韓倩,張麗娟,胡國(guó)成,*,于云江,甘煉,崔科,黃楚珊
1. 環(huán)境保護(hù)部華南環(huán)境科學(xué)研究所,廣州 510655 2. 華南農(nóng)業(yè)大學(xué),廣州 510642 3. 國(guó)家環(huán)境保護(hù)飲用水水源地管理技術(shù)重點(diǎn)實(shí)驗(yàn)室 深圳市飲用水水源地安全保障重點(diǎn)實(shí)驗(yàn)室, 深圳市環(huán)境科學(xué)研究院,深圳 518001
?
十溴二苯乙烷對(duì)草魚幼魚肝臟和肌肉組織氧化應(yīng)激效應(yīng)的影響
韓倩1,3,張麗娟1,胡國(guó)成1,*,于云江1,甘煉2,崔科2,黃楚珊1
1. 環(huán)境保護(hù)部華南環(huán)境科學(xué)研究所,廣州 510655 2. 華南農(nóng)業(yè)大學(xué),廣州 510642 3. 國(guó)家環(huán)境保護(hù)飲用水水源地管理技術(shù)重點(diǎn)實(shí)驗(yàn)室 深圳市飲用水水源地安全保障重點(diǎn)實(shí)驗(yàn)室, 深圳市環(huán)境科學(xué)研究院,深圳 518001
十溴二苯乙烷(DBDPE)是目前在全球范圍內(nèi)廣泛使用的新型溴代阻燃劑,其環(huán)境風(fēng)險(xiǎn)已引起廣泛關(guān)注,但目前仍缺乏針對(duì)水生生物的毒性研究數(shù)據(jù)。作者通過飼料中添加十溴二苯乙烷暴露的方式對(duì)草魚幼魚進(jìn)行長(zhǎng)期暴露實(shí)驗(yàn),研究500、1 000和3 000 mg·kg-1三個(gè)飼料添加劑量暴露組和1個(gè)對(duì)照組長(zhǎng)期暴露對(duì)草魚幼魚肝臟和肌肉組織中氧化應(yīng)激酶(SOD、CAT和GSH-PX)活性和抗氧化物質(zhì)(GSH)含量的影響。結(jié)果顯示:暴露8周后,隨著DBDPE暴露水平的升高,草魚幼魚肝臟組織中氧化應(yīng)激酶(SOD、CAT和GSH-PX)和抗氧化物質(zhì)(GSH)均表現(xiàn)出低濃度誘導(dǎo)及高濃度抑制的效應(yīng)。500和1 000 mg·kg-1劑量組草魚幼魚肝臟組織中SOD、CAT和GSH-PX活性和GSH含量均顯著高于對(duì)照組(P< 0.05),且均在500 mg·kg-1劑量組達(dá)到最高。3 000 mg·kg-1劑量組SOD、CAT和GSH-PX活性和GSH含量低于500和1 000 mg·kg-1暴露組,但與對(duì)照組無顯著性差異(P >0.05)。草魚幼魚肌肉組織中氧化應(yīng)激酶活性變化甚微,3個(gè)濃度劑量組肌肉組織中SOD、CAT活性和GSH含量以及500 mg·kg-1劑量組GSH-PX活性與對(duì)照組均無顯著性差異(P >0.05)。研究成果表明DBDPE暴露影響草魚幼魚肝臟組織的抗氧化防御系統(tǒng),可以誘導(dǎo)草魚幼魚產(chǎn)生氧化應(yīng)激效應(yīng)。
十溴二苯乙烷;草魚幼魚;氧化應(yīng)激;肝臟;肌肉
Received 15 July 2015 accepted 17 September 2015
