韓 冰綜述, 朱 輝, 劉晶瑤審校
AQP4與NMO-IgG在視神經(jīng)脊髓炎譜系疾病發(fā)病機(jī)制中的作用
韓 冰綜述, 朱 輝, 劉晶瑤審校
視神經(jīng)脊髓炎(NMO)又稱Devic病,主要表現(xiàn)為視神經(jīng)炎和急性脊髓炎,是一種急性起病,病情反復(fù)且進(jìn)行性加重的自身免疫性疾病[1]。由于患者常出現(xiàn)多發(fā)性硬化(multiple sclerosis,MS)的癥狀,其發(fā)病機(jī)制、臨床特點(diǎn)及醫(yī)學(xué)影像資料和發(fā)作期處理存在相似性,因此,在相當(dāng)長的一段時(shí)間內(nèi),部分學(xué)者認(rèn)為NMO只是MS亞臨床分型。Lennon 等[2]于2004年 在NMO患者體內(nèi)識(shí)別到一種稱為NMO-IgG的特異性抗體,得出NMO是一種不同于MS的獨(dú)立性疾病[3]。人們通過對(duì)NMO-IgG研究不斷深入,發(fā)現(xiàn)NMO有更多的臨床表型。2007年,Wingerchuk等[4]對(duì)NMO患者疾病的空間、時(shí)間累及范圍的不同及伴發(fā)疾病進(jìn)行概括,提出了視神經(jīng)脊髓炎譜系疾病(neuromyelitis optica spectrum disorders,NMOSD)。2010年,歐洲神經(jīng)病學(xué)聯(lián)盟( European Federation of Neurological Societies,ENFS)擴(kuò)大了NMOSDs疾病譜的范圍,擴(kuò)大了中樞神經(jīng)系統(tǒng)病灶所累及的范圍[5]。雖然大部分NMO患者血清NMO-IgG為陽性,但仍有部分患者的血清內(nèi)并未檢測(cè)到,因此,國際視神經(jīng)脊髓炎診斷小組(Internationai Panel for NMO Diagnosis,IPND)于2015年對(duì)視神經(jīng)脊髓炎患者的臨床特點(diǎn)和相關(guān)資料進(jìn)行綜合分析[6],提出了明確的NMOSD診斷標(biāo)準(zhǔn),同時(shí)根據(jù)NMO-IgG的狀態(tài)分為兩種,這意味著可以存在NMO-IgG陰性的NMO。近年來,人們對(duì)于NMOSD相關(guān)研究的深入展開,發(fā)現(xiàn)NMO-IgG不但在NMOSD的診斷中特異性高,其在NMO發(fā)生發(fā)展中起到了一定作用。本文就NMO-IgG、AQP-4與NMO關(guān)聯(lián)性進(jìn)行綜述,希望有助于指導(dǎo)其在臨床中的應(yīng)用。
青壯年是 NMOSD的好發(fā)群體,亞洲地區(qū)的患病率明顯高于其他地區(qū),這種病主要對(duì)脊髓和視神經(jīng)造成影響,若患者治療延遲,會(huì)出現(xiàn)失明、截癱等嚴(yán)重的神經(jīng)功能損傷[7~9]。NMOSD和MS最為明顯的差別在于:NMO很少累及到顱內(nèi),特別是在疾病早期很難發(fā)現(xiàn)顱內(nèi)病灶。該疾病患者中有3/4的人群,會(huì)發(fā)現(xiàn)自身抗體NMO-IgG[10]。在腦脊液和血清樣本內(nèi)還存在其他類型抗體。其中包含結(jié)核抗體,SS抗體等[11~13]。研究發(fā)現(xiàn),在部分患者的細(xì)胞內(nèi)或外部發(fā)現(xiàn)一些抗原特異性抗體,這些抗體會(huì)使死亡細(xì)胞產(chǎn)生新的抗原,進(jìn)而產(chǎn)生上述自身抗體,但這并不是導(dǎo)致 NMOSD發(fā)病的根本性原因,這些抗體主要介導(dǎo)Ⅱ型超敏反應(yīng),進(jìn)而在疾病的復(fù)發(fā)中發(fā)揮重要作用[12~15]。
