曹丹丹 王 東 楊 雪 郭 璇 牛紅玉
(華中師范大學(xué)生命科學(xué)學(xué)院, 地理過(guò)程分析與模擬湖北省重點(diǎn)實(shí)驗(yàn)室, 武漢 430079)
泥沙埋深對(duì)苦草和微齒眼子菜及兩物種混合分解的影響
曹丹丹 王 東 楊 雪 郭 璇 牛紅玉
(華中師范大學(xué)生命科學(xué)學(xué)院, 地理過(guò)程分析與模擬湖北省重點(diǎn)實(shí)驗(yàn)室, 武漢 430079)
為探討泥沙淤積對(duì)水生植物分解的影響, 研究了沉水植物苦草(Vallisneria natans)、微齒眼子菜(Potamogeton maackianus)及兩物種混合在底泥中不同埋深(0 和5 cm)的分解速率和養(yǎng)分動(dòng)態(tài), 實(shí)驗(yàn)周期為117d。結(jié)果顯示:(1)在0和5 cm埋深處理下, 苦草、微齒眼子菜及兩物種混合的分解速率均表現(xiàn)為苦草最快, 微齒眼子菜最慢, 物種混合介于兩單種之間。與0 cm處理相比, 在5 cm埋深處理下苦草、微齒眼子菜及兩物種混合的分解速率顯著降低(P<0.05)??嗖菰?和5 cm埋深處理下分解35天后干重剩余率分別為0和43.51%、在5 cm處理下分解82d后干重剩余率為0。微齒眼子菜和兩物種混合在5 cm埋深處理下分解117d后的干重剩余率分別提高了31.09%和37.44%。(2)與0 cm處理相比, 5 cm埋深處理顯著抑制苦草、微齒眼子菜及兩物種混合的N、P釋放??嗖菰?和 5 cm埋深處理下分解35天后N剩余率分別為0和31.28%、P剩余率分別為0和24.45%。在5 cm埋深處理下分解117天后微齒眼子菜N和P剩余率分別提高了19.45%和14.73%、兩物種混合N、P剩余率分別提高了41.57%和22.82%。(3)兩物種混合在0和5 cm埋深處理下, 其分解速率均表現(xiàn)為加和效應(yīng), 但N、P元素釋放在0 cm處理下分別表現(xiàn)為協(xié)同效應(yīng)和加和效應(yīng), 在5 cm埋深處理下均表現(xiàn)為拮抗效應(yīng)。(4)隨著分解的進(jìn)行, 5 cm埋深處理下的苦草和微齒眼子菜的微生物呼吸速率均顯著降低, 物種混合的微生物生物量始終低于0 cm處理。這些結(jié)果表明泥沙埋深顯著降低了苦草、微齒眼子菜及兩物種混合的分解速率和N、P元素釋放, 物種混合的N、P元素釋放在分解后期均因沉積作用而產(chǎn)生了拮抗效應(yīng)。此外, 泥沙埋深對(duì)分解的抑制作用與微生物呼吸及生物量降低有密切的關(guān)系。研究結(jié)果可為認(rèn)識(shí)水生植物分解對(duì)沉積作用的響應(yīng)機(jī)制提供資料, 并為了解水生植物分解對(duì)底質(zhì)營(yíng)養(yǎng)動(dòng)態(tài)的影響提供參考。
水生植物; 泥沙埋深; 分解速率; N、P動(dòng)態(tài); 混合分解
植物有機(jī)質(zhì)分解研究是生態(tài)系統(tǒng)結(jié)構(gòu)和功能研究領(lǐng)域關(guān)注的重點(diǎn), 目前關(guān)于森林、草地、沼澤以及河流和溪流的枯落物分解方面有較多研究[1—5],對(duì)高等水生植物分解的研究相對(duì)較少, 尤其在其分解規(guī)律的認(rèn)識(shí)方面非常有限[6]。水文特征是影響水生生態(tài)系統(tǒng)分解的重要環(huán)境因素。其中, 泥沙淤積被認(rèn)為對(duì)植物分解有重要影響[7—15]。前人研究表明, 泥沙淤積對(duì)河流中沿岸帶植物枯落物分解、濕地及沼澤植物分解等有抑制作用[7—11], 或有促進(jìn)作用或沒(méi)有明顯的影響[12,13]。泥沙淤積可阻隔空氣的連通性造成缺氧環(huán)境影響微生物活動(dòng)從而影響分解過(guò)程[14,15]。高等水生植物是水生生態(tài)系統(tǒng)中重要的初級(jí)生產(chǎn)者, 植物(或莖葉殘?bào)w)死亡后經(jīng)腐爛分解釋放出無(wú)機(jī)營(yíng)養(yǎng)元素, 但目前有關(guān)泥沙淤積對(duì)水生植物分解的影響研究較少[9,16]。另外, 有研究發(fā)現(xiàn)物種混合對(duì)植物分解的影響可表現(xiàn)為加和效應(yīng)(即混合對(duì)分解速率和養(yǎng)分的釋放沒(méi)有顯著影響), 或表現(xiàn)為非加和效應(yīng)(即混合提高或降低分解速率和養(yǎng)分的釋放)[17]。在自然狀態(tài)下, 水生植物物種混合被泥沙包埋的現(xiàn)象普遍存在, 但有關(guān)泥沙淤積對(duì)水生植物混合分解的影響仍不清楚。