十溴二苯乙烷(decabromodiphenyl ethane, DBDPE)是一種結(jié)構(gòu)和理化特性與十溴聯(lián)苯醚(decabromodiphenyl ether, BDE-209)類似的新型高效溴代阻燃劑,被廣泛應(yīng)用在電子電器、電線電纜、紡織等纖維和聚酯材料中[1-2]。隨著BDE-209在歐美市場(chǎng)的逐步退出,DBDPE作為BDE-209的替代品將有可能成為世界溴系阻燃劑市場(chǎng)上的主力軍[3-4]。已有研究證實(shí)DBDPE在全球水、大氣、土壤和沉積物等環(huán)境介質(zhì)中廣泛存在且在生物體內(nèi)累積[4-8]。DBDPE的結(jié)構(gòu)類似物BDE-209具有甲狀腺干擾毒性、生殖毒性及內(nèi)分泌干擾效應(yīng)[9-14]。目前,關(guān)于DBDPE對(duì)生物體的毒性效應(yīng)還不完全清楚,其環(huán)境毒理學(xué)方面的研究資料非常有限,尤其缺乏針對(duì)水生生物的毒性效應(yīng)研究資料[15]。因此,本研究選取草魚幼魚作為試驗(yàn)對(duì)象,通過餌料攝入DBDPE,研究DBDPE長(zhǎng)期暴露對(duì)草魚幼魚肝臟和肌肉組織氧化應(yīng)激的作用,為進(jìn)一步研究DBDPE的生態(tài)毒理效應(yīng)及其生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)提供理論依據(jù)。
1.1 試驗(yàn)材料
試驗(yàn)草魚幼魚由中山大學(xué)水生經(jīng)濟(jì)動(dòng)物研究所魚類營(yíng)養(yǎng)研究室育苗場(chǎng)提供。草魚幼魚運(yùn)回實(shí)驗(yàn)室后,用5 μL·L-1甲醛溶液浸浴消毒8 min;選取健康幼魚放至室內(nèi)循環(huán)水族缸中馴化2周以適應(yīng)試驗(yàn)條件,暫養(yǎng)期間投喂商品飼料。試驗(yàn)用水經(jīng)曝氣、珊瑚砂和生化棉過濾,以除去氯氣、固體廢物,同時(shí)采用低壓鼓風(fēng)機(jī)提供氧氣,以增加試驗(yàn)水體的溶解氧含量。光周期為自然光周期,大約為12 h光: 12 h暗。
DBDPE(純度>98%)購(gòu)自美國(guó)Acuustandard公司;二甲基亞砜(DMSO)購(gòu)自美國(guó)Amresco公司。
1.2 試驗(yàn)方法
1.2.1 試驗(yàn)設(shè)計(jì)
本試驗(yàn)設(shè)置3個(gè)飼料添加劑量,分別為500 mg·kg-1(T1)、1 000 mg·kg-1(T2)和3 000 mg·kg-1(T3),同時(shí)設(shè)置對(duì)照組(T0)。根據(jù)草魚的生長(zhǎng)規(guī)律及營(yíng)養(yǎng)需求,制定草魚幼魚飼料配方,飼料成分如表1所示。飼料原料主要包括:面粉、豆粕、菜籽粕、魚粉、棉粕、米糠粕、豆油、大豆磷脂等。所有原料粉碎后,再過40目篩,按照飼料配方表,添加不同劑量的DBDPE,然后用商用飼料攪拌機(jī)(A-200T Mixer Bench Model unit, Russel Food Equipment Ltd., Ottawa, Ont. Canada)充分混勻30 min,邊攪拌邊慢慢加入豆油和水分,最后用單螺桿膨化機(jī)制成粒徑為1.5 mm的顆粒狀飼料,自然風(fēng)干至水分含量少于10%,然后用封口塑料袋分裝,儲(chǔ)存于-20 ℃的冰柜中備用。
表1 草魚幼魚暴露試驗(yàn)飼料配方(%)
注:*T0,對(duì)照組;T1,低劑量組(500 mg·kg-1);T2,中劑量組(1 000 mg·kg-1);T3,高劑量組(3 000 mg·kg-1)。
Note:*T0, Control group; T1, Low-dose group (500 mg·kg-1); T2, Medial-dose group (1 000 mg·kg-1); T3, High-dose group (3 000 mg·kg-1).
