王濤, 王人顥
綜述與講座
表皮生長(zhǎng)因子受體與肝癌發(fā)病機(jī)制及靶向治療的研究進(jìn)展
王濤, 王人顥
表皮生長(zhǎng)因子受體(epidermal growth factor receptor,EGFR)是指跨膜酪氨酸激酶受體,包括ErbB1/HER1,ErbB2 /HER2、ErbB3/HER3和ErbB4/HER4。通過(guò)結(jié)合細(xì)胞表面受體,表皮生長(zhǎng)因子激活信號(hào)轉(zhuǎn)導(dǎo)途徑,包括PI3K/AKT、RAS/RK和JAK/STAT通路,從而抑制細(xì)胞死亡。EGFR的高表達(dá)在肝癌的發(fā)生、發(fā)展中起到重要的作用,并加劇了肝癌的侵襲性,靶向抑制EGFR可降低癌細(xì)胞的侵襲性,治療肝癌。作者闡述了EGFR與肝癌的發(fā)生發(fā)展、靶向治療相關(guān)的研究與進(jìn)展。
受體,表皮生長(zhǎng)因子; 肝腫瘤; 分子靶向治療; 信號(hào)轉(zhuǎn)導(dǎo); 發(fā)病機(jī)制
肝癌是世界上發(fā)病率較高的腫瘤之一,在癌癥死亡率中位居第二,每年大約有75萬(wàn)人死于肝癌,其中一半來(lái)自中國(guó)[1]。同時(shí)肝癌也是我國(guó)男性癌癥死亡的第二大原因,女性癌癥死亡的第五大原因[2]。目前手術(shù)切除和肝移植是治療肝癌最好的方法,但即使肝癌獲得根治性切除術(shù),5年內(nèi)仍有60%~70%的患者出現(xiàn)復(fù)發(fā)或轉(zhuǎn)移[3-4]。常規(guī)化療治療肝癌的效果也不理想[5]。復(fù)發(fā)和轉(zhuǎn)移仍然是治療肝癌面臨的難題。
表皮生長(zhǎng)因子受體(epidermal growth factor receptor,EGFR)是指跨膜酪氨酸激酶受體,包括ErbB1/HER1,ErbB2/HER2、ErbB3/HER3和ErbB4/HER4[6-7]。其受體的配體包括轉(zhuǎn)化生長(zhǎng)因子(TGF-α)、雙調(diào)蛋白(AR)、表皮調(diào)節(jié)素(EREG)、β細(xì)胞素(BTC)、肝素結(jié)合表皮生長(zhǎng)因子(EGF)、表皮生長(zhǎng)因子(EGF)[8]。配體和受體結(jié)合后,便形成同質(zhì)異構(gòu)二聚體[9]。通過(guò)C-末端結(jié)構(gòu)域的轉(zhuǎn)磷酸作用,使蛋白激酶結(jié)構(gòu)域激活[10]。這個(gè)過(guò)程會(huì)招募更多蛋白,激活幾個(gè)信號(hào)通路,通過(guò)ras-raf-mek-erk通路和信號(hào)轉(zhuǎn)導(dǎo)轉(zhuǎn)錄激活因子(STAT),從而控制細(xì)胞的增殖和分化;并通過(guò)PI3K-Akt-mTOR通路,控制細(xì)胞的生存與死亡[11]。在上皮、間充質(zhì)和神經(jīng)元起源的各種組織中,都有EGFR的存在。這些受體酪氨酸激酶在細(xì)胞增殖、分化和器官發(fā)育和修復(fù)過(guò)程中起著重要作用,并參與了血管生成、細(xì)胞運(yùn)動(dòng)和侵襲,從而在惡性腫瘤中起著關(guān)鍵作用[12]。
肝癌的形成是一個(gè)復(fù)雜的過(guò)程,多基因改變破壞正常肝細(xì)胞,通過(guò)細(xì)胞增殖、凋亡、基因組完整性維護(hù),導(dǎo)致炎癥、壞死和再生,最終肝細(xì)胞惡變,發(fā)展為肝癌[13]。EGFR在肝臟的正常生長(zhǎng)中,可促進(jìn)肝組織再生。Natarajan 等[14]通過(guò)敲除小鼠肝細(xì)胞中EGFR,發(fā)現(xiàn)小鼠的肝臟生長(zhǎng)明顯減慢,EGFR高表達(dá)的肝癌患者腫瘤內(nèi)皮細(xì)胞組織中微血管密度增高,在腫瘤血管內(nèi)皮細(xì)胞中,EGFR的表達(dá)與腫瘤相關(guān)的β-細(xì)胞素平行增加,提示旁分泌可能影響腫瘤的發(fā)展[15]。