孫永明,張連振,李忠龍(哈爾濱工業(yè)大學(xué)交通科學(xué)與工程學(xué)院,黑龍江哈爾濱150090)
?
索夾對(duì)自錨懸索橋成橋狀態(tài)影響分析
孫永明,張連振,李忠龍
(哈爾濱工業(yè)大學(xué)交通科學(xué)與工程學(xué)院,黑龍江哈爾濱150090)
基于有限單元法(FEMC)比較分析了索夾對(duì)自錨懸索橋成橋狀態(tài)的影響.索夾能夠提高中跨主纜的成橋線形,在維持索長(zhǎng)不變的情況下,各吊桿的成橋索力會(huì)有所增大,若使各吊桿均達(dá)到設(shè)計(jì)成橋索力值,則需增大各吊桿的無應(yīng)力長(zhǎng)度值.基于計(jì)入索夾影響的FEMC模型分別討論了索夾長(zhǎng)度、截面面積和慣性矩等參數(shù)對(duì)結(jié)構(gòu)成橋狀態(tài)的影響,并且建立了根據(jù)索夾長(zhǎng)度比和面積比計(jì)算得到的主纜中跨跨中控制點(diǎn)成橋高程提升量和吊桿索力平均增量值的簡(jiǎn)化計(jì)算公式.經(jīng)工程實(shí)例驗(yàn)證,提出的索夾模型計(jì)算結(jié)果與結(jié)構(gòu)實(shí)際變形接近.
橋梁工程;自錨式懸索橋;索夾;成橋狀態(tài)
目前,已有關(guān)于建立自錨懸索橋整體有限元模型的理論和方法,尤其在分析吊桿成橋索力、主纜成橋線形及在計(jì)算吊桿和主纜的無應(yīng)力長(zhǎng)度等結(jié)構(gòu)參數(shù)時(shí),均是對(duì)吊桿和主纜的連接方式進(jìn)行了簡(jiǎn)化處理,直接將主纜和吊桿在其兩者中心線交點(diǎn)處相連,而不考慮索夾的影響[1-5].
如圖1所示,實(shí)際工程中的吊桿和主纜是通過索夾相連.吊桿的集中拉力在經(jīng)過索夾耳板傳遞后,變?yōu)樽饔迷谡麄€(gè)索夾長(zhǎng)度范圍內(nèi)的分散力.擰緊后的索夾具備一定的剛度,且由于主纜共同變形受力,使得主纜在索夾緊箍范圍內(nèi)的局部剛度得到了加強(qiáng).這些導(dǎo)致吊桿和主纜直接在其兩者中心線交點(diǎn)處相連的簡(jiǎn)化分析模型的計(jì)算值偏離實(shí)際結(jié)構(gòu)的真實(shí)變形值.目前,已有的關(guān)于索夾的文獻(xiàn)[6-7]大多是對(duì)索夾自身強(qiáng)度和抗滑性能的研究,而對(duì)索夾調(diào)整吊桿與主纜的傳力方式,增強(qiáng)主纜局部剛度,進(jìn)而影響主纜結(jié)構(gòu)狀態(tài)的研究文獻(xiàn)甚少.鑒于此,本文展開了關(guān)于索夾對(duì)自錨懸索橋成橋狀態(tài)影響的深入研究.
圖1 通過索夾連接的主纜和吊桿Fig.1 Main-cable and boom connected by cable clamp
如圖2所示,吉林市霧凇自錨懸索橋采用預(yù)應(yīng)力鋼筋混凝土主梁,其跨徑布置為35m+68m+150m+68m+35m=356m;該橋?yàn)殇摻罨炷灵T字形主塔,橋面以上建筑高度為31m;2根主纜分布在主梁兩側(cè),每根主纜均由37根索股組成,每根索股由127根φ5.1mm高強(qiáng)鋼絲組成,其在成橋狀態(tài)下的矢跨比為1/5;主索鞍半徑為3.5m;全橋共49對(duì)吊桿,吊桿在梁上的間距為5m.