草魚幼魚暫養(yǎng)結(jié)束后開始正式實(shí)驗(yàn)。挑選規(guī)格一致的480尾健康幼魚,放養(yǎng)在16個(gè)水族缸中,每缸放30尾。每組飼料隨機(jī)投喂給4個(gè)水族缸。試驗(yàn)開始時(shí)草魚幼魚體重3.40 g左右。每天分別在10:00和16:00投喂自行配制的飼料2次(含不同濃度DBDPE),投飼量為草魚幼魚體重的5%。每2周稱魚體重1次跟蹤其生長(zhǎng)情況,并相應(yīng)調(diào)整投喂量。試驗(yàn)過程中每2天換水1次。溶解氧、溫度、pH等水質(zhì)參數(shù)符合魚類正常生長(zhǎng)需求。暴露時(shí)間為8周。DBDPE暴露期內(nèi),盡量避免草魚幼魚死亡。如有死亡現(xiàn)象,及時(shí)撈出并補(bǔ)充。
圖1 試驗(yàn)結(jié)束時(shí)不同DBDPE劑量暴露組草魚幼魚體長(zhǎng)Fig. 1 The final body length of juvenile grass carp in different DBDPE exposure groups
圖2 試驗(yàn)開始和試驗(yàn)結(jié)束時(shí)不同DBDPE劑量暴露組草魚幼魚體重Fig. 2 The initial and final body weight of juvenile grass carp in different DBDPE exposure groups
1.2.2 樣品處理及氧化應(yīng)激酶(SOD、CAT和GSH-PX)活性和抗氧化物質(zhì)(GSH)含量測(cè)定
暴露試驗(yàn)結(jié)束后,每組隨機(jī)挑選6尾草魚幼魚,置于50 mg·L-1MS222溶液中30秒,麻醉后迅速撈出,測(cè)量草魚幼魚體重和體長(zhǎng),結(jié)果如圖1和圖2所示。然后解剖草魚幼魚,取其肌肉和肝臟等組織。草魚幼魚肌肉和肝臟組織液氮速凍后保存于-80 ℃冰箱,用于氧化應(yīng)激酶活性分析。超氧化物歧化酶(SOD)、過氧化氫酶(CAT)、谷胱甘肽過氧化物酶(GSH-PX)和谷胱甘肽(GSH)測(cè)定參照南京建成生物科技有限公司的試劑盒說明書進(jìn)行。
1.3 數(shù)據(jù)統(tǒng)計(jì)與分析
實(shí)驗(yàn)結(jié)果均采用平均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示,測(cè)定數(shù)據(jù)采用SPSS19.0 (SPSSInc., Chicago, IL, USA)進(jìn)行統(tǒng)計(jì)分析。采用ANOVA方法分析DBDPE暴露組與對(duì)照組之間的差異,分析的差異顯著性水平為0.05。
2.1 DBDPE對(duì)草魚幼魚肝臟和肌肉組織中SOD活性的影響
研究結(jié)果如圖3所示,DBDPE暴露8周后,不同劑量DBDPE暴露對(duì)草魚幼魚肝臟和肌肉組織中SOD活性的影響不同。DBDPE對(duì)草魚幼魚肝臟組織中SOD活性呈現(xiàn)先誘導(dǎo)后抑制的作用,T1組和T2組草魚幼魚肝臟組織中SOD活性分別為345.0 U·g-1和321.3 U·g-1,是對(duì)照組的2.52和2.35倍,顯著高于對(duì)照組(P<0.05)。T3組草魚肝臟組織中SOD活性(109.8 U·g-1)則顯著低于T1和T2暴露組,稍低于對(duì)照組,但與對(duì)照組無顯著性差異(P>0.05)。DBDPE對(duì)草魚幼魚肌肉組織中SOD活性影響甚微,3個(gè)暴露組SOD活性與對(duì)照組均無顯著性差異(P>0.05)。
2.2 DBDPE對(duì)草魚幼魚肝臟和肌肉組織中CAT活性的影響
DBDPE暴露對(duì)草魚幼魚肝臟組織中CAT活性的影響與其對(duì)SOD活性的影響相似,也是呈現(xiàn)中低濃度暴露誘導(dǎo)高濃度暴露抑制的趨勢(shì)(圖3)。T1和T2暴露組草魚幼魚肝臟組織中CAT活性相比對(duì)照組顯著升高(P<0.05),CAT活性分別為0.112和0.099 U·g-1。T3暴露組草魚幼魚肝臟組織中CAT活性則受到抑制,最終降低至0.049 U·g-1,與對(duì)照組相比抑制率為7.9%,但無顯著性差異(P>0.05)。草魚幼魚暴露組肌肉組織中CAT活性與對(duì)照組相比沒有顯著性差異(P>0.05)。
2.3 DBDPE對(duì)草魚幼魚肝臟和肌肉組織中GSH-PX活性的影響
DBDPE暴露8周后,草魚幼魚肝臟組織GSH-PX活性在T1和T2暴露組表現(xiàn)為誘導(dǎo),應(yīng)激性升高,在T3暴露組酶活性降低,呈現(xiàn)抑制作用。T1暴露組中草魚肝臟GSH-PX活性最高(128.8 pmol·g-1),顯著誘導(dǎo)了GSH-PX活性(P<0.05),比對(duì)照組升高204.5%;T2暴露組GSH-PX活性(95.4 pmol·g-1)雖顯著低于T1暴露組(P<0.05),但仍顯著高于對(duì)照組(42.3 pmol·g-1)(P<0.05)。T3暴露組GSH-PX活性降低為36.0 pmol·g-1,與對(duì)照組相比抑制率為15.0%,但是無顯著性差異(P>0.05)。草魚幼魚肌肉組織中GSH-PX活性隨著DBDPE暴露濃度的升高呈現(xiàn)降低的趨勢(shì)。T1暴露組GSH-PX活性和對(duì)照組無顯著性差異(P>0.05),而T2和T3暴露組GSH-PX活性低于對(duì)照組,抑制率分別為14.7%和11.4%(P<0.05)。
2.4 DBDPE對(duì)草魚幼魚肝臟和肌肉組織中GSH含量的影響