然而,目前對(duì)正常肝臟內(nèi)皮細(xì)胞EGFR的表達(dá)情況尚不清楚。肝癌患者中超過(guò)50%同時(shí)伴有乙肝病毒(HBV)感染。有研究發(fā)現(xiàn),乙肝病毒蛋白(HBX)通過(guò)上調(diào)微小RNA-7的復(fù)制,間接下調(diào)了EGFR在肝癌中的表達(dá),從而降低了這些細(xì)胞的生長(zhǎng)速率;當(dāng)EGFR表達(dá)恢復(fù)正常,細(xì)胞生長(zhǎng)速度也恢復(fù)正常[16]。在HBV相關(guān)肝癌組織中,ErbB3高表達(dá)的細(xì)胞侵襲、遷移能力增強(qiáng),提示ErbB3蛋白與HBV相關(guān)肝癌的發(fā)生、發(fā)展有關(guān)[17]。除了肝癌組織,在肝硬化組織中也發(fā)現(xiàn)EGFR過(guò)表達(dá),EGFR高表達(dá)加速了細(xì)胞的癌變,并顯著影響患者預(yù)后[18-20]。Neo 等[21]利用臨床標(biāo)本采用微陣列基因分析了肝癌及癌旁組織中多種分子的基因水平,發(fā)現(xiàn)ErbB3在肝癌組織中的水平明顯升高;同時(shí),ErbB1或EebB2卻伴隨ErbB3持續(xù)升高。我們前期研究發(fā)現(xiàn),乙肝病毒X蛋白(HBx)與神經(jīng)調(diào)節(jié)受體降解蛋白1(Nrdp1)結(jié)合,致使Nrdp1穩(wěn)定性減弱,表達(dá)量降低,減少了Nrdp1對(duì)ErbB3的泛素化,使ErbB3的表達(dá)增加[22]。除了乙肝病毒,丙肝病毒感染者同樣伴隨EGFR的高表達(dá)。有研究證實(shí),在50%的丙肝患者中發(fā)現(xiàn)EGFR高表達(dá)[23]。HCV感染可導(dǎo)致肝細(xì)胞中雙調(diào)蛋白(Amphiregulin,AR)表達(dá)增加,AR通過(guò)激活MAPK-ERK途徑抑制HCV感染細(xì)胞的死亡,并促進(jìn)肝硬化與肝癌發(fā)展[24]。另外,膽汁酸可通過(guò)激活EGFR和ERK通路促進(jìn)HCV的復(fù)制;同時(shí),抑制EGFR的表達(dá)就可抑制HCV的復(fù)制[25]。這些說(shuō)明了EGFR與肝炎病毒可能以共生的關(guān)系存在。在肝炎病毒感染后,EGFR表達(dá)上調(diào)以保護(hù)細(xì)胞,抑制其死亡,進(jìn)而加速了細(xì)胞的癌變。既往的研究發(fā)現(xiàn),EGFR有助于肝癌細(xì)胞的DNA合成、細(xì)胞再生、腫瘤生長(zhǎng)和發(fā)展[26]。同時(shí),EGFR可活化白細(xì)胞,釋放細(xì)胞因子,改變腫瘤內(nèi)環(huán)境,并通過(guò)單核細(xì)胞激活STAT途徑促進(jìn)腫瘤形成[27-28]。EGFR促進(jìn)了腫瘤炎癥環(huán)境的形成,同時(shí)在癌細(xì)胞從低侵襲性向高侵襲性的發(fā)展中起著重要作用;相對(duì)于侵襲性高的癌細(xì)胞,侵襲性低的細(xì)胞對(duì)EGFR的刺激更敏感[29]。很明顯,在腫瘤早期通過(guò)抑制RGFR的表達(dá)可減緩肝癌的發(fā)展。因此,建議EGFR靶向抑制劑治療肝癌的同時(shí),應(yīng)同時(shí)控制病毒的復(fù)制,抑制炎癥發(fā)展。