水通道蛋白家族(AQPs)是生物組織結(jié)構(gòu)中主要負(fù)責(zé)水和其他小分子運(yùn)輸?shù)囊活愃ǖ赖鞍?。其中,AQP4為人體中樞神經(jīng)系統(tǒng)中重要的水通道蛋白,在維持腦內(nèi)微環(huán)境穩(wěn)定、調(diào)節(jié)神經(jīng)纖維傳導(dǎo)、誘導(dǎo)再生和自身免疫應(yīng)答方面起了重要的作用[16]。就亞型來看,主要為 M1、M23和 M23 X 3種[13],結(jié)構(gòu)均為四聚體,存在于細(xì)胞膜上,M23可經(jīng)再聚合形式形成正交矩陣顆粒,M1雖說無法像 M23一樣組成獨(dú)立性正交矩陣顆粒,但其能夠進(jìn)入到正交矩陣顆粒中。研究發(fā)現(xiàn)[17]NMO-IgG對(duì)M1型AQP4的親和力遠(yuǎn)遠(yuǎn)低于M23型AQP4。經(jīng)過對(duì)NMO患者進(jìn)行尸檢發(fā)現(xiàn),病灶部位M1的表達(dá)顯著減少,而M23的表達(dá)顯著增加,而非病灶部位的M1、M23表達(dá)與正常無差別。AQP4抗體和 AQP4相互結(jié)合時(shí),完全取決于正交矩陣顆粒,AQP4為其抗體的結(jié)合靶點(diǎn),而正交矩陣顆粒則是與其抗體結(jié)合的首要前提。
3.1 AQP4的分布情況 NMOSD患者的中樞神經(jīng)系統(tǒng)炎性反應(yīng)發(fā)生的部位恰恰與高度表達(dá)的AQP4的部位大致吻合[18,19]。AQP4在海馬、小腦、下丘腦和腦室周圍結(jié)構(gòu),包括視上核和穹隆下神經(jīng)膠質(zhì)板等部位呈高度表達(dá)[20]。一些學(xué)者[21]研究發(fā)現(xiàn),多數(shù)視神經(jīng)脊髓炎患者在早期出現(xiàn)惡心、嘔吐、呃逆,而NMOSD的顱內(nèi)病變多臨近腦脊液循環(huán)通路的中心部位,主要有延髓、橋腦背側(cè)近四腦室周圍及孤束核等,這些部位發(fā)生病變,常常會(huì)導(dǎo)致患者發(fā)生頑固性呃逆、嘔吐等癥狀[22],而這些結(jié)構(gòu)恰好也是高度表達(dá) AQP4的部位[23]。由此可見,NMOSD顱內(nèi)病變的好發(fā)部位與AQP4的分布密切相關(guān)。
3.2 AQP4調(diào)節(jié)星形膠質(zhì)細(xì)胞的功能 星形膠質(zhì)細(xì)胞是哺乳動(dòng)物腦內(nèi)分布最廣泛的一類細(xì)胞,其功能貫穿神經(jīng)元的整個(gè)發(fā)育過程,主要參與神經(jīng)調(diào)制、神經(jīng)血管系統(tǒng)偶聯(lián)和突觸的傳遞[24,25],在神經(jīng)細(xì)胞存活、遷移以及神經(jīng)干細(xì)胞增殖中也起到重要的作用[26]。研究發(fā)現(xiàn),AQP4作為星形膠質(zhì)細(xì)胞表面主要的水通道蛋白,維持了腦、血管和腦室之間水的平衡,由此可見,AQP4對(duì)腦的水含量具有調(diào)節(jié)作用。當(dāng)滲透壓減低時(shí)會(huì)激活星形膠質(zhì)細(xì)胞 Ca2信號(hào)系統(tǒng),進(jìn)而對(duì)腦水含量的平衡進(jìn)行調(diào)節(jié),Thrane等研究發(fā)現(xiàn)[27],當(dāng)AQP4數(shù)量減少時(shí),會(huì)降低此信號(hào)系統(tǒng)的調(diào)節(jié)能力,導(dǎo)致顱內(nèi)水含量的失衡。AQP4對(duì)腦缺血后神經(jīng)遞質(zhì)的調(diào)節(jié)也有一定的影響,例如,小鼠在AQP4基因缺乏時(shí),谷氨酸運(yùn)轉(zhuǎn)體-1( glutamate transporter-1,GLT-1)的數(shù)量將明顯減少[28,29],這會(huì)導(dǎo)致細(xì)胞外谷氨酸進(jìn)入細(xì)胞內(nèi)的數(shù)量減少而聚集在細(xì)胞外,谷氨酸作為大多數(shù)突觸的興奮性神經(jīng)遞質(zhì),會(huì)加快神經(jīng)細(xì)胞死亡。