DBDPE暴露使草魚幼魚肝臟組織中GSH的含量呈現(xiàn)先升高后降低的趨勢(shì)(圖3)。T1和T2暴露組草魚幼魚肝臟組織中GSH含量比對(duì)照組顯著升高了130.4%和121.8%(P<0.05),而T3暴露組中GSH含量降低,顯著低于T1暴露組(P<0.05),但與對(duì)照組相比沒有顯著性差異(P>0.05)。草魚幼魚肌肉組織中,對(duì)照組GSH含量為1.12 ng·g-1,暴露組(T1、T2、T3)GSH含量分別為1.09 ng·g-1、1.12 ng·g-1和1.10 ng·g-1,對(duì)照組和暴露組之間沒有顯著差異(P>0.05)。
圖3 不同DBDPE暴露水平對(duì)草魚幼魚肝臟和肌肉組織中氧化應(yīng)激酶(SOD、CAT和GSH-PX)和抗氧化物質(zhì)(GSH)的影響Fig. 3 Effect of exposure to DBDPE on SOD, CAT, GSH-PX activities and GSH level in liver and muscle of juvenile grass carp
目前國(guó)內(nèi)外針對(duì)DBDPE毒理學(xué)研究較少,且已有的研究結(jié)果不一致,DBDPE對(duì)水生生物的危害機(jī)理至今還沒有明確的結(jié)論[1,15-17]。如Hardy等[1]研究表明110 mg·L-1DBDPE暴露不會(huì)對(duì)3種水生生物(魚、海藻、水蚤)產(chǎn)生急性毒性,但Nakari和Huhtala[15]則發(fā)現(xiàn)DBDPE暴露不僅可對(duì)水蚤造成急性毒性,還會(huì)影響斑馬魚的生殖生理機(jī)制。鑒于其在環(huán)境中的穩(wěn)定性和持久性,開展DBDPE對(duì)水生生物危害研究具有重要意義。
外源性化學(xué)物質(zhì)進(jìn)入機(jī)體,在正常生理?xiàng)l件下,機(jī)體會(huì)產(chǎn)生相應(yīng)抗氧化防御機(jī)制,來對(duì)抗活性中間體的損傷,使活性中間體和自由基在不斷產(chǎn)生的同時(shí)也被不斷的清除,維持機(jī)體平衡。但是如果活性中間代謝物在體內(nèi)過度積累,就會(huì)造成有機(jī)體防御功能紊亂??寡趸烙到y(tǒng)的活性成分或含量會(huì)因污染物的脅迫而發(fā)生改變,因而可間接反映環(huán)境中污染物的存在[18]。氧化應(yīng)激酶活性與生物的免疫水平密切相關(guān)[19]。SOD、CAT、GSH-PX和GSH是機(jī)體內(nèi)最主要的抗氧化酶和抗氧化物質(zhì)。SOD可催化超氧陰離子自由基轉(zhuǎn)化為H2O2和O2,在維持生物體內(nèi)的自由基產(chǎn)生和消除的動(dòng)態(tài)平衡中起重要作用。CAT可催化細(xì)胞內(nèi)H2O2分解為水和氧分子,在減輕活性氧對(duì)機(jī)體細(xì)胞的氧化損傷中起著重要的調(diào)節(jié)作用。GSH-PX也可分解H2O2,當(dāng)機(jī)體內(nèi)CAT含量很少或是在H2O2很低的組織中可代替CAT清除H2O2,不僅可以清除脂類氫過氧化物,還可廣泛的清除有機(jī)氫過氧化物[20]。SOD、CAT和GSH-PX活性的變化可以間接反應(yīng)生物體在環(huán)境的改變下體內(nèi)的抗氧化狀態(tài),均可作為機(jī)體受到脅迫的生物標(biāo)志物。
本文研究結(jié)果表明,DBDPE的暴露會(huì)影響草魚幼魚肝臟和肌肉組織的抗氧化防御系統(tǒng)。隨著DBDPE暴露水平的升高,草魚幼魚肝臟組織中氧化應(yīng)激酶(SOD、CAT和GSH-PX)和抗氧化物質(zhì)(GSH)均表現(xiàn)出低濃度誘導(dǎo)及高濃度抑制效應(yīng)。肌肉組織中GSH-PX酶活性則在高濃度DBDPE暴露下受到抑制。這可能是由于機(jī)體可以通過有效的抗氧化防御機(jī)制來調(diào)節(jié)氧自由基的平衡。當(dāng)生物體受到環(huán)境輕度污染脅迫時(shí),魚體內(nèi)產(chǎn)生活性氧自由基,抗氧化酶活性升高,發(fā)揮作用,抵御和適應(yīng)過氧化對(duì)機(jī)體的不利影響;而當(dāng)受到環(huán)境重度污染脅迫時(shí),機(jī)體產(chǎn)生大量氧自由基,超過了機(jī)體抗氧化酶的清除能力,抗氧化酶活性受到抑制,導(dǎo)致肝組織損傷使生物體內(nèi)積累過量的活性氧,從而使生物體受到損害[21-22]。上述現(xiàn)象在以往的研究中也有發(fā)現(xiàn)。有研究報(bào)道DBDPE的結(jié)構(gòu)類似物BDE-209可以誘導(dǎo)紫紅笛鯛產(chǎn)生氧化應(yīng)激效應(yīng)。研究發(fā)現(xiàn)2、10、50及250 μg·L-14個(gè)暴露濃度條件下,BDE-209可以顯著促進(jìn)紫紅笛鯛鰓組織中SOD和CAT活性,且隨著暴露時(shí)間延長(zhǎng)CAT活性呈現(xiàn)逐漸增加的趨勢(shì)[19]。聶鳳琴等[23-24]采用5.6~100.0 mg·L-1的BDE-209處理鯽魚肝臟組織30 min,發(fā)現(xiàn)各試驗(yàn)組SOD、CAT和GSH-PX活性隨著BDE-209暴露濃度的增加而下降。王桂燕等[25]則發(fā)現(xiàn)草魚肝胰臟SOD活性在四氯乙烯脅迫時(shí)呈現(xiàn)低濃度誘導(dǎo)高濃度抑制的效應(yīng),而腎臟SOD活性則在暴露24 h和48 h時(shí)低濃度時(shí)受到抑制高濃度時(shí)被誘導(dǎo)。孫夢(mèng)蝶等[26]研究表明暴露于10 μg·L-1多氯聯(lián)苯中的大彈涂魚SOD活性明顯大于對(duì)照組和100 μg·L-1劑量組(P<0.05),且多氯聯(lián)苯暴露組中的大彈涂魚CAT活性均高于對(duì)照組;該研究還發(fā)現(xiàn)暴露于100 μg·L-1劑量組的大彈涂魚GSH-PX活性明顯高于其他組,表明較高濃度多氯聯(lián)苯對(duì)大彈涂魚GSH-PX活性有較好的誘導(dǎo)作用。