目前在臨床上,多激酶抑制劑索拉菲尼是治療晚期肝癌患者的唯一推薦藥物,即使通過(guò)藥物治療,晚期肝癌患者中位生存期僅能延長(zhǎng)3~6個(gè)月[30-31]。因此需要開(kāi)發(fā)新的分子靶向藥物,以提高肝癌的療效。由于EGFR在癌癥中發(fā)生了改變,所以通過(guò)靶向治療來(lái)抑制EGFR的激活,從而治療肝癌患者。目前已有兩種不同作用機(jī)制的藥物用于肝癌的治療,一是通過(guò)與ATP競(jìng)爭(zhēng)從而抑制EGFR表達(dá)的酪氨酸激酶抑制劑,如吉非替尼和拉帕替尼等;其次是EGFR靶向抗體,通過(guò)與受體結(jié)合形成二聚化,抑制配體受體結(jié)合,最終誘導(dǎo)受體下調(diào),如西妥昔單抗等[32-34]。EGFR酪氨酸激酶抑制劑,如厄洛替尼對(duì)治療肝癌有較好效果[35]。對(duì)大鼠的研究也表明,在N-二乙基亞硝胺(DEN)誘導(dǎo)的肝損傷模型中,吉非替尼能抑制肝硬化發(fā)展為肝癌[36]。然而通過(guò)療效的檢測(cè),發(fā)現(xiàn)吉非替尼在臨床二期試驗(yàn)中效果較差[37]。拉帕替尼,ErbB1和ErbB2雙抑制劑,也沒(méi)有獲得較好的效果[38]。西妥昔單抗僅在聯(lián)合吉西他濱和奧沙利鉑治療晚期肝癌初步研究中獲得一定療效[39]。
目前已在多種癌癥中檢測(cè)到ErbB3過(guò)表達(dá),包括乳腺癌、卵巢癌、前列腺癌、結(jié)腸癌等[40]。Sithanandam 等[40]發(fā)現(xiàn),哺乳動(dòng)物細(xì)胞系過(guò)量表達(dá)ErbB3,如中國(guó)倉(cāng)鼠卵巢細(xì)胞,具有癌細(xì)胞的特征,如增殖和轉(zhuǎn)移等,提示抑制ErbB3的過(guò)表達(dá)可能抑制癌細(xì)胞的增殖。在使用AVE1642抑制胰島素樣生長(zhǎng)因子(IGF)治療肝癌的過(guò)程中,ErbB3的表達(dá)反而會(huì)增強(qiáng),從而限制AVE1642的作用,同時(shí)使用吉非替尼抑制ErbB3的表達(dá)后,抗腫瘤的效果明顯增強(qiáng)[41];這樣看來(lái),ErbB3更似以合作者的身份參與其中??梢哉J(rèn)為,ErbB3過(guò)表達(dá)或擴(kuò)增可能是腫瘤靶向治療的生物標(biāo)志物,但是目前沒(méi)有標(biāo)準(zhǔn)的測(cè)量ErbB3高表達(dá)的方法。ErbB3以前被認(rèn)為缺少內(nèi)在的酶激性,然而最近的研究表明,ErbB3可通過(guò)與其他的ErbB分子相互作用而激活[42]。相對(duì)于其他ErbB受體由配體單獨(dú)激活,ErbB3通過(guò)與其他二聚體形成一個(gè)相互物理作用而激活。ErbB3的高表達(dá)和異常激活,常出現(xiàn)于神經(jīng)膠質(zhì)瘤、肝癌和肺癌等中[22,43-44]。Chen等[45]研究發(fā)現(xiàn),HBX可通過(guò)轉(zhuǎn)錄水平上調(diào)ErbB3的表達(dá)進(jìn)而增加拉帕替尼對(duì)肝癌細(xì)胞的藥物敏感性,提示通過(guò)抑制ErbB3可達(dá)到靶向治療肝癌的目的。
目前治療肝癌的靶向抑制劑索拉菲尼仍有復(fù)發(fā)率高、預(yù)后差等缺點(diǎn)。隨著吉非替尼、埃羅替尼和拉帕替尼3種針對(duì)ErbB3的酪氨酸激酶抑制劑在臨床上成功治療肺癌和乳腺癌,期待未來(lái)也能成功治療肝癌。預(yù)期肝癌靶向治療分子的研究將向兩個(gè)方面展開(kāi):一方面,要建立標(biāo)準(zhǔn)化檢測(cè)方法;另一方面,開(kāi)展前瞻性臨床研究,證實(shí)其臨床的指導(dǎo)意義和實(shí)用價(jià)值。另外,還要考慮藥物耐藥性問(wèn)題。未來(lái)的靶向治療有望在治療前預(yù)先采用特異度、敏感度高的預(yù)測(cè)指標(biāo)對(duì)患者進(jìn)行檢測(cè),篩選出適合靶向治療的優(yōu)勢(shì)人群,制定最佳的治療方案,或聯(lián)合使用多種激酶抑制劑使患者獲益最大,同時(shí)降低醫(yī)療費(fèi)用,避免延誤治療時(shí)機(jī)和不必要的藥物毒副作用。
[1] Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012[J]. CA Cancer J Clin, 2015,65(2):87-108.