苦草(Vallisneria natans)和微齒眼子菜(Potamogeton maackianus)是長(zhǎng)江中、下游湖泊常見(jiàn)的沉水植物[18], 在湖泊沿岸帶分布廣、生物量高, 在自然(如風(fēng)浪、湖流等)或人類(lèi)活動(dòng)(捕撈魚(yú)蝦、打撈水草等)擾動(dòng)下, 其植物(莖葉)殘?bào)w常見(jiàn)以單種或物種混合形式堆積在湖泊沿岸帶, 并經(jīng)常受到泥沙包埋。本文運(yùn)用受控實(shí)驗(yàn)?zāi)M泥沙埋深, 研究了不同泥沙埋深處理下苦草、微齒眼子菜及兩物種混合的分解速率、營(yíng)養(yǎng)釋放動(dòng)態(tài)和微生物活動(dòng)的變化, 以期為探討水生植物分解對(duì)沉積作用的響應(yīng)機(jī)制提供資料, 并為了解水生植物分解對(duì)底質(zhì)營(yíng)養(yǎng)物動(dòng)態(tài)的影響提供參考。
1.1 實(shí)驗(yàn)材料
苦草和微齒眼子菜莖葉的新鮮材料于2013年7月中旬取自湖北省鄂州梁子湖(N 30°06′-30°18′, E 114°24′-114°36′)。材料經(jīng)湖水洗凈后帶回實(shí)驗(yàn)室,自然風(fēng)干后剪成5 cm大小的小段, 在60°C下烘干至恒重, 樣品放入干燥器中備用。
1.2 實(shí)驗(yàn)方法
將烘干處理的苦草、微齒眼子菜及等量混合的苦草和微齒眼子菜三種樣品各5 g分別裝入分解袋(長(zhǎng)寬為20 cm×15 cm, 網(wǎng)孔大小1 mm×1 mm)。實(shí)驗(yàn)設(shè)計(jì)為:2個(gè)埋深處理(0、5 cm)×3種材料(苦草、微齒眼子菜及兩物種混合)×6次取樣×3重復(fù)。采用經(jīng)過(guò)篩處理(以去除雜質(zhì)和根系)、洗干凈的梁子湖底泥[總氮(1.95±0.05) mg/g, 總磷(0.12± 0.02) mg/g, 根據(jù)底泥干重獲得]置于實(shí)驗(yàn)水池(200 cm×150 cm×100 cm)中, 泥厚約20 cm, 待穩(wěn)定一周后, 將分解袋置于底泥表面和埋深5 cm處。每個(gè)處理每種材料12袋(每次取樣2袋, 1袋用于測(cè)定材料干重、TN、TP等參數(shù), 1袋用于測(cè)定微生物參數(shù)), 3個(gè)重復(fù)。實(shí)驗(yàn)共計(jì)3個(gè)實(shí)驗(yàn)水池, 216袋樣品。部分剩余材料用于實(shí)驗(yàn)材料初始質(zhì)量特征參數(shù)的測(cè)定。實(shí)驗(yàn)在華中師范大學(xué)生物園實(shí)驗(yàn)區(qū)(N 30°30′, E 114°21′)隨機(jī)放置。水池上方做遮雨處理,實(shí)驗(yàn)過(guò)程中保持池中無(wú)雜物、分解袋和底泥保持濕潤(rùn)狀態(tài)。
1.3 樣品采集與參數(shù)測(cè)定
于2013年8月25日進(jìn)行實(shí)驗(yàn)處理, 在分解袋放置后的第7、19、35、56、82和117天分別取樣, 實(shí)驗(yàn)周期為117d。每種材料每次在每組處理中取6袋。隨機(jī)取其中3份樣品用于干重、TN、TP等參數(shù)的測(cè)定(分解袋用純凈水沖去沙子等雜物, 樣品經(jīng)60°C烘干至恒重, 稱(chēng)重后, 磨碎過(guò)0.25 mm篩),3份樣品用于微生物呼吸速率及生物量的測(cè)定。
采用K2Cr2O7氧化-FeSO4滴定法測(cè)定TC, 經(jīng)H2SO4-H2O2消化, 分別采用靛酚藍(lán)比色法和鉬銻抗比色法測(cè)定TN、TP, 采用范氏洗滌纖維分析法測(cè)定纖維素、半纖維素、木質(zhì)素含量, 采用福林酚法測(cè)定總酚含量[19]。微生物呼吸采用靜態(tài)堿液吸收法測(cè)定[20]。微生物生物量C采用氯仿熏蒸法測(cè)
