国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

淺談數(shù)學(xué)建模思想如何在高中數(shù)學(xué)教學(xué)中滲透

2016-11-24 12:34李林
內(nèi)蒙古教育·基教版 2016年10期
關(guān)鍵詞:建模思想高中數(shù)學(xué)

李林

摘 要:數(shù)學(xué)作為一門相對抽象的科學(xué),不僅對學(xué)生學(xué)習(xí)來說是個挑戰(zhàn),對于老師的教學(xué)來說也有一定的難度。基于學(xué)生對數(shù)學(xué)知識理解的困惑,以及建模方法在應(yīng)對數(shù)學(xué)問題中的優(yōu)勢,通過由淺入深的建模教學(xué)引導(dǎo),幫助他們掌握數(shù)學(xué)建模的有效方法,升華數(shù)學(xué)思想。

關(guān)鍵詞:高中數(shù)學(xué);建模思想;教法創(chuàng)新

【中圖分類號】G 【文獻標(biāo)識碼】B 【文章編號】1008-1216(2016)10B-0034-01

新一輪的課程改革將數(shù)學(xué)建模納入課標(biāo),這意味著數(shù)學(xué)建模正式進入高中課堂。但是當(dāng)下的高中建模學(xué)習(xí)開展存在一定障礙:一方面是基于學(xué)生對數(shù)學(xué)基礎(chǔ)知識的掌握不扎實,另一方面是教師教學(xué)方法與建模思想的融合不夠密切,對數(shù)學(xué)建模活動的重視和投入不夠。但是我們必須認識到數(shù)學(xué)建模思想在學(xué)生數(shù)學(xué)思維培養(yǎng)、應(yīng)對實際問題中的積極作用,所以應(yīng)結(jié)合實際,采取有效的措施在高中課堂推進數(shù)學(xué)建模思想。

一、幫助學(xué)生夯實數(shù)學(xué)基礎(chǔ),增強建模信心

在應(yīng)試教育背景下,同學(xué)們對數(shù)學(xué)知識的學(xué)習(xí)還停留在對方法的學(xué)習(xí)、對公式的運用、對簡單實際問題應(yīng)對的階段,數(shù)學(xué)知識的系統(tǒng)性和實際問題的數(shù)學(xué)思維轉(zhuǎn)化能力較差。這一現(xiàn)狀對數(shù)學(xué)建模思想在課堂的融入產(chǎn)生了極大的阻礙,因為建模思想是一個要求知識全面、對數(shù)學(xué)思維轉(zhuǎn)化要求敏捷的學(xué)習(xí)方法。所以老師應(yīng)幫助同學(xué)掌握基礎(chǔ)知識,構(gòu)建知識網(wǎng)絡(luò)。

例如,在三角函數(shù)的學(xué)習(xí)中,傳統(tǒng)的教學(xué)方法是通過正弦函數(shù)、余弦函數(shù)、正切函數(shù)的定義講解,以及它們在特定條件下的變化規(guī)律,結(jié)合數(shù)學(xué)計算題目進行鞏固。在這個學(xué)習(xí)過程中,同學(xué)們往往更注重公式的記憶和解題中的套用,忽略了三角函數(shù)間的內(nèi)在規(guī)律。所以我們倡導(dǎo)老師引導(dǎo)學(xué)生將三角函數(shù)的學(xué)習(xí)與數(shù)學(xué)坐標(biāo)中圓的位置關(guān)系聯(lián)合起來理解,由常見角的函數(shù)推及特殊角函數(shù)值,通過函數(shù)圖像位置遷移引入周期函數(shù),由周期函數(shù)的特征規(guī)律引導(dǎo)學(xué)習(xí)三角函數(shù)的誘導(dǎo)公式……由淺入深建立一個學(xué)習(xí)框架,在學(xué)生大腦中形成知識網(wǎng)格。

如果能將數(shù)學(xué)的每個知識點都以立體形象的方式鐫刻在學(xué)生的大腦當(dāng)中,那么在應(yīng)對實際問題時,他們就會自主地對題目信息進行有效過濾和匹配,為搭建數(shù)學(xué)模型做好鋪墊。同時知識網(wǎng)絡(luò)為建模的思維過程提供支持,強化了學(xué)生的建模自信心,為建模教學(xué)的開展打下基礎(chǔ)。

二、幫助學(xué)生科學(xué)轉(zhuǎn)化,搭建“數(shù)與?!钡臉蛄?/p>

數(shù)學(xué)建模思想用來解決實際問題,先是一個將實際問題抽象,構(gòu)建數(shù)學(xué)模型,再用數(shù)學(xué)方法求解模型的過程。這個過程不僅是一個歸納的過程,而且是一個思維轉(zhuǎn)化的過程。這就需要在解決實際問題的教學(xué)中,注重培養(yǎng)學(xué)生利用數(shù)學(xué)思維應(yīng)對實際問題的能力,建立起數(shù)學(xué)與實際應(yīng)用的關(guān)系。

同樣以一道與三角函數(shù)相關(guān)的問題為例:某雨水水量監(jiān)測系統(tǒng)記錄梅雨季節(jié)某市全天水位y(mm)是時間t(0≤t≤24,單位為小時)的函數(shù),可表示為y=f(t)。