此外,AOP4參與了星型細(xì)胞的遷移及膠質(zhì)瘢痕的形成,AQP4有助于增加細(xì)胞間黏附性,進(jìn)而形成新的屏障和膠質(zhì)[30],以往研究發(fā)現(xiàn) AQP4減少時(shí),會(huì)導(dǎo)致星形膠質(zhì)細(xì)胞的數(shù)量減少,并影響神經(jīng)細(xì)胞的存活及再生[31]。細(xì)胞內(nèi)流鉀通道蛋白 Kir4.1在中樞神經(jīng)系統(tǒng)膠質(zhì)細(xì)胞內(nèi)外鉀離子調(diào)節(jié)中起到重要的作用,這也是對(duì)神經(jīng)信號(hào)的傳導(dǎo)和細(xì)胞膜的興奮進(jìn)行調(diào)控的途徑之一[32]。研究證實(shí)[33],AQP4與Kir 4.1在功能上相偶聯(lián),共同調(diào)控腦組織中水分子及K+的正常運(yùn)轉(zhuǎn),以維持內(nèi)環(huán)境的穩(wěn)定。AQP4缺失后,同時(shí)也會(huì)引起K+在細(xì)胞內(nèi)外不均衡分配,這可能是AQO4破壞后星型膠質(zhì)細(xì)胞腫脹的因素之一。
4.1 NMO-IgG破壞血腦屏障 NMO-IgG存在于星形膠質(zhì)細(xì)胞足突中,主要分布于中樞神經(jīng)系統(tǒng)微血管、Virchow-Robin間隙、軟腦膜及軟腦膜下,實(shí)驗(yàn)發(fā)現(xiàn),NMO-IgG可特異性識(shí)別AQP4,二者結(jié)合后就會(huì)迅速從細(xì)胞表面轉(zhuǎn)入細(xì)胞核內(nèi)的囊泡中,轉(zhuǎn)變?yōu)橛缀藘?nèi)體抗原1( early endosome antigen1,EEA1),然后可能再降解,導(dǎo)致AQP4減少。AQP4的破壞會(huì)影響細(xì)胞對(duì)水分的吸收,導(dǎo)致腦水含量回收量明顯降低,而影響患者的預(yù)后。AQP4破壞后,血腦屏障通透度增高,從而發(fā)生中樞神經(jīng)系統(tǒng)病灶內(nèi)的水腫。是NMOSD患者發(fā)生病灶內(nèi)水腫的機(jī)制之一。
4.2 NMO-IgG介導(dǎo)血管周圍炎性浸潤 當(dāng)NMO-IgG與 AQP4特異性結(jié)合后,會(huì)激活補(bǔ)體介導(dǎo)的細(xì)胞毒途徑,出現(xiàn)粒細(xì)胞浸潤,導(dǎo)致血管及實(shí)質(zhì)損傷,并破壞血腦屏障,大部分學(xué)者認(rèn)為這是 NMO的主要發(fā)病機(jī)制。研究者在NMOSD患者病灶中可見血管周圍有大量免疫球蛋白和激活的補(bǔ)體復(fù)合物的沉積,因此部分學(xué)者認(rèn)為NMOSD是以體液免疫為主的脫髓鞘疾病[34]。Lidia等[35]在研究細(xì)胞毒性時(shí)發(fā)現(xiàn) NMOSD患者的血清中可檢測(cè)到大量的乳酸脫氫酶( lactate dehydrogenase,LDH),LDH的產(chǎn)生與補(bǔ)體的激活密不可分,這表明星形膠質(zhì)細(xì)胞的損傷是 NMO-IgG與補(bǔ)體的激活同時(shí)參與的。此外,自然殺傷細(xì)胞在NMOSD星型細(xì)胞的損害中起到一定作用[36]。
綜上所述,NMO-IgG作為NMODS的特異性抗體,診斷NMODS的敏感性和特異性在美國分別為73%和91%,日本分別為58%和100%,對(duì)NMODS有重要的診斷價(jià)值。AQP4作為NMO-IgG攻擊的主要靶點(diǎn),它的缺失在 NMODS的發(fā)病機(jī)制中占據(jù)重要成分。通過綜述可進(jìn)一步了解NMODS的發(fā)生機(jī)制,有助于臨床工作的精準(zhǔn)診療,也為NMODS進(jìn)一步的研究提供一定理論依據(jù)。
[1]牛會(huì)叢,張星虎. 視神經(jīng)脊髓炎水通道蛋白4抗體分布特征及其與腦脊液寡克隆區(qū)帶間關(guān)系的臨床研究[J]. 中國現(xiàn)代神經(jīng)疾病雜志,2014,14(9):806-811.
