国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

脂肪酸甲酯生物柴油改善低硫柴油的潤滑性能

2016-12-19 08:53梅德清羅演強(qiáng)沈?qū)W峰陸大勇袁銀男
關(guān)鍵詞:磨斑碳鏈低硫

梅德清,羅演強(qiáng),沈?qū)W峰,陸大勇,袁銀男

(1.江蘇大學(xué)汽車與交通工程學(xué)院,鎮(zhèn)江 212013; 2.蘇州大學(xué)能源學(xué)院,蘇州 215006)

脂肪酸甲酯生物柴油改善低硫柴油的潤滑性能

梅德清1,羅演強(qiáng)1,沈?qū)W峰1,陸大勇1,袁銀男2

(1.江蘇大學(xué)汽車與交通工程學(xué)院,鎮(zhèn)江 212013; 2.蘇州大學(xué)能源學(xué)院,蘇州 215006)

生物柴油可作為改善低硫柴油潤滑性能的天然添加劑。該文將豆蔻酸甲酯(C14:0)、棕櫚酸甲酯(C16:0)、硬脂酸甲酯(C18:0)、油酸甲酯(C18:1)、亞油酸甲酯(C18:2)、亞麻酸甲酯(C18:3)、蓖麻醇酸甲酯(C18:1 OH)及蓖麻油甲酯和餐飲廢油甲酯按照0.5%、1.0%、1.5%和3.0%的體積分?jǐn)?shù)添加到低硫柴油中,在高頻往復(fù)試驗(yàn)機(jī)(high-frequency reciprocating rig,HFRR)上進(jìn)行潤滑性能測試,探究脂肪酸甲酯的碳鏈長度、不飽和度及含羥基等結(jié)構(gòu)特征對潤滑性能的影響。結(jié)果表明,長碳鏈脂肪酸甲酯一般比短鏈潤滑效果好;碳鏈長度為十八的脂肪酸酯中,不飽和程度即碳碳雙鍵數(shù)目越高則潤滑性能越好;而在相同碳鏈長度和不飽和度條件下,含羥基的蓖麻醇酸甲酯的潤滑改善效果優(yōu)于油酸甲酯。由多種脂肪酸酯構(gòu)成的混合物生物柴油的潤滑性能要優(yōu)于某單一的純脂肪酸甲酯。在低硫柴油中,當(dāng)某飽和脂肪酸甲酯的體積分?jǐn)?shù)比例達(dá)3.0%時(shí),或不飽和酯的體積分?jǐn)?shù)達(dá)到1.5%時(shí),或生物柴油的體積分?jǐn)?shù)達(dá)1.0%時(shí),可使低硫柴油的潤滑性能指標(biāo)滿足相關(guān)標(biāo)準(zhǔn)。研究脂肪酸甲酯的各種結(jié)構(gòu)特征對其潤滑性能的影響及作用機(jī)制,有助于篩選合適的生物柴油組分及其添加濃度作為低硫柴油的潤滑添加劑。

柴油;生物柴油;潤滑;脂肪酸甲酯

0 引言

越來越嚴(yán)格的排放法規(guī)對柴油的品質(zhì)提出了更高的要求,尤其是降低柴油中的硫含量[1-2]。目前,一般采用加氫精制或加氫裂化等工藝降低柴油硫含量,與此同時(shí),燃料中的含氧和含氮等天然極性物質(zhì)會被脫除,導(dǎo)致柴油自身的潤滑性能下降[3]。發(fā)動機(jī)的燃油噴射系統(tǒng)只能依靠燃料自身潤滑,因而長期使用抗磨性較低的燃料勢必會使噴射系統(tǒng)過早嚴(yán)重磨損,影響發(fā)動機(jī)使用壽命和安全性[4]。為適應(yīng)燃油供給系統(tǒng)更高噴射壓力的工作條件,在低硫柴油中添加抗磨劑成為必然。