圖2 五跨自錨懸索橋立面圖(單位:m)Fig.2 Five-span self-anchored suspension bridge(unit:m)
基于懸索橋分析程序PNAS[8]建立霧凇大橋平面有限元模型FEMR和FEMC.常規(guī)模型FEMR不考慮索夾的影響,其吊桿和主纜直接在兩者中心線交點(diǎn)處相連;而細(xì)化分析模型FEMC則考慮索夾的影響,采用獨(dú)立的234模型對(duì)索夾進(jìn)行模擬.
如圖3所示,采用2個(gè)梁?jiǎn)卧M索夾主體,考慮索夾的抗彎剛度和抗拉剛度;采用3個(gè)桿單元模擬耳板,將吊桿的集中拉力分散到整個(gè)索夾上.其中,4號(hào)節(jié)點(diǎn)表示吊桿上端銷軸中心,2號(hào)節(jié)點(diǎn)表示主纜與吊桿中心線交點(diǎn),而1號(hào)和3號(hào)節(jié)點(diǎn)分別為索夾上下口與主纜中心線交點(diǎn).索夾4號(hào)節(jié)點(diǎn)直接與吊桿相連,索夾1~3號(hào)節(jié)點(diǎn)均與主纜采取主從約束的方式相連,主纜為主,索夾為從.
圖3 索夾有限元模型Fig.3 Finite element model of cable clamp
2.1 考慮索夾影響的成橋狀態(tài)計(jì)算
已知主纜設(shè)計(jì)成橋線形C(D)C和吊桿設(shè)計(jì)成橋索力F(D)C.首先,基于FEMR模型對(duì)結(jié)構(gòu)進(jìn)行反復(fù)正裝分析[9],獲得主纜無應(yīng)力長(zhǎng)度S(R)0和吊桿無應(yīng)力長(zhǎng)度L(R)0.然后,將S(R)0和L(R)0代入FEMC模型內(nèi),分析主纜和吊桿在索夾影響下的成橋線形C(C)C和成橋索力F(C)C.
在具有相同結(jié)構(gòu)參數(shù)S(R)0和L(R)0的條件情況下,基于模型FEMR獲得的主纜成橋線形和吊桿成橋索力均能夠達(dá)到設(shè)計(jì)成橋值,即C(R)C=C(D)C和.但是,基于模型FEMC獲得的主纜成橋線形和吊桿成橋索力均會(huì)偏離設(shè)計(jì)成橋值,即和.如表1所示,計(jì)入索夾影響的主纜中跨跨中控制點(diǎn)成橋高程值C(C)C比設(shè)計(jì)成橋值C(D)C高48mm.如圖4所示,計(jì)入索夾影響的各吊桿成橋索力值F(C)C均大于設(shè)計(jì)成橋索力值F(D)C==2 100kN,位于主塔兩側(cè)的長(zhǎng)吊桿索力偏差可達(dá)168kN.
表1 索夾對(duì)主纜成橋線形影響Tab.1 Impact of cable clamp on the completed shape of __main cable
圖4 考慮索夾影響的各吊桿成橋索力值Fig.4 Completed force of boom considering the effect of cable clamp
繼續(xù)在模型FEMC中分析.將各吊桿索力F(C)C調(diào)整為設(shè)計(jì)成橋索力F(D)C,獲得各吊桿在索夾影響下的無應(yīng)力長(zhǎng)度值L(C)0,分析索夾對(duì)吊桿無應(yīng)力長(zhǎng)度的影響,ΔL(C)0=L(C)0-L(R)0.如圖5所示,計(jì)入索夾影響的各吊桿無應(yīng)力長(zhǎng)度值L(C)0均大于未考慮索夾影響的無應(yīng)力長(zhǎng)度值L(R)0,其位于中跨跨中的短吊桿無應(yīng)力長(zhǎng)度偏差可達(dá)41mm.