Feng等[16]研究發(fā)現(xiàn)DBDPE暴露可影響鯽魚肝臟組織的抗氧化防御系統(tǒng),且氧化應(yīng)激酶活性的改變和染毒劑量及暴露時(shí)間有關(guān)。10 mg·kg-1DBDPE暴露7、14、30 d和50 mg·kg-1暴露7、30 d以及100 mg·kg-1暴露7、14 d均可造成鯽魚肝臟組織中SOD和CAT活性明顯降低(P<0.01);而50 mg·kg-1暴露14 d和100 mg·kg-1暴露30 d的鯽魚肝臟組織中SOD活性則顯著升高(P<0.01)。本文研究結(jié)果與Feng等的研究結(jié)果不完全一致,可能與受試物種及暴露方式不同有關(guān)。Feng等的研究是將DBDPE溶于玉米油中配成不同的濃度,再通過腹腔注射的方式對(duì)鯽魚進(jìn)行DBDPE暴露,DBDPE更容易被魚體吸收,而本試驗(yàn)是以飼料添加的方式對(duì)草魚幼魚進(jìn)行暴露。另外,試驗(yàn)結(jié)束后,血清學(xué)指標(biāo)檢測(cè)結(jié)果顯示:T3劑量暴露組(3 000 mg·kg-1)草魚幼魚血清中低密度脂蛋白(LDL)、高密度脂蛋白(HDL)、膽固醇(TC)及葡萄糖(GLU)等濃度最低,隨著DBDPE暴露濃度的增加,上述血清學(xué)指標(biāo)有逐漸下降的趨勢(shì)。肝臟組織切片結(jié)果顯示:T3劑量暴露組(3 000 mg·kg-1)草魚幼魚肝臟細(xì)胞直徑最大,肝細(xì)胞出現(xiàn)腫大現(xiàn)象,這說明DBDPE對(duì)草魚幼魚肝臟毒性比較明顯。綜上所述,本研究研究成果在一定程度上證實(shí)了DBDPE對(duì)草魚幼魚產(chǎn)生氧化脅迫效應(yīng),而且肌肉和肝臟組織表現(xiàn)完全不同的脅迫效應(yīng),肝臟毒性效應(yīng)明顯。草魚幼魚肝臟組織中SOD、CAT和GSH-PX活性以及GSH含量可以較好的表征其受到的DBDPE脅迫效應(yīng)。
[1] Hardy M L, Krueger H O, Blankinship A S, et al. Studies and evaluation of the potential toxicity of decabromodiphenyl ethane to five aquatic and sediment organisms [J]. Ecotoxicology and Environmental Safety, 2012, 75(1): 73-79
[2] Kierkegaard A, Sellstrom U, McLachlan M S. Environmental analysis of higher brominated diphenyl ethers and decabromodiphenyl ethane [J]. Journal of Chromatography A, 2009, 1216(3): 364-375
[3] Venier M, Hites R A. Flame retardants in the atmosphere near the Great Lakes [J]. Environmental Science & Technology, 2008, 42(13): 4745-4751
[4] Covaci A, Harrad S, Abdallah M A E, et al. Novel brominated flame retardants: A review of their analysis, environmental fate and behavior [J]. Environment International, 2011, 37(2): 532-556
[5] Law K, Halldorson T, Danell R, et al. Bioaccumulation and trophic transfer of some brominated flame retardants in a Lake Winnipeg (Canada) food web [J]. Environmental Toxicology and Chemistry, 2006, 25(8): 2177-2186
[6] Gauthier L T, Potter D, Hebert C E, et al. Temporal trends and spatial distribution of non-polybrominated diphenyl ether flame retardants in the eggs of colonial populations of Great Lakes herring gulls [J]. Environmental Science & Technology, 2009, 43(2): 312-317
[7] Zhang X L, Luo X J, Chen S J, et al. Spatial distribution and vertical profile of polybrominated diphenyl ethers, tetrabromobisphenol A, and decabromodiphenyl ethane in river sediment from an industrialized region of South China [J]. Environmental Pollution, 2009, 157(6): 1917-1923