已有研究表明,將生物柴油添加到低硫柴油中可顯著提高其潤滑性[5-6]。生物柴油是動植物油脂在酸或堿的催化條件下與醇類發(fā)生酯交換反應(yīng)而得到的脂肪酸酯混合物,具有與柴油接近的燃料特性,且能與柴油互溶。脂肪酸酯之所以可以改善柴油的潤滑性,與其不飽和度、碳鏈長度和羥基化程度有關(guān)。Anastopoulos等[7]指出在摩擦磨損試驗(yàn)中,隨脂肪酸酯碳鏈增加,試驗(yàn)?zāi)Σ亮湍p都減小。由于羥基官能團(tuán)具有粘附功能,可提高脂肪酸甲酯的潤滑性能[8]。Knothe和Steidley[9]指出,純脂肪酸、甘油一酸酯和甘油比純酯類表現(xiàn)出更好的潤滑性能,是因其含有-OH官能團(tuán)。且對于含10個(gè)碳原子直鏈烴的不同含氧官能團(tuán)系列衍生物,其潤滑效果為COOH>CHO>OH>COOCH3>C=O>C-O-C。生成脂肪酸酯的醇類不同亦會對潤滑效果產(chǎn)生影響,脂肪酸乙酯的潤滑效果要優(yōu)于脂肪酸甲酯[10]。

評定柴油潤滑性的方法主要有四球摩擦磨損試驗(yàn)機(jī)法和高頻往復(fù)試驗(yàn)法(high-frequency reciprocating rig,HFRR)。四球摩擦磨損試驗(yàn)機(jī)是常規(guī)的潤滑性能評定設(shè)備,對其稍加改造也可用于柴油潤滑性能的評定,其與歐美普遍采用的HFRR試驗(yàn)方法有良好的相關(guān)性,相關(guān)系數(shù)為0.896[11]。HFRR試驗(yàn)機(jī)在評定柴油潤滑性方面有較好的試驗(yàn)重復(fù)性、區(qū)分性和再現(xiàn)性,其測量結(jié)果也更加可靠。

為了進(jìn)一步分析生物柴油的潤滑改善效果,有必要研究脂肪酸甲酯物質(zhì)結(jié)構(gòu)對低硫柴油潤滑性能的影響。本文將多種脂肪酸甲酯及生物柴油,按不同比例加入低硫柴油后進(jìn)行高頻往復(fù)摩擦磨損試驗(yàn),通過測量磨斑直徑評價(jià)其潤滑性能,探究脂肪酸甲酯物質(zhì)結(jié)構(gòu)中的碳鏈長度、不飽和度及含極性羥基等特性對其潤滑性能的影響。

1 材料與方法

1.1 試驗(yàn)材料

脂肪酸甲酯:豆蔻酸甲酯(C14:0),棕櫚酸甲酯(C16:0),硬脂酸甲酯(C18:0),油酸甲酯(C18:1),亞油酸甲酯(C18:2),亞麻酸甲酯(C18:3),蓖麻醇酸甲酯(C18:1 OH)。所有的脂肪酸甲酯均購于阿拉丁試劑,其純度不小于99%。

生物柴油為蓖麻油甲酯和餐飲廢油甲酯,均購自廈門華億宏進(jìn)出口有限公司。試驗(yàn)所用低硫柴油由某煉油廠加氫精制而得,其燃料特性參數(shù)見表1。

試驗(yàn)片:由退火的AISI E-52100鋼棒加工成具有維氏硬度“HV30”為190~210,并經(jīng)研磨和拋光到表面粗糙度Ra<0.02 μm。

試驗(yàn)球:直徑為6 mm,材料為AISIE-52100鋼,ANSI B3.12(金屬球)28級,達(dá)到洛氏硬度HRC58~66,表面粗糙度Ra<0.02 μm。

表1 低硫柴油的燃料特性Table 1 Fuel properties of low-sulfur diesel

加氫精制的柴油中硫的質(zhì)量分?jǐn)?shù)為45.72 mg/kg,滿足國Ⅳ車用柴油規(guī)定的50 mg/kg的標(biāo)準(zhǔn)[12]。同時(shí),低硫柴油的其他性質(zhì)如密度、黏度、閃點(diǎn)和餾程等均與國Ⅳ車用柴油質(zhì)量指標(biāo)相符。

1.2 試驗(yàn)方法

脂肪酸甲酯的潤滑效果評定用SH/T 0765-2005方法在高頻往復(fù)試驗(yàn)機(jī)(HFRR)上進(jìn)行。HFRR試驗(yàn)條件如表2所示。使用奧林巴斯(OLYMPUS)體視顯微鏡對鋼球摩擦表面進(jìn)行拍照,并對磨斑大小進(jìn)行測量。以水蒸汽壓1.4 kPa為基準(zhǔn),經(jīng)過校正得到校正磨斑直徑WS1.4,且將WS1.4小于460 μm作為柴油潤滑性能合格的指標(biāo)[13]。各項(xiàng)摩擦磨損試驗(yàn)均重復(fù)3次,以減小試驗(yàn)誤差。