圖5 索夾對(duì)吊桿無應(yīng)力長(zhǎng)度影響Fig.5 Impact of cable clamp on the unstressed length of booms
上述分析結(jié)果表明,索夾能夠?qū)ψ藻^懸索橋的成橋狀態(tài)構(gòu)成影響,其影響量在實(shí)際工程中不容忽視,建議在自錨懸索橋分析模型中,尤其在計(jì)算吊桿和主纜的無應(yīng)力長(zhǎng)度時(shí),應(yīng)考慮索夾的影響.
2.2 索夾參數(shù)影響分析
基于細(xì)化分析模型FEMC分析索夾各參數(shù)對(duì)主纜成橋線形和吊桿成橋索力的影響,以主纜中跨跨中控制點(diǎn)成橋高程值的差值=,來表征索夾對(duì)主纜成橋線形的影響.以各吊桿成橋索力值F(C)C,i與F(D)C,i的差值平均值,來表征索夾對(duì)吊桿成橋索力的影響.
索夾主要包括3個(gè)計(jì)算參數(shù):抗拉面積AC、抗彎慣性矩IC和水平投影長(zhǎng)度DC.設(shè)吊桿標(biāo)準(zhǔn)間距DB,主纜半徑RS,計(jì)算面積AS=πR2S,計(jì)算慣性矩IS=πR4S/4,則索夾的抗拉面積比KA=AC/AS、索夾的抗彎慣性矩比KI=IC/IS和索夾的長(zhǎng)度比KD=DC/DB.
如圖6所示,在面積比KA=0和慣性矩比KI=0的情況下,主纜成橋線形C(C)C會(huì)隨著索夾長(zhǎng)度DC的增加而有所提升,中跨跨中控制點(diǎn)成橋高程的提升量.吊桿成橋索力F(C)C會(huì)隨著索夾長(zhǎng)度DC的增加而有所增大,各吊桿索力增量的平均值≈130 K.索夾長(zhǎng)度影響的實(shí)質(zhì)是將本來集
D中作用在銷軸中心點(diǎn)處的吊桿拉力,分散作用在整個(gè)具有索夾緊箍區(qū)域的主纜上,其效果類似于簡(jiǎn)支梁在跨中承受豎向集中力和具有相同重力的豎向均布荷載,而后者產(chǎn)生的撓度較小.所以說,索夾越長(zhǎng),吊桿拉力分散范圍越大,主纜成橋線形和吊桿成橋索力所受到的影響就越顯著.
圖6 索夾長(zhǎng)度比對(duì)主纜線形和吊桿索力的影響Fig.6 Impact of cable-clamp length ratio on main-cable shape and boom force
圖7 索夾面積比對(duì)主纜線形和吊桿索力的影響Fig.7 Impact of cross-section area ratio of cable clamp on main-cable shape and boom force
如圖7所示,在慣性矩比KI=0和長(zhǎng)度比KD=0.2的情況下,主纜成橋線形C(C)C會(huì)隨著索夾抗拉面積AC的增加而有所提升,中跨跨中控制點(diǎn)成橋高程的提升量ΔC(C)C,m≈60 KA;吊桿成橋索力F(C)C會(huì)隨著索夾抗拉面積AC的增加而增大,各吊桿索力增量的平均值≈40 KA.索夾抗拉面積影響的實(shí)質(zhì)是增大了具有索夾緊箍區(qū)域的主纜抗拉面積,進(jìn)而改變了主纜成橋線形和吊桿成橋索力.但是,索夾緊箍主纜所產(chǎn)生的摩擦力主要是保證兩者不會(huì)在吊桿力的作用下發(fā)生相對(duì)滑動(dòng),并不是確保兩者在主纜拉伸的情況下仍能保持同步變形,所以在實(shí)際工程中,索夾的抗拉面積并不能全部計(jì)入主纜的有效抗拉面積.