經(jīng)長時間的計算,y=f(t)的曲線可以近似看成函數(shù)y=Asinωt+b的圖像。求y=f(t)的表達式,當(dāng)降雨水位達11.5mm時全市實行藍色預(yù)警,問全天實行藍色預(yù)警多長時間?分析本題可知,它是一道三角函數(shù)用于解決實際問題的題目。首先進行抽象的概括,由已知條件構(gòu)建函數(shù)等式;然后利用函數(shù)運算性質(zhì)解決函數(shù)模型;最后得出函數(shù)結(jié)論,還原說明實際問題。解得:;,求解出t值為1。

可見利用數(shù)學(xué)模型應(yīng)對實際問題的過程,由兩個步驟組成:一是由具體情景抽象為數(shù)學(xué)模型的過程,這個步驟要求我們有效提取題干的信息,構(gòu)建準(zhǔn)確的數(shù)學(xué)模型;二是利用數(shù)學(xué)知識解決數(shù)學(xué)題目的過程,在這個步驟中需要我們科學(xué)運用公式、定理,結(jié)合實際情況的限定完成定性和定量分析。

三、幫助學(xué)生創(chuàng)設(shè)學(xué)習(xí)條件,鼓勵學(xué)生建模實踐

老師可以幫助學(xué)生創(chuàng)設(shè)數(shù)學(xué)建模的學(xué)習(xí)環(huán)境,指導(dǎo)學(xué)生參與實際的生產(chǎn)活動,發(fā)掘其中蘊含的數(shù)學(xué)知識;組織同學(xué)進行題目的剖析實踐,歸納其中可以運用的數(shù)學(xué)模型。

例如,對三角函數(shù)的學(xué)習(xí)我們得知它是一個數(shù)學(xué)中常用的函數(shù)模型,那么在實際的應(yīng)用中它可能是測量摩天大樓高度的“標(biāo)尺”,還可能是物理應(yīng)用中電壓或電流的數(shù)值關(guān)系、還可能是化學(xué)反應(yīng)中的反應(yīng)進程。讓學(xué)生親自去勘測、去記錄、去運算、去總結(jié)實際中數(shù)學(xué)模型的應(yīng)用過程,直觀地幫助他們認識數(shù)學(xué)模型。

可見數(shù)學(xué)建模情形的設(shè)計可以激發(fā)學(xué)生的學(xué)習(xí)興趣,數(shù)學(xué)建模的實踐活動可以培養(yǎng)抽象思維和數(shù)學(xué)思維的轉(zhuǎn)化邏輯。在這一系列的實踐中潛移默化增進了學(xué)生對題目分析的能力、實際問題與數(shù)學(xué)知識的匹配能力、數(shù)學(xué)模型的構(gòu)建能力和運用數(shù)學(xué)知識解決問題的能力。

綜上所述,數(shù)學(xué)建模思維的建立不僅需要學(xué)生努力,也需要老師的教法引導(dǎo),還需要實踐活動的充實。無論對學(xué)生還是老師,建模思想對于數(shù)學(xué)知識的掌握、數(shù)學(xué)理論的運用、實際問題的解決都有著重要的應(yīng)用價值。所以作為一線教師,我們應(yīng)該幫助學(xué)生打牢知識基礎(chǔ)、理順?biāo)季S轉(zhuǎn)換方式、創(chuàng)設(shè)建模實踐條件,幫助學(xué)生學(xué)習(xí)好、掌握好、應(yīng)用好數(shù)學(xué)建模思想,為學(xué)科的發(fā)展,作出自己的貢獻。

參考文獻:

唐海軍,朱維宗,李紅梅.高中生數(shù)學(xué)建模思想學(xué)習(xí)現(xiàn)狀的調(diào)查研究[J].成都師范學(xué)院學(xué)報,2014,(5).

猜你喜歡
建模思想高中數(shù)學(xué)
“數(shù)學(xué)思想”在教學(xué)中的演繹
在初中數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生數(shù)學(xué)建模能力初探
高中數(shù)學(xué)教學(xué)中的“情景—問題”教學(xué)模式研究
分層教學(xué)在高中數(shù)學(xué)中的研究
高中數(shù)學(xué)數(shù)列教學(xué)中的策略選取研究
調(diào)查分析高中數(shù)學(xué)課程算法教學(xué)現(xiàn)狀及策略
基于新課程改革的高中數(shù)學(xué)課程有效提問研究
數(shù)學(xué)歸納法在高中數(shù)學(xué)教學(xué)中的應(yīng)用研究
高等數(shù)學(xué)教學(xué)探究
平凉市| 彰化市| 车险| 凯里市| 仙游县| 肃南| 庄河市| 汝州市| 射洪县| 霍州市| 巫溪县| 体育| 兴业县| 宜宾市| 蒙山县| 吴川市| 湖南省| 荣成市| 庆元县| 永康市| 洞口县| 虎林市| 扬州市| 河北省| 河源市| 萝北县| 嘉峪关市| 志丹县| 广东省| 运城市| 南华县| 德化县| 勐海县| 娄烦县| 竹山县| 德格县| 涿州市| 庄河市| 辽阳县| 布尔津县| 博野县|