[2] Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016,66(2):115-132.
[3] Marquardt JU, Thorgeirsson SS. SnapShot: Hepatocellular carcinoma[J]. Cancer Cell, 2014,25(4):550.e1.
[4] Shariff MI, Cox IJ, Gomaa AI, et al. Hepatocellular carcinoma: current trends in worldwide epidemiology, risk factors, diagnosis and therapeutics[J]. Expert Rev Gastroenterol Hepatol, 2009,3(4):353-367.
[5] Deng GL, Zeng S, Shen H. Chemotherapy and target therapy for hepatocellular carcinoma: New advances and challenges[J]. World J Hepatol, 2015,7(5):787-798.
[6] Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation[J]. Cell, 2011,144(5):646-674.
[7] Jutten B, Rouschop KM. EGFR signaling and autophagy dependence for growth, survival, and therapy resistance[J]. Cell Cycle, 2014,13(1):42-51.
[8] Freed DM,Bessman NJ,Kiyatkin A,et al.EGFR Ligands Differentially Stabilize Receptor Dimers to Specify Signaling Kinetics[J]. Cell. 2017 Oct 4. pii: S0092-8674(17)31066-8. doi: 10.1016/j.cell.2017.09.017 .
[9] Henson ES, Gibson SB. Surviving cell death through epidermal growth factor (EGF) signal transduction pathways: implications for cancer therapy[J]. Cell Signal, 2006,18(12):2089-2097.
[10] Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors[J]. Nat Rev Cancer, 2005,5(5):341-354.
[11] Lindsey S, Langhans SA. Epidermal growth factor signaling in transformed cells[J]. Int Rev Cell Mol Biol, 2015,314:1-41.
[12] Normanno N, Bianco C, Strizzi L, et al. The ErbB receptors and their ligands in cancer: an overview[J]. Curr Drug Targets, 2005,6(3):243-257.
[13] Borzio M, Fargion S, Borzio F, et al. Impact of large regenerative, low grade and high grade dysplastic nodules in hepatocellular carcinoma development[J]. J Hepatol, 2003,39(2):208-214.