表2 HFRR評定方法試驗(yàn)條件Table 2 Test conditions of HFRR

氣相色譜質(zhì)譜聯(lián)用(GC-MS)是一種結(jié)合氣相色譜與質(zhì)譜的特性,鑒別試樣中不同物質(zhì)的方法。對生物柴油的組分進(jìn)行檢測,其氣相色譜分析條件為:色譜柱為TR 5MS(30 m×0.25 mm×0.25 μm);載氣為高純氮?dú)?,載氣流速為1.0 mL/min;采用自動進(jìn)樣,進(jìn)樣量為1 μL,分流比為100:1;程序升溫:初始溫度100℃,保持3 min,以5℃/min升至260℃,保持3 min,進(jìn)樣口溫度為220℃,色譜質(zhì)譜傳輸線溫度為280℃。

2 結(jié)果與討論

2.1 脂肪酸酯碳鏈長度對潤滑性能的影響

對添加不同含量C14:0,C16:0和C18:0的低硫柴油進(jìn)行HFRR測試,其結(jié)果如圖1所示。由圖1可知,在低硫柴油中添加C14:0、C16:0和C18:0 3種脂肪酸甲酯以后,磨斑直徑減小,即明顯改善潤滑狀態(tài)。由于脂肪酸酯相對以烷烴為主的低硫柴油,其含有極性官能團(tuán)酯基,而極性分子更容易吸附在金屬表面,形成物理吸附膜,因此脂肪酸甲酯的潤滑性能優(yōu)于低硫柴油。當(dāng)脂肪酸酯按照一定比例添加到低硫柴油中后,其潤滑性能得到改善,且添加比例越大,改善效果越好。當(dāng)酯添加量增加到1.5%時(shí),磨斑直徑隨之逐漸減小;而當(dāng)添加量超過1.5%直至3.0%時(shí),磨斑直徑雖有減小但并不明顯,即脂肪酸甲酯的添加量不再是影響磨斑直徑的主要因素。為了確保磨斑直徑小于國標(biāo)規(guī)定的460 μm,飽和脂肪酸甲酯添加量達(dá)到3.0%才能達(dá)到理想效果。在添加量為0.5%和1.5%時(shí),脂肪酸甲酯的碳鏈越長,其磨斑直徑也越??;而在添加量為1.0%和3.0%時(shí),脂肪酸甲酯的碳鏈長度與磨斑直徑并沒有一定的對應(yīng)關(guān)系。如果僅僅考察C14:0和C18:0,可以看出C18:0的潤滑效果比C14:0好。而對于碳鏈長度相近的C14:0和C16:0或C16:0和C18:0,磨斑直徑并未呈現(xiàn)區(qū)分。由此可以推斷,由于脂肪酸甲酯碳鏈長度較為接近,與表征潤滑效果的磨斑直徑之間未呈現(xiàn)嚴(yán)格的對應(yīng)關(guān)系。但總體而言,脂肪酸酯的鏈長的增加可增大吸附膜的厚度,潤滑膜的穩(wěn)定性也更強(qiáng),在金屬表面形成的有效吸附膜的強(qiáng)度和致密度也更大[14],其潤滑效果更好。

圖1 飽和脂肪酸酯的添加對低硫柴油潤滑性能的影響Fig.1 Lubricity of low-sulfur diesel blends with various fractions of saturated fatty acid methyl esters