如圖8所示,在面積比KA=0和長(zhǎng)度比KD=0.2的情況下,索夾抗彎慣性矩對(duì)主纜的成橋線形C(C)C和吊桿的成橋索力F(C)C均影響甚微.但是,由于吊桿拉力最終作用在主纜上的長(zhǎng)度范圍和分散力大小均受到索夾抗彎慣性矩的影響,所以從分散吊桿集中力的角度分析,索夾抗彎慣性矩對(duì)結(jié)構(gòu)成橋狀態(tài)起著不可忽視的影響.
圖8 索夾慣性矩比對(duì)主纜線形和吊桿索力的影響Fig.8 Impact of cross-section moment ratio of inertia of cable clamp on main-cable shape and boom force
3.1 計(jì)算參數(shù)和實(shí)測(cè)數(shù)據(jù)
吉林市霧凇大橋的橋跨布置和各結(jié)構(gòu)參數(shù)如前文所述,全橋共49對(duì)索夾,分為5種型號(hào)(SJ1~SJ5),每種型號(hào)索夾具有相同的抗拉面積AC=1 211 cm2和抗彎慣性矩IC=438 594cm4,以及不同的水平投影長(zhǎng)度DC=68~156cm,各種索夾的具體水平投影長(zhǎng)度和布置情況如表2所示.
表2 索夾水平投影長(zhǎng)度和布置情況Tab.2 Horizontal projected length and arrangement of cable clamps
根據(jù)實(shí)測(cè)的主纜空纜線形C(M)0和成橋線形(見表3),以及各吊桿在成橋狀態(tài)下的錨杯外露量和頻率值(見表4)[10-11],進(jìn)而獲得各吊桿無應(yīng)力長(zhǎng)度值L(M)0和索力值F(M)C.
表3 實(shí)測(cè)的主纜空纜線形Tab.3 Measured unloaded shape of main cable m
表4 實(shí)測(cè)的各吊桿無應(yīng)力長(zhǎng)度值和索力值Tab.4_Measured unstressed lengths and pullingforces of booms
表5 主纜成橋線形匯總Tab.5 Summary of main-cable shape on the completed stage of bridge m
3.2 吉林市霧凇大橋成橋狀態(tài)分析
將各索夾的實(shí)際參數(shù)值、主纜的實(shí)測(cè)空纜線形值C(M)0和吊桿的實(shí)測(cè)成橋無應(yīng)力長(zhǎng)度值L(M)0代入模型FEMR和FEMC內(nèi),分別計(jì)算結(jié)構(gòu)在成橋狀態(tài)的主纜線形值C(R)C和C(C)C、吊桿索力值F(R)C和F(C)C,并將其與主纜的實(shí)測(cè)成橋線形C(M)C和吊桿的實(shí)測(cè)成橋索力F(M)C進(jìn)行比較,計(jì)算線形偏差ΔC(R)C=計(jì)算索力偏差
如表5所示,基于模型FEMR和FEMC獲得的主纜邊跨成橋線形基本一致,且均與實(shí)測(cè)值比較接近.但不考慮索夾影響的主纜中跨跨中控制點(diǎn)成橋高程值與實(shí)測(cè)高程值相差較大,其計(jì)算值比實(shí)測(cè)值低0.077m.計(jì)入索夾影響后的主纜中跨跨中控制點(diǎn)成橋高程值與實(shí)測(cè)值吻合較好,其計(jì)算值只比實(shí)測(cè)值高0.014m.
表5 主纜成橋線形匯總Tab.5 Summary of main-cable shape on the completed stage of bridge m
如圖9所示,基于模型FEMC獲得的未考慮索夾影響的吊桿成橋索力值F(R)C總體上小于實(shí)測(cè)成橋索力值F(M)C,最大索力偏差ΔF(M)C,max=-200kN;而基于模型FEMC獲得的計(jì)入索夾影響的吊桿成橋索力F(C)C總體上更接近于吊桿實(shí)測(cè)成橋索力值F(M)C,其最大索力偏差ΔF(C)C,max=-105kN.