[14] Natarajan A, Wagner B, Sibilia M. The EGF receptor is required for efficient liver regeneration[J]. Proc Natl Acad Sci U S A, 2007,104(43):17081-17086.
[15] Moon WS, Park HS, Yu KH, et al. Expression of betacellulin and epidermal growth factor receptor in hepatocellular carcinoma: implications for angiogenesis[J]. Hum Pathol, 2006,37(10):1324-1332.
[16] Chen YJ, Chien PH, Chen WS, et al. Hepatitis B Virus-Encoded X Protein Downregulates EGFR Expression via Inducing MicroRNA-7 in Hepatocellular Carcinoma Cells[J]. Evid Based Complement Alternat Med, 2013,2013(2):682380.
[17] 曹寬, 鮑仲明, 周新宇, 等. 乙型肝炎病毒X蛋白對(duì)肝癌細(xì)胞侵襲與遷移能力的作用及機(jī)制[J].中華消化外科雜志,2017,16(2):177-182.
[18] 蔣艷霞.原發(fā)性肝細(xì)胞癌中CD147、Cx43、EGFR的表達(dá)及意義[D].青島大學(xué),2012.DOI:10.7666/d.y2087568.
[19] Borlak J, Meier T, Halter R, et al. Epidermal growth factor-induced hepatocellular carcinoma: gene expression profiles in precursor lesions, early stage and solitary tumours[J]. Oncogene, 2005,24(11):1809-1819.
[20] Hoshida Y, Villanueva A, Kobayashi M, et al. Gene expression in fixed tissues and outcome in hepatocellular carcinoma[J]. N Engl J Med, 2008,359(19):1995-2004.
[21] Neo SY, Leow CK, Vega VB, et al. Identification of discriminators of hepatoma by gene expression profiling using a minimal dataset approach[J]. Hepatology, 2004,39(4):944-953.
[22] Cao K, Gong H, Qiu Z, et al. Hepatitis B virus X protein reduces the stability of Nrdp1 to up-regulate ErbB3 in hepatocellular carcinoma cells[J]. Tumour Biol, 2016,37(8):10375-10382.
[23] Badawy AA, El-Hindawi A, Hammam O, et al. Impact of epidermal growth factor receptor and transforming growth factor-αon hepatitis C virus-induced hepatocarcinogenesis[J].APMIS,2015,123(10):823-831.
[24] Pei R, Chen H, Lu L, et al. Hepatitis C virus infection induces the expression of amphiregulin, a factor related to the activation of cellular survival pathways and required for efficient viral assembly[J]. J Gen Virol, 2011,92(Pt 10):2237-2248.
[25] Patton JB, George D, Chang KO. Bile acids promote HCV replication through the EGFR/ERK pathway in replicon-harboring cells[J]. Intervirology, 2011,54(6):339-348.
[26] Balkwill FR, Mantovani A. Cancer-related inflammation: common themes and therapeutic opportunities[J]. Semin Cancer Biol, 2012,22(1):33-40.
[27] Shirabe K, Mano Y, Muto J, et al. Role of tumor-associated macrophages in the progression of hepatocellular carcinoma[J]. Surg Today, 2012,42(1):1-7.
[28] Fan QW,Cheng CK,Gustafson WC,et al.EGFR phosphorylates tumor-derived EGFRvIII driving STAT3/5 and progression in glioblastoma[J].Cancer cell,2013,24(4):438-449.
[29] Huang P, Xu X, Wang L, et al. The role of EGF-EGFR signalling pathway in hepatocellular carcinoma inflammatory microenvironment[J]. J Cell Mol Med, 2014,18(2):218-230.
[30] Dekervel J, van Pelt J, Verslype C. Advanced unresectable hepatocellular carcinoma: new biologics as fresh ammunition or clues to disease understanding[J]. Curr Opin Oncol, 2013,25(4):409-416.