[2]Lennon VA,Wingerchuk DM,Kryzer TJ,et al. A serum autoantibody marker of neuromyelitis opticadistinction from multiple sclerosis[J]. Lancet,2004,364:2106-2112.
[3]Takahashi T,F(xiàn)ujihara K,Nakashima I,et al. Anti-aquaporin-4 antibody is involved in the pathogenesis of NMOa study on antibody titre [J]. Brain,2007,130:1235-1243.
[4]Wingerchuk DM,Lennon VA,Lucchinetti CF,et al. The spectrum of neuromyelitis optica[J]. Lancet Neurol,2007,6:805-815.
[5]Sellner J,Boggild M,Clanet M,et al. EFNS guidelines on diagnosis and management of neuromyelitis optica[J]. Eur J Neurol,2010,17(8):1019-1032.
[6]Wingerchuk DM,Banwell B,Bennett JL,et al. International consensus diagnostic criteria for neuromyelitis opticaspectrum disorders[J]. Neurology,2015,85(2):177-189.
[7]Kuroiwa Y,Igata A,Itahara K,et al. Nationwide survey of multiple sclerosis in Japan. Clinical analysis of 1,084 cases[J]. Neurology,1975,25:845-851.
[8]Kira J,Yamasaki K,Horiuchi I,et al. Changes in the clinical phenotypes of multiple sclerosis during the past 50 years in Japan [J]. J Neurol Sci,1999,16:653-657.
[9]Kira J. Multiple sclerosis in the Japanese population[J]. Lancet Neurol,2003,2:117-127.
[10]Lennon VA,Kryzer TJ,Pittock SJ,et al. IgG marker of optic spinal multiples clerosisbinds to the aquaporin-4 water channel[J]. J Exp Med,2005,20:2473-2477.
[11]Pittock SJ,Lennon VA,de Seze J,et al. Neuromyelitis opticaandnon organ specific autoimmunity [J]. Arch Neurol,2008,65:78-83.
[12]Haase CG,Schmidt S. Detection of brain specific autoantibodies to myelin oligodendrocyte glycoprotein,S100beta and myelin basic protein in patients with Devic’s neuromyelitis optica[J]. Neurosci Lett,2001,307:131-133.
[13]Correale J,F(xiàn)iol M. Activation of humor alimmunity and eosinophilsin Neuromyelitis optica[J]. Neurology,2004,63:2363-2370.
[14]Lalive PH,Menge T,Barman I,et al. Identification of new serum autoantibodies inneuromyelitis optica using proteinmicroarrays[J]. Neurology,2006,67:176-177.
[15]Papadopoulos MC,Verkman AS. Aquaporin water channels in the nervous system[J]. Nat Rev Neurosci,2013,14 (4):265-277.
[16]Nagelhus EA,Ottersen OP. Physiological roles of aquaporin-4 in brain[J]. Physiol Rev,2013,93(4):1543-1562.
[17]Crane JM,Lam C,Rossi A,et al. Binding affinity and specificity of neuromyelitis optica autoantibodies to aquaporin-4 M1/M23 isoforms and orthogonal arrays[J]. The Journal of Biological Chemistry,2011,286(18):16516-16524.
[18]Misu T,F(xiàn)ujihara K,Kakita A,et al. Loss of aquaporin 4 inlesions of neuromyelitis opticadistinction from multiplesclerosis[J]. Brain,2007,130:1224-1234.
