G, LIU Q. Strengthening and toughening of magnesium alloy by {10-12} extension twins[J]. Scripta Materialia, 2012, 66: 25?28.
[19] SONG G S, CHEN Q Q, ZHANG S H, XU Y. Deformation micro-mechanism for compression of magnesium alloys at room temperature analyzed by electron backscatter diffraction[J]. Materials and Design, 2015, 65: 534?542.
[20] LOU X Y, LI M, BOER R K, AGNEW S R, WAGONER R H. Hardening evolution of AZ31B Mg sheet[J]. International Journal of Plasticity, 2007, 23: 44?86.
[21] WANG Y N, HUANG J C. The role of twinning and untwinning in yielding behavior in hot-extruded Mg-Al-Zn alloy[J]. Acta Materialia, 2007, 55: 897?905.
[22] WU L, JAIN A, BROWN D W, STOICA G M, AGNEW S R, CLAUSEN B, FIELDEN D E, LIAW P K. Twinning–detwinning behavior during the strain-controlled low-cycle fatigue testing of a wrought magnesium alloy ZK60A[J]. Acta Materialia, 2008, 56: 688?695.
[23] LOU X Y, LI M, BOER R K, AGNEW S R, WAGONER R H. Hardening evolution of AZ31B Mg sheet[J]. International Journal of Plasticity, 2007, 23: 44?86.
[24] JAIN A, AGNEW S R. Modeling the temperature dependent effect of twinning on the behavior of magnesium alloy AZ31B sheet[J]. Materials Science and Engineering A, 2007, 462: 29?36.
[25] PROUST G, TOMé C N, JAIN A, AGNEW S R. Modeling the effect of twinning and detwinning during strain-path changes of magnesium alloy AZ31[J]. International Journal of Plasticity, 2009, 25: 861?880.
[26] SARKER D, FRIEDMAN J, CHEN D L. De-twinning and texture change in an extruded AM30 magnesium alloy during compression along normal direction[J]. Journal of Materials Science & Technology, 2015, 31: 264?268.
[27] WANG H, RAEISINIA B, WU P D, AGNEW S R, TOMé C N. Evaluation of self-consistent polycrystal plasticity models for magnesium alloy AZ31B sheet[J]. International Journal of Solids and Structures, 2010, 47: 2905?2917.
[28] WANG H, WU P D, WANG J, TOMé C N. A crystal plasticity model for hexagonal close packed (HCP) crystals including twinning and de-twinning mechanisms[J]. International Journal of Plasticity, 2013, 49: 36?52.
[29] 楊續(xù)躍, 張 雷. 鎂合金溫變形過程中的孿生及孿晶交叉[J]. 金屬學報, 2009, 45(11): 1303?1308. YANG Xu-yue, ZHANG Lei. Twinning and twin intersection in AZ31 Mg alloy during warm deformation[J]. Acta Metallurgica Sinica, 2009, 45(11): 1303?1308.
(編輯 李艷紅)
Influence of AZ31 magnesium alloy sheet compressed along various paths on mechanical properties
SONG Guang-sheng1, JIANG Jing-qian1, XU Yong2, ZHANG Shi-hong2
(1. School of Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110036, China;2. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China)
The rolled AZ31 Magnesium alloy sheet was sequentially compressed along rolling direction (RD), transverse direction (TD) or normal direction (ND) at room temperature, the compressions RD, RD-ND, RD-TD and RD-TD-ND were correspondingly defined according to the difference of compression paths, and the mechanical property and texture evolution were analyzed for former compressions. The magnesium alloy sheets experienced the former compressions were then stretched along RD at room temperature, respectively, and the influence of compression method on the subsequent tensile mechanical properties was analyzed. The results predict that the yielding strength greatly increases during TD compression of RD-TD compression due to activations of-secondary twin, and the intensivepyramidal texture andprismatic texture form within the magnesium sheet after RD-TD compression. The plasticity of AZ31 magnesium alloy sheet stretched along RD followed by the RD compression is obviously improved due to activation ofdetwinning.
magnesium alloy; various path compression; texture; extension twin; detwinning
Projects(50775211, 51174189) supported by the National Natural Science Foundation of China
2015-10-12; Accepted date:2016-01-29
SONG Guang-sheng; Tel: +86-13604066091; E-mail: Songgs17@163.com
1004-0609(2016)-12-2469-10
TG146.2
A
國家自然科學基金資助項目(50775211, 51174189)
2015-10-12;
2016-01-29
宋廣勝,副教授,博士;電話:13604066091;E-mail: Songgs17@163.com