[31] 李湘竑, 鐘克波, 劉延, 等. 索拉菲尼治療肝癌肝移植術(shù)后腫瘤復(fù)發(fā)患者的療效及安全性分析[J].南方醫(yī)科大學(xué)學(xué)報(bào),2011,31(9):1608-1610.
[32] Avila MA, Berasain C, Sangro B, et al. New therapies for hepatocellular carcinoma[J]. Oncogene, 2006,25(27):3866-3884.
[33] Llovet JM, Villanueva A, Lachenmayer A, et al. Advances in targeted therapies for hepatocellular carcinoma in the genomic era[J]. Nat Rev Clin Oncol, 2015,12(8):436.
[34] Tebbutt N, Pedersen MW, Johns TG. Targeting the ERBB family in cancer: couples therapy[J]. Nat Rev Cancer, 2013,13(9):663-673.
[35] Thomas MB, Chadha R, Glover K, et al. Phase 2 study of erlotinib in patients with unresectable hepatocellular carcinoma[J]. Cancer, 2007,110(5):1059-1067.
[36] Schiffer E, Housset C, Cacheux W, et al. Gefitinib, an EGFR inhibitor, prevents hepatocellular carcinoma development in the rat liver with cirrhosis[J]. Hepatology, 2005,41(2):307-314.
[37] Zhu AX. New agents on the horizon in hepatocellular carcinoma[J]. Ther Adv Med Oncol, 2013,5(1):41-50.
[38] Ramanathan RK, Belani CP, Singh DA, et al. A phase II study of lapatinib in patients with advanced biliary tree and hepatocellular cancer[J]. Cancer Chemother Pharmacol, 2009,64(4):777-783.
[39] Asnacios A, Fartoux L, Romano O, et al. Gemcitabine plus oxaliplatin (GEMOX) combined with cetuximab in patients with progressive advanced stage hepatocellular carcinoma: results of a multicenter phase 2 study[J]. Cancer, 2008,112(12):2733-2739.
[40] Kawakami H.HER3 and its Ligand, Heregulin, as Targets for Cancer Therapy[J].Recent patents on anti-cancer drug discovery,2016,11(3):267-274.
[41] Desbois-Mouthon C, Baron A, Blivet-Van EMJ, et al. Insulin-like growth factor-1 receptor inhibition induces a resistance mechanism via the epidermal growth factor receptor/HER3/AKT signaling pathway: rational basis for cotargeting insulin-like growth factor-1 receptor and epidermal growth factor receptor in hepatocellular carcinoma[J]. Clin Cancer Res, 2009,15(17):5445-5456.
[42] Steinkamp MP, Low-Nam ST, Yang S, et al. erbB3 is an active tyrosine kinase capable of homo- and heterointeractions[J]. Mol Cell Biol, 2014,34(6):965-977.
[43] Shi H, Gong H, Cao K, et al. Nrdp1-mediated ErbB3 degradation inhibits glioma cell migration and invasion by reducing cytoplasmic localization of p27(Kip1)[J]. J Neurooncol, 2015,124(3):357-364.
[44] Mendell J,Freeman DJ,Feng W,et al.Clinical Translation and Validation of a Predictive Biomarker for Patritumab, an Anti-human Epidermal Growth Factor Receptor 3 (HER3) Monoclonal Antibody, in Patients With Advanced Non-small Cell LungCancer[J].EBioMedicine,2015,2(3):264-271.
[45] Chen JY, Chen YJ, Yen CJ, et al. HBx sensitizes hepatocellular carcinoma cells to lapatinib by up-regulating ErbB3[J]. Oncotarget, 2016,7(1):473-489.
221000 江蘇 徐州, 徐州醫(yī)科大學(xué) 研究生學(xué)院臨床醫(yī)學(xué)系(王濤); 221000 江蘇 徐州, 徐州醫(yī)科大學(xué)附屬醫(yī)院 肝膽外科(王人顥)
王人顥,Email:wangrenhao@126.com
10.3969/j.issn.1674-4136.2017.05.016
1674-4136(2017)05-0327-04
2017-08-23] [本文編輯:欽嫣]