2.2 脂肪酸酯飽和度對潤滑性能的影響

對相同碳原子數(shù)的含不同碳碳雙鍵的C18:0、C18:1、 C18:2、C18:3及含有羥基的C18:1 OH進(jìn)行HFRR測試,測量記錄磨斑直徑,其結(jié)果如圖2所示。由圖2可知,含有碳碳雙鍵的不飽和脂肪酸甲酯C18:1、C18:2和C18:3的磨斑直徑明顯比C18:0小,可見不飽和度在改善潤滑效果中起到一定作用。對于不飽和脂肪酸甲酯,其添加量達(dá)到1.5%時(shí),即可將低硫柴油的磨斑直徑降低至460 μm以下。在添加體積分?jǐn)?shù)為0.5%和1.0%時(shí),磨斑直徑的大小與脂肪酸甲酯的不飽和度難以呈現(xiàn)明晰的對應(yīng)關(guān)系。而在添加體積分?jǐn)?shù)達(dá)到1.5%以后,磨斑直徑區(qū)分效果明顯,且隨不飽和度即碳碳雙鍵數(shù)目的增加,磨斑直徑越來越小,即潤滑效果越來越好。與其他十八碳鏈脂肪酸甲酯相比,亞麻酸甲酯含有3個(gè)碳碳雙鍵,不飽和度最高,其潤滑改善效果也最明顯;而對于飽和的硬脂酸甲酯,其潤滑改善效果最差。

影響潤滑效果的主要因素是吸附膜的強(qiáng)度。吸附膜內(nèi)的分子間結(jié)合越強(qiáng),則吸附膜本身的穩(wěn)定性和致密性也越強(qiáng)。吸附膜中分子間的相互作用主要是靜電力,且雙鍵數(shù)目越多靜電力越大[15]。雙鍵的引入可使脂肪酸酯更容易在鐵表面形成的致密的吸附膜,使其潤滑膜的強(qiáng)度增加,這也與之前的研究結(jié)果相吻合[16-18]。對比圖1和圖2,以C18:0為參考,可以看出具有碳碳雙鍵的不飽和脂肪酸甲酯對低硫柴油的潤滑改善效果普遍比飽和脂肪酸甲酯好。

圖2 不飽和脂肪酸酯的添加對低硫柴油潤滑性能的影響Fig.2 Lubricity of diesel blends with various fractions of unsaturated fatty acid methyl esters

2.3 生物柴油與脂肪酸酯的潤滑性能對比

圖3對比了C18:1、C18:1OH及2種生物柴油的潤滑改善效果。從圖中可以看出,相同添加體積分?jǐn)?shù)下,生物柴油的潤滑改善效果普遍比純脂肪酸甲酯好。為了更好的分析原因,利用色譜質(zhì)譜(GC-MS)對生物柴油的成分進(jìn)行檢測,其詳細(xì)組分如表3所示。

在各添加體積分?jǐn)?shù)下,含近90%蓖麻醇酸甲酯的蓖麻油甲酯的潤滑改善效果比蓖麻醇酸甲酯單質(zhì)好。這種情況同樣在餐飲廢油甲酯和其主要成分油酸甲酯有體現(xiàn)。C18:1 OH的潤滑效果比C18:1的好,以C18:1 OH為主要成分的蓖麻油甲酯的潤滑效果也比以C18:1為主要成分的餐飲廢油甲酯好。Goodrum和Geller[19]指出混合脂肪酸酯提高柴油潤滑性的效果之所以明顯優(yōu)于某單一純酯,是由于多種脂肪酸酯之間存在協(xié)同作用。沈本賢等[20]也曾指出作為生物柴油主要成分的油酸甲酯、亞油酸甲酯純酯對加氫裂化柴油的抗磨性能遠(yuǎn)不如生物柴油效果明顯。Drown等[21]的試驗(yàn)表明,相比其他植物油酯類,蓖麻油酯類具有更好的潤滑性效果。當(dāng)蓖麻油甲酯添加劑量達(dá)到0.5%時(shí),就可以明顯減小磨斑直徑,使其達(dá)到460 μm以下。而對于餐飲廢油甲酯,其添加體積分?jǐn)?shù)需達(dá)到1.0%才有同樣效果。C18:1OH與C18:1一樣均含有一個(gè)碳碳雙鍵,但多了一個(gè)羥基,其潤滑效果明顯改善。由此可見,相同碳鏈長度及不飽和度下,含有羥基的脂肪酸甲酯具有更佳的潤滑效果。這是因?yàn)樵谥舅峒柞ブ校捎诹u基的引入,增加了分子極性,使得分子更容易吸附在金屬表面,減小金屬之間的摩擦與磨損,從而改善潤滑[9,22]。并且羥基的引入提高了脂肪酸酯在鐵表面形成的吸附膜的致密性,其與雙鍵的影響類似,但脂肪酸端中的羥基比雙鍵更能增加分子間的靜電作用[15]。對于蓖麻醇酸甲酯,其同時(shí)含有雙鍵和羥基,故其潤滑性能要優(yōu)于飽和脂肪酸酯和僅含有碳碳雙鍵官能團(tuán)的脂肪酸酯。同時(shí)對比圖2和圖3,以C18:1 OH為參考,可以看出生物柴油對低硫柴油的潤滑改善效果明顯比其主要組分的單質(zhì)好。