工程實(shí)例分析結(jié)果表明,索夾能夠使主纜中跨成橋線形提高0.077m,各吊桿最大成橋索力偏差為-200kN,該偏差值已超出工程容許范圍,應(yīng)予以調(diào)整;而基于模型FEMC獲得的主纜成橋線形和吊桿成橋索力計(jì)算值均與實(shí)測(cè)數(shù)據(jù)吻合得較好,說明本文提出的索夾模型合理,模擬方法正確,能夠準(zhǔn)確、有效地反映索夾對(duì)結(jié)構(gòu)的影響.
圖9 計(jì)算索力與實(shí)測(cè)索力偏差圖Fig.9 Deviation of boom force between calculated and measured values
(1)索夾能夠?qū)ψ藻^懸索橋的成橋狀態(tài)造成影響,使主纜的成橋線形有所提升.若維持各吊桿無應(yīng)力長(zhǎng)度不變,則吊桿的成橋索力普遍增大.若使各吊桿索力達(dá)到成橋索力值,則需加大各吊桿的無應(yīng)力長(zhǎng)度值.
(2)主纜成橋線形和吊桿成橋索力主要受索夾的抗拉面積和水平投影長(zhǎng)度影響,受索夾抗彎剛度的直接影響甚微;主纜中跨跨中控制點(diǎn)成橋高程提升量≈60 KA+60 KD,各吊桿成橋索力平均增量≈40 KA+130 KD.
(3)經(jīng)工程實(shí)例驗(yàn)證,本文所提出的索夾模型合理,模擬方法正確,能夠正確、有效地反映索夾對(duì)結(jié)構(gòu)的影響,其計(jì)算結(jié)果與結(jié)構(gòu)的實(shí)際變形值更為接近.
在進(jìn)行自錨式懸索橋設(shè)計(jì)過程中,尤其在進(jìn)行主纜和吊桿無應(yīng)力長(zhǎng)度計(jì)算時(shí),應(yīng)考慮索夾的影響.同時(shí)應(yīng)注意索夾的抗拉面積并不能全部計(jì)入主纜的有效抗拉面積,在具體分析時(shí)應(yīng)予以折減.
[1]孫永明,張連振,李忠龍.自錨式懸索橋主纜狀態(tài)影響參數(shù)分析[J].計(jì)算力學(xué)學(xué)報(bào),2014,31(6):742.SUN Yongming,ZHANG Lianzhen,LI Zhonglong.Analysis of the parameters infulencing the main-cable state of self-anchored suspension bridge[J].Chinese Journal of Computational Mechanics,2014,31(6):742.
[2]孫永明,張連振,李忠龍.自錨式懸索橋吊桿目標(biāo)索力影響參數(shù)分析[J].橋梁建設(shè),2015,45(4):69.SUN Yongming,ZHANG Lianzhen,LI Zhonglong.Affectingfactor study on boom’s target force of self-anchored suspension bridge[J].Bridge Construction,2015,45(4):69.
[3]沈銳利.懸索橋主纜系統(tǒng)設(shè)計(jì)及架設(shè)算法研究[J].土木工程學(xué)報(bào),1996,29(2):3.SHEN Ruili.Calculation methods for design and erection of cable curve of suspension bridge[J].China Civil Engineering Journal,1996,29(2):3.
[4]陳常松,陳政清,顏東煌.懸索橋主橋初始線形的懸鏈線方程精細(xì)迭代分析法[J].工程力學(xué),2006,23(8):62.
CHEN Changsong,CHEN Zhengqing,YAN Donghuang.Accurate interation method to calculate the initial states of main cables of suspension bridges[J].Engineering Mechanics,2006,23(8):62.
[5]程斌,孫海濤,肖汝誠(chéng).自錨式懸索橋的主纜線形計(jì)算與誤差分析[J].華南理工大學(xué)學(xué)報(bào):自然科學(xué)版,2008,36(6):17.CHENG Bin,SUN Haitao,XIAO Rucheng.Configuration calculation and deviation analysis on main cable of self-anchored suspension bridge[J].Journal of South China University of Technology:Natural Science Edition,2008,36(6):17.