[8] Tian M, Chen S J, Wang J, et al. Atmospheric deposition of halogenated flame retardants at urban, e-waste, and rural locations in Southern China [J]. Environmental Science & Technology, 2011, 45(11): 4696-4701
[9] Li W, Zhu L, Zha J, et al. Effects of decabromodiphenyl ether (BDE-209) on mRNA transcript ion of thyroid hormone pathway and spermatogenesis associated genes in Chinese rareminnow (Gobiocypris rarus) [J]. Environmental Toxicology, 2014, 29(1): 1-9
[10] Noyes P D, Hinton D E, Stapleton H M. Accumulation and debromination of decabromodiphenylether (BDE-209) in juvenile fathead minnows (Pimephales promelas) induces thyroid disruption and liver alterations [J]. Toxicological Sciences, 2011, 122(2): 265-274
[11] Qin X, Xia X, Yang Z, et al. Thyroid disruption by technical decabromodiphenyl ether (DE-83R) at low concentrations in Xenopus laevis [J]. Journal of Environmental Sciences, 2010, 22(5): 744-751
[12] Wang F X, Wang J, Dai J Y, et al. Comparative tissue distribution, biotransformation and associated biological effects by decabromodiphenyl ethane and decabrominated diphenyl ether in male rats after a 90-day oral exposure study [J]. Environmental Science &Technology, 2010, 44(14): 5655-5660
[13] Tseng L H, Li M H, Tsai S S, et al. Developmental exposure to decabromodiphenyl ether (BDE-209): Effects on thyroid hormone and hepatic enzyme activity in male mouse offspring [J]. Chemosphere, 2008, 70(4): 640-647
[14] Lee E, Kim T H, Choi J S, et al. Evaluation of liver and thyroid toxicity in Sprague-Dawley rats after exposure to polybrominated diphenyl ether BDE-209 [J]. The Journal of Toxicological Sciences, 2010, 35(4): 535-545
[15] Nakari T, Huhtala S. In vivo and in vitro toxicity of decabromodiphenyl ethane, a flame retardant [J]. Environmental Toxicology, 2010, 25(4): 333-338
[16] Feng M, Li Y, Qu R, et al. Oxidative stress biomarkers in freshwater fish (Carassius auratus) exposed to decabromodiphenyl ether and ethane, or their mixture [J]. Ecotoxicology, 2013, 22(7): 1101-1110
[17] Feng M, Qu R, Wang C, et al. Comparative antioxidant status in freshwater fish (Carassius auratus) exposed to six current-use brominated flame retardants: A combined experimental and theoretical study [J]. Aquatic Toxicology, 2013, 140-141(9): 314-323
[18] Diguiseppi J L, Fridovich I. Induction of superoxide dismutases in Escheriehia coli by manganese and iron [J]. Journal of Bacteriology, 1984, 160(1):137-142
[19] 張喆, 王學(xué)鋒, 馬勝偉, 等. 十溴聯(lián)苯醚(BDE-209)對(duì)紫紅笛鯛鰓抗氧化酶活性的影響[J]. 生態(tài)毒理學(xué)報(bào), 2013, 8(1): 42-48