圖3 生物柴油與脂肪酸酯的添加對低硫柴油潤滑性能的改善Fig.3 Lubricity of diesel blends with biodiesel (multiple esters) and its single composition

表3 蓖麻油和餐飲油制備生物柴油的主要組分Table 3 Compositions of biodiesel from castor oil and cooking waste oil

3 結(jié)論

1)對于直鏈飽和脂肪酸酯,碳鏈較長的酯具有更好的潤滑性能。對于碳鏈長度為18的系列脂肪酸酯,雙鍵數(shù)目越多,分子間靜電力越大,則脂肪酸酯在金屬表面更容易形成致密的吸附膜。因而雙鍵數(shù)目越多即不飽和程度越高,其在柴油中改善潤滑的效果越好。在相同碳鏈長度及不飽和度條件下,由于羥基比雙鍵更能增加分子間的靜電作用,含羥基的蓖麻醇酸甲酯(C18:1 OH)的分子間的靜電作用和分子極性比油酸甲酯(C18:1)大,更易吸附在金屬表面形成致密吸附膜,其潤滑性能更好。由于多種酯類組分之間的相互協(xié)同作用,作為混合物的生物柴油加入低硫柴油后的減摩作用優(yōu)于其某單一組分。

2)本文研究表明脂肪酸酯的物質(zhì)結(jié)構(gòu)特征對其潤滑性能具有重要影響。在低硫柴油中,當(dāng)某飽和脂肪酸甲酯的添加比例達(dá)3.0%時(shí),或不飽和酯的添加比例達(dá)到1.5%時(shí),或生物柴油的添加比例達(dá)1.0%時(shí),可使低硫柴油的潤滑性能指標(biāo)滿足相關(guān)標(biāo)準(zhǔn)。

[1] Song C, Ma X. New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization[J]. Applied Catalysis B Environmental, 2003, 41(1/2): 207-238.

[2] Song C. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel[J]. Catalysis Today, 2003, 86(3): 211-263.

[3] Barbour R H, Rickeard D J, Elliott N G. Understanding diesel lubricity[J/OL]. Sae Transactions, 2000. doi:10.4271/2000-01-1918.

[4] 胡澤祥,左鳳,王昆. 柴油成膜潤滑機(jī)制探討[J]. 潤滑與密封,2007,32(11):161-164. Hu Zexiang, Zuo Feng, Wang Kun. Study on film lubrication mechanism of diesel fuel[J]. Lubrication Engineering, 2007, 32(11): 161-164. (in Chinese with English abstract)

[5] Prasad L, Das L M, Naik S N. Effect of castor oil, methyl and esters as lubricity enhancer for low lubricity diesel fuel (LLDF)[J]. Energy Fuels, 2012, 26(8): 5307-5315.

[6] Mu?oz M, Moreno F, Monné C, et al. Biodiesel improves lubricity of new low sulphur diesel fuels[J]. Renewable Energy, 2011, 36(11): 2918-2924.

[7] Anastopoulos G, Lois E, Karonis D, et al. A preliminary evaluation of esters of monocarboxylic fatty acid on the lubrication properties of diesel fuel[J]. Industrial & Engineering Chemistry Research, 2001, 40(1): 452-456.

[8] Naughton F C. The chemistry of castor oil and its derivatives and their applications[J]. ICOA Technical Bulletin, 1992(2).

[9] Knothe G, Steidley K R. Lubricity of components of biodiesel and petrodiesel. The origin of biodiesel lubricity[J]. Energy & fuels, 2005, 19(3): 1192-1200.

[10] Kenesey E, Becker A. Oxygen bond to improve the lubricity of fuel[J]. Tribologic Schmierungstechnik, 2003, 50(2): 21-26.