[6]黃海云,張俊平,劉愛榮,等.空間索面自錨式懸索橋主纜橫向位移及索夾橫向偏轉(zhuǎn)角的試驗(yàn)研究[J].公路工程,2009,34(2):41.HUANG Haiyun,ZHANG Junping,LIU Airong,et al.Testing study on lateral displacement of main cable and lateral deflection angle of cable clamp in the self-anchored suspension bridge with spatial cable system[J].Highway Engineering,2009,34(2):41.
[7]黎志忠,蔣勁松.懸索橋上、下對(duì)合型索夾結(jié)構(gòu)分析研究[J].橋梁建設(shè),2013,43(3):60.LI Zhizhong,JIANG Jinsong.Analysis and study of cable band structure of upper and lower halves type for suspension bridge[J].Bridge Construction,2009,43(3):60.
[8]孫永明.基于組合單元的混凝土斜拉橋施工過程分析與控制方法研究[D].哈爾濱:哈爾濱工業(yè)大學(xué),2009.SUN Yongming.Construction process analysis and construction control techniques research of concrete cable-stayed bridge based on composite element[D].Harbin:Harbin Institute of Technology,2009.
[9]劉厚軍,劉釗.自錨式懸索橋吊索張力及主纜線形的設(shè)計(jì)研究[J].土木工程學(xué)報(bào),2008,41(3):79.LIU Houjun,LIU Zhao.Design of hanger tension and cable configuration for self-anchored suspension bridges[J].China Civil Engineering Journal,2008,41(3):79.
[10]孫永明,孫航,任遠(yuǎn).頻率法計(jì)算勻質(zhì)豎直拉索索力的實(shí)用公式[J].工程力學(xué),2013,30(4):211.SUN Yongming,SUN Hang,REN Yuan.Practical formulas to calculate tensions of vertical cable with uniform properties by frequency method[J].Engineering Mechanics,2013,30(4):211.
[11]孫永明,李惠.端部性質(zhì)對(duì)頻率法測(cè)量豎直拉索索力影響分析[J].工程力學(xué),2013,30(8):10.SUN Yongming,LI Hui.Effect of extreme properties of vertical cable on the cable force measurement by frequenciesbased method[J].Engineering Mechanics,2013,30(8):10.
Impact Analysis of Cable Clamp on Completed State of Self-anchored Suspension Bridge
SUN Yongming,ZHANG Lianzhen,LI Zhonglong
(School of Transportation Science and Engineering,Harbin Institute of Technology,Harbin 150090,China)
The impacts of cable clamps on the completed state of a self-anchored suspension bridge were analyzed based on the finite element method(FEMC).The cable clamp could raise the shape of main cable in a middle span.If the unstressed length of each boom was kept unchanged,the pulling force of each boom would increase.In the same way,if each boom was made to reach the designed force on the completed stage of a bridge,the unstressed length of each boom should be increased.Based on FEMC,the impacts of parameters,e.g.length,cross-sectional area and moment of inertia on the completed state of a bridge,were studied respectively.Furthermore,the simplified formulas were established,which could calculate the elevation increment of mid-position of main cable in the middle span and the average increment of each boom force by the length ratio and area ratio of cable clamp.It is verified that results from FEMCare in good agreement with the measured data.
bridge engineering;self-anchored suspension bridge;cable clamp;completed state of a bridge
U448.25;U443.38
A
0253-374X(2016)01-0024-05
10.11908/j.issn.0253-374x.2016.01.004
2015-01-04
國(guó)家自然科學(xué)基金(51308156);中國(guó)博士后科學(xué)基金(2012M510969);中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金(HIT.NSRIF.2014077)
孫永明(1981—),男,工學(xué)博士,主要研究方向?yàn)榛炷两Y(jié)構(gòu)安全評(píng)定、結(jié)構(gòu)有限元分析原理和橋梁施工控制理論.E-mail:sunym@hit.edu.com