Zhang Z, Wang X F, Ma S W, et al. Effects of decabromodiphenyl ether (BDE-209) on antioxidant enzyme activities in gills of Lutjanus argentimaculatus [J]. Asian Journal of Ecotoxicology, 2013, 8(1): 42-48 (in Chinese)
[20] 亢玉靜, 郎明遠(yuǎn), 趙文. 水生生物體內(nèi)抗氧化酶及其影響因素研究進(jìn)展[J]. 微生物學(xué)雜志, 2013, 33(3): 75-80
Kang Y J, Lang M Y, Zhao W. Advance in antioxidant enzymes and its effect factors in aquatic organisms [J]. Journal of Microbiology, 2013, 33(3): 75-80 (in Chinese)
[21] Zhang X, Yang F X, Zhang X L, et al. Induction of hepatic enzymes and oxidative stress in Chinese rare minnow (Gobiocypris rarus) exposed to waterborne hexabromocyclododecane (HBCDD) [J]. Aquatic Toxicology, 2008, 86(1): 4-11
[22] Li Z H, Zlabek V, Velisek J, et al. Modulation of antioxidantdefence system in brain of rainbow trout (oncorhynchus mykiss) after chronic carbamazepine treatment [J]. Comparative Biochemistry and Physiology, 2010, 151(1): 137-141
[23] 聶鳳琴, 瞿建宏, 楊光, 等. 離體條件下十溴聯(lián)苯醚暴露對(duì)鯽魚肝臟線粒體的氧化損傷[J]. 安全與環(huán)境學(xué)報(bào), 2008, 8(5): 5-8
Nie F Q, Qu J H, Yang G, et al. Oxidative damage of decabromodiphenyl ether to the mitochondria from the liver of Carassius auratus in vitro [J]. Journal of Safety and Environment, 2008, 8(5): 5-8 (in Chinese)
[24] 吳偉, 聶鳳琴, 瞿建宏. 多溴聯(lián)苯醚對(duì)鯽魚離體肝臟組織中CAT和GSH-PX的影響[J]. 生態(tài)環(huán)境學(xué)報(bào), 2009, 18(2): 408-413
Wu W, Nie F Q, Qu J H. The in vitro effects of tetrabromodiphenyl ether and decabromodiphenyl ether on the activities of catalase and glutathione peroxidase in the liver of Carassius auratus [J]. Ecology and Environmental Sciences, 2009, 18(2): 408-413 (in Chinese)
[25] 王桂燕, 李鋒, 史濟(jì)月, 等. 四氯乙烯脅迫對(duì)草魚抗氧化酶活性的影響及其機(jī)理[J]. 中國(guó)環(huán)境科學(xué), 2014, 34(6): 1579-1585
Wang G Y, Li F, Shi J Y, et al. Effect of perchloroethylene on activities of antioxidant enzyme in grass carp and its mechanism [J]. China Environmental Science, 2014, 34(6): 1579-1585 (in Chinese)
[26] 孫夢(mèng)蝶, 馬滿華, 張倩, 等. 多氯聯(lián)苯對(duì)大彈涂魚的急性毒性以及氧化應(yīng)激[J]. 河北漁業(yè), 2010, 6: 1-3
Sun M D, Ma M H, Zhang Q, et al. Effects of PCBs on acute toxication and oxidative stress in Boleophthalmus pectinirostris [J]. He-Bei Fisheries, 2010, 6: 1-3 (in Chinese)
◆
Oxidative Stress Effects of Decabromodiphenylethane on the Liver and Muscle Tissues of Juvenile Grass Carp (Ctenopharyngodonidellus)
Han Qian1,3, Zhang Lijuan1, Hu Guocheng1,*, Yu Yunjiang1, Gan Lian2, Cui Ke2, Huang Chushan1
1. South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China; 2. South China Agricultural University, Guangzhou 510655, China 3. State Environmental Protection Key Laboratory of Drinking Water Source Management and Technology, Shenzhen Key Laboratory of Water Source Protection, Shenzhen Academy of Environmental Sciences, Shenzhen 518001, China