[11] 王國慶,楊建軍. 用四球試驗(yàn)機(jī)評定柴油的潤滑性[J]. 石油商技,2005,23(1):46-48. Wang Guoqing, Yang Jianjun. Evaluation of the lubricity of diesel fuels with four-ball tribometer[J]. Petroleum Products Application Research, 2005, 23(1): 46-48. (in Chinese with English abstract)

[12] GB 19147-2013, 車用柴油(Ⅳ)[S].

[13] SH/T 0765-2005,柴油潤滑性評定法(高頻往復(fù)試驗(yàn)機(jī)法)[S].

[14] 牛曉敏. 低硫柴油潤滑添加劑的性能考察和新型添加劑的研究[D]. 上海:華東理工大學(xué),2012. Niu Xiaomin. The Study of Performance and New Model of Low Sulfur Diesel Lubricant Additives[D]. Shanghai: East China University of Science and Technology, 2012. (in Chinese with English abstract)

[15] 羅輝,范維玉,李陽,等. 生物柴油組分在鐵表面吸附的分子動力學(xué)模擬[J]. 石油學(xué)報(bào),2013(3):416-421. Luo Hui, Fan Weiyu, Li Yang, et al. Molecular dynamics simulation on the adsorption behaviors of biodiesel components on iron surface[J]. Acta Petrolei Sinica Petroleum Processing Section, 2013(3): 416-421. (in Chinese with English abstract)

[16] Geller D P, Goodrum J W. Effects of specific fatty acid methyl esters on diesel fuel lubricity[J]. Fuel, 2004, 83(17/18): 2351-2356.

[17] 藺建民,朱同榮,閭邱祁鳴,等. 脂肪酸衍生物低硫柴油抗磨劑的研究[J]. 精細(xì)石油化工,2006,23(3):32-36. Lin Jianmin, Zhu Tongrong, Luqiu Qiming, et al. Fatty acid derivatives as lubricity additives for low sulfur diesel fuels[J]. Speciality Petrochemicals, 2006, 23(3): 32-36. (in Chinese with English abstract)

[18] Fox N J, Tyrer B, Stachowiak G W. Boundary lubrication performance of free fatty acids in sunflower oil[J]. Tribology Letters, 2004, 16(4): 275-281.

[19] Goodrum J W, Geller D P. Influence of fatty acid methyl esters from hydroxylated vegetableoils on diesel fuel lubricity[J]. Bioresource Technology, 2005, 96(7): 851-855.

[20] 沈本賢,林寶華,趙基鋼. 生物柴油的成分對提高超低硫柴油潤滑性影響的研究[J]. 石油煉制與化工,2009,40(4):39-42. Shen Benxian, Lin Baohua, Zhao Jigang. Study on the components of biodiesel fuel as additive to improve the lubrication performance of ultra low sulfur diesel fuel[J]. Petroleum Processing and Petrochemicals, 2009, 40(4): 39-42. (in Chinese with English abstract)

[21] Drown D C, Harper K, Frame E. Screening vegetable oil alcohol esters as fuel lubricity enhancers[J]. Journal of the American Oil Chemists' Society, 2001, 78(6): 579-584.

[22] Anastopoulos G, Lois E, Zannikos F, et al. HFRR lubricity response of an additized aviation kerosene for use in CI engines[J]. Tribology International, 2002, 35(9) 599-604.

Lubrication properties of fatty acid methyl esters as low-sulfur diesel enhancers

Mei Deqing1, Luo Yanqiang1, Shen Xuefeng1, Lu Dayong1, Yuan Yinnan2
(1. School of Automobile and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China; 2. School of Energy, Soochow University, Suzhou 215006, China)