[19]Sinclair C,Kirk J,Herron B,et al. Absenceo faquaporin 4 expressionin Lesions of neuromyelitis Optica butincreased expression in multiple sclerosis lesions and normal appearing white matter[J]. Acta Neuropathol,2007,113:187-194.
[20]Nielsen S,Nagelhus EA,Amiry-Moghaddam M,et al. Specialized membrane domains for water transport in glial cellshigh resolution immunogold cytochemistry of aquaporin?4 in rat brain[J]. J Neurosci,1997,17:171-180.
[21]Apiwattanakul M,Popescu BF,Matiello M,et al. Intractable vomiting as the initial presentation of neuromyelitis optica[J]. Ann Neurol,2010,68:757-761.
[22]Popescu BF,Lennon VA,Parisi JE,et al. Neuromyelitis optica unique area postrema lesionsnausea,vomiting,and pathogenic implications[J]. Neurology,2011,76:1229-1237.
[23]Lennon VA,Wingerchuk DM,Kryzer TJ,et al. A serum autoantibody marker of neuromyelitis opticadistinction from multiple sclerosis[J]. Lancet,2004,364:2106-2112.
[24]Petzold GC,Murthy VN. Role of astrocytes in neurovascular coupling[J]. Neuron,2011,71(5) :782-797.
[25]Nash B,Loannidou K,Barnett SC. Astrocyte phenotypes and their relationship to myelination[J]. J Anat,2011,219(1):44-52.
[26]Sild M,Ruthazer ES. Radial gliaprogenitor,pathway,and partner[J]. Neuroscientist,2011,17(3):288-302.
[27]Thrane AS,Rappold PM,F(xiàn)ujita T,et al. Critical role of aquaporin-4 ( AQP4) in astrocyte Ca2+signaling eventselicited by cerebral edema[J]. Proc Natl Acad Sci USA,2011,108(2):846-851.
[28]Li YK,Wang F,Wang W,et al. Aquaporin-4 deficiency impairs synaptic plasticity and associative fear memory in the lateral amygdalaInvolvement of downregulation of glutamate transporter-1 expression[J]. Neuropsychopharmacology,2012,37(8):1867-1878.
[29]Yan HT,Wu N,Lu XQ,et al. Aquaporin-4 deficiency attenuates opioid dependence through suppressing glutamate transporter-1 down-regulation and maintaining glutamate homeostasis[J]. CNS Neurosci Ther,2013,19(1):12-19.
[30]Badaut J,Ashwal S,Obenaus A. Aquaporinsin cerebrovascular diseasea target for treatment of brain edema[J]? Cerebrovas Dis,2011,31(6):521-531.
[31]Liu L,Lu Y,Hu G,et al. Aquaporin-4 deficiency exacerbates brain oxidative damage and memory deficits induced by long-term ovarian hormone deprivation and D-galactose injection[J]. Int J Neuropsychopharmacol,2012,15(1):55-68.
[32]Stephan J. Kir4.1 channelsmediate a depolarization of hippocampal astrocytes under hyperammonemic conditions in situ[J]. GLIA,2012,60(6):965-978.
[33]Amiry-Moghaddam M,Williaxnson A,palombra M,et al. Delayed K+clearance associated with aquaporin-4 mislocalizationphenotypic defects in brains of alphasyntrphinnullmice[J]. Proe Natl Acad Sci USA,2003,100(23):13615-13620.
[34]Crane JM,Verkman AS. Determinants of aquaporin-4 assembly in orthogonal arrays revealed by live cell single molecule fluorescence imaging[J]. Journal of Cell Science,2009,122(6):813-821.
[35]Sabater L,Giralt A,Boronat A,et al. Cytotoxic effect of neuromyelitis optica antibody (NMO-IgG) to astrocytesAn in vitro study[J]. Journal of Neuroimmunology,2009,215(1-2):31-35.
[36]Vincent T,Saikali P,Cayrol R,et al. Functional consequences of neuromyelitis-optica-IgG astrocyte interactions on blood-brain barrier permeability and granulocyte recruitment[J]. J Immunol,2008,181:5730-5737.
1003-2754(2017)11-1045-02
R744.5+2
2017-07-11;
2017-10-23
(吉林大學(xué)白求恩第一醫(yī)院二部神經(jīng)內(nèi)科,吉林 長春 130031)
劉晶瑤,E-mail:xiaohua208@sina.com