The risk of decabromodiphenyl ethane (DBDPE) has become a raising concern due to its wide use as a brominated flame retardant, however, the toxicity of DBDPE on aquatic species was rarely studied. The effects of DBDPE on the activities of SOD, CAT, and GSH-PX and GSH content in liver and muscle tissues of juvenile grass carp (Ctenopharyngodon idellus) were investigated by feeding the fish with food contaminated at three concentration of 500, 1 000 and 3 000 mg·kg-1. In addition, a control group was also included. Results showed that the activities of SOD, CAT, and GSH-PX and GSH content in the tissues of fish were all enhanced at low concentration but inhibited at high concentration after 8-week exposure to DBDPE. The activities of SOD, CAT, and GSH-PX and GSH content in the liver tissues of the grass carp being exposed to DBDPE at 500 and 1 000 mg·kg-1were significantly higher than the control (P<0.05), and the highest activities were observed at the exposure concentration of 500 mg·kg-1. Conversely, the activities of SOD, CAT, and GSH-PX and GSH content in the liver tissues of the fish being exposed to 3 000 mg·kg-1were not significantly different from the control (P>0.05). The effects of DBDPE on the activities of SOD, CAT, and GSH-PX and GSH content in the muscle tissues were limited. There was no significant difference between the activities of DBDPE-exposed and control groups (P>0.05). It was concluded that DBDPE exposure would induce oxidative stress in the liver tissues of juvenile grass carp.
decabromodiphenyl ethane; juvenile grass carp; oxidative stress; liver; muscle
10.7524/AJE.1673-5897.20150715004
國(guó)家自然科學(xué)基金青年基金(21107028,31202007);國(guó)家自然科學(xué)基金面上項(xiàng)目(21377045);廣東省自然科學(xué)基金(2014A030310002)
韓倩(1986-),女,博士,助理研究員,研究方向?yàn)榄h(huán)境與健康,E-mail:hanqian@scies.org
*通訊作者(Corresponding author), E-mail: huguocheng@scies.org
2015-07-15 錄用日期:2015-09-17
1673-5897(2016)2-680-07
X171.5
A
簡(jiǎn)介:胡國(guó)成(1978—),男,生態(tài)學(xué)博士,高級(jí)工程師,主要研究方向?yàn)樗鷳B(tài)毒理學(xué)、環(huán)境與健康、環(huán)境健康風(fēng)險(xiǎn)評(píng)價(jià),發(fā)表學(xué)術(shù)論文30余篇。
韓倩, 張麗娟, 胡國(guó)成, 等. 十溴二苯乙烷對(duì)草魚幼魚肝臟和肌肉組織氧化應(yīng)激效應(yīng)的影響[J]. 生態(tài)毒理學(xué)報(bào),2016, 11(2): 680-686
Han Q, Zhang L J, Hu G C, et al. Oxidative stress effects of decabromodiphenylethane on the liver and muscle tissues of juvenile grass carp (Ctenopharyngodon idellus) [J]. Asian Journal of Ecotoxicology, 2016, 11(2): 680-686 (in Chinese)