Increasingly rigorous restriction on the sulfur content in diesel leads to a decrease in fuel lubricity. This reduced lubricity can cause damage to the fuel injection system of an engine. Biodiesel, which is derived from animal fats or vegetable oils by transesterification under alkali or acid catalysts, has been prevailed as an alternative fuel. It has been observed that the fatty acid esters in biodiesel play an active role in enhancing lubricity. Therefore, now biodiesel can serve as an additive to low-sulfur diesel fuel. To correlate the carbon chain length, unsaturation and hydroxylation of the fatty acid methyl ester to its lubricity, methyl myristic (C14:0), methyl palmitic (C16:0), methyl stearate (C18:0), methyl oleate (C18:1), methyl linoleate (C18:2), methyl linolenate (C18:3), methyl ricinoleate (C18:1 OH), castor oil methyl ester and cooking waste oil methyl ester were added to low-sulfur diesel fuel by 0.5%, 1.0%, 1.5% and 3.0%, respectively. Two types of biodiesel from castor oil and cooking waste oil, representing the mixtures of multiple fatty acid methyl esters, were also added to diesel fuel for wear test. The specified components of the two mixture solutions were determined by GC-MS. The low-sulfur diesel used in the test was manufactured by a hydrogenation process. The lubricity of various samples was studied using a high frequency reciprocating rig (HFRR) analysis method. Each wear test was repeated three times to minimize the error. As for methyl myristic (C14:0), methyl palmitic (C16:0) and methyl stearate (C18:0), we found that the fatty acid methyl ester with longer carbon chain had a better lubricity. For the C18 series, such as methyl stearate (C18:0), methyl oleate (C18:1), methyl linoleate (C18:2) and methyl linolenate (C18:3), an enhancement in lubricity was observed with the increase in the unsaturation degree of esters. Although with the same carbon chain length and unsaturation, methyl ricinoleate (C18:1 OH), as a hydroxylated ester, had better lubricity than methyl oleate (C18:1) compared with other treatments. Meanwhile, the individual fatty acid methyl ester did not show remarkable lubricating performance as biodiesel which was composed of several esters as a mixture. Biodiesel can perform better with more hydroxylated esters. From the wear test results, the lubricity of low-sulfur diesel can meet the requirement of the national standard with the addition ratio of saturated fatty acid methyl esters, unsaturated fatty acid methyl esters and biodiesel reaching 3.0%, 1.5% and 1.0%, respectively. In all, we concluded that there was a high correlation between lubricating properties with the unsaturation degree and hydroxyl groups in ester molecules. Studying the effects of molecule structure of fatty acid esters on the lubricating properties and its operation mechanism will be greatly beneficial for choosing the suitable biodiesel components as the lubricity enhancers in low-sulfur diesel.

diesel fuels; biodiesel; lubrication; fatty acid methyl esters

10.11975/j.issn.1002-6819.2016.09.027

TK6

A

1002-6819(2016)-09-0193-05

梅德清,羅演強(qiáng),沈?qū)W峰,陸大勇,袁銀男. 脂肪酸甲酯生物柴油改善低硫柴油的潤滑性能[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(9):193-197.

10.11975/j.issn.1002-6819.2016.09.027 http://www.tcsae.org

Mei Deqing, Luo Yanqiang, Shen Xuefeng, Lu Dayong, Yuan Yinnan. Lubrication properties of fatty acid methyl esters as low-sulfur diesel enhancers[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 193-197. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2016.09.027 http://www.tcsae.org

2015-09-06

2016-02-16

國家自然科學(xué)基金項(xiàng)目(51376095,51506101);江蘇高校優(yōu)勢學(xué)科建設(shè)工程資助項(xiàng)目(蘇政發(fā)辦[2014]72號);江蘇省環(huán)保科研課題資助項(xiàng)目(2014049)。

梅德清,男,副教授,博士。主要從事發(fā)動機(jī)替代能源及排放控制的研究。鎮(zhèn)江 江蘇大學(xué)汽車與交通工程學(xué)院,212013。Email:meideqing@ujs.edu.cn

·土地整理工程·

猜你喜歡
磨斑碳鏈低硫
CYP17A1基因His373Asn純合突變的17α-羥化酶/17,20碳鏈裂解酶缺陷癥合并糖尿病1例臨床分析
潤滑油四球抗磨損性能研究
基于雙極值濾波和邊界細(xì)分的磨斑圖像分割算法
有機(jī)物同分異構(gòu)體的書寫方法和規(guī)律總結(jié)
有機(jī)化合物同分異構(gòu)體的書寫策略
船舶低硫柴油系統(tǒng)設(shè)計(jì)的分析與優(yōu)化
中國石化開發(fā)低硫船用燃料油步伐加快
碳鏈異構(gòu)有關(guān)的同分異構(gòu)體書寫補(bǔ)遺
納米WS2和TiN對GCr15鋼摩擦磨損性能的影響*
生產(chǎn)低硫燃料油的渣油固定床加氫新工藝