按以往的經(jīng)驗(yàn),目前是低風(fēng)險(xiǎn)區(qū)。不過(guò),我們計(jì)算一下此長(zhǎng)期上升通道的上升速度,大約是按年11.2%。未來(lái)深圳證交所上市公司能以平均11.2%的增長(zhǎng)速度持續(xù)下去嗎?答案若是否定的,則此長(zhǎng)期上升通道便會(huì)改變,即熊市的低點(diǎn)會(huì)擊穿下軌。上證指數(shù)已經(jīng)擊穿下軌,證明市場(chǎng)對(duì)舊經(jīng)濟(jì)的增長(zhǎng)速度預(yù)期已經(jīng)明顯下降。不過(guò),即便是長(zhǎng)期上升通道有效,目前距離下軌約1020點(diǎn)一帶仍有19.5%的下跌空間。換言之,深圳綜合指數(shù)至少再跌10%至15%買(mǎi)入的話(huà),才有一定的安全邊際。
定[21]。
1.4 數(shù)據(jù)分析
分解材料干重變化用Wt=W0×e-kt(t為分解時(shí)間;k為分解常數(shù);W0為初始干重;Wt為經(jīng)t天分解后的剩余干重)描述, 用非線性回歸分析計(jì)算分解速率[22]。采用剩余率表示分解過(guò)程中干重和養(yǎng)分含量的變化, 干重剩余率和養(yǎng)分剩余率分別為分解后材料干重和養(yǎng)分剩余量占初始量的百分率。
混合材料的期望干重剩余率和養(yǎng)分剩余率根據(jù)Salamanca等[23]采用的方法計(jì)算:期望干重剩余率=[M1/(M1+M2)]×R1+[M2/(M1+M2)]×R2; 期望養(yǎng)分剩余率=[N1/(N1+N2)]×R1+[N2/(N1+N2)]×R2。式中,以1, 2表示混合物中的兩種組分, M和N分別表示各組分在初始混合物中的干重和養(yǎng)分含量, R表示各組分單一物種的干重剩余率和養(yǎng)分剩余率。對(duì)混合分解的分解速率及N、P釋放是否存在混合效應(yīng)進(jìn)行判斷:若實(shí)測(cè)值與期望值之間差異顯著(P<0.05), 則表示混合材料兩物種之間存在非加和效應(yīng), 當(dāng)實(shí)測(cè)值大于期望值, 則混合效應(yīng)是負(fù)的, 即拮抗效應(yīng), 當(dāng)實(shí)測(cè)值小于期望值, 則混合效應(yīng)是正的, 即協(xié)同效應(yīng);若實(shí)測(cè)值與期望值之間差異不顯著(P>0.05), 則表示混合材料兩物種之間存在加和效應(yīng), 即無(wú)明顯的相互作用。
使用統(tǒng)計(jì)軟件SPSS 17.0進(jìn)行數(shù)據(jù)分析。兩種處理下材料的分解速率, 干重剩余率和N、P剩余率, 微生物呼吸速率及生物量的比較, 兩單物種初始質(zhì)量特征的比較以及兩物種混合分解的實(shí)測(cè)值與期望值的比較均采用獨(dú)立樣本t檢驗(yàn);對(duì)苦草和微齒眼子菜的分解速率與其初始N含量、C/N的相關(guān)關(guān)系進(jìn)行Pearson相關(guān)分析。
2.1 苦草和微齒眼子菜的初始質(zhì)量特征
苦草和微齒眼子菜在C、N、P、C/N、C/P、木質(zhì)素、纖維素、半纖維素和總酚含量上存在顯著差異(P<0.05)(表 1)。與苦草相比, 微齒眼子菜具有較高的C、C/N、C/P、木質(zhì)素、纖維素、半纖維素和總酚含量和較低的N、P含量。
表 1 苦草和微齒眼子菜的初始質(zhì)量特征Tab. 1 Initial quality characteristics of V. natans and P. maackianus materials
2.2 埋深對(duì)苦草、微齒眼子菜及兩物種混合分解干重動(dòng)態(tài)變化的影響
在0和5 cm埋深處理下, 兩單種的分解快慢存在顯著差異(P<0.05)??嗖菰?和5 cm處理下分解35d后干重剩余率分別為0和43.51%, 在5 cm處理下分解82d后的干重剩余率為0, 分解速率分別為0.114/d和0.031/d;微齒眼子菜在0和5 cm處理下分解117d后其干重剩余率分別為22.18%和53.27%, 分解速率分別為0.022/d和0.007/d(表 2)。與0處理相比, 在5 cm處理下苦草和微齒眼子菜的分解速率顯著降低。在兩種處理下, 苦草均分解較快, 微齒眼子菜分解較慢(圖 1)。Pearson相關(guān)分析表明, 在0和5 cm處理下, 苦草和微齒眼子菜的分解速率均與初始N含量呈正相關(guān)(P<0.05, r=0.896;P<0.01,r=0.932), 與C/N成負(fù)相關(guān)(P<0.05, r =-0.963;P<0.01, r =-0.925)。
兩物種混合在0和5 cm處理下的干重?fù)p失均表現(xiàn)為先快后慢(圖 1), 在分解117d后其干重剩余率分別為8.81%和46.25%, 分解速率分別為0.047/d和0.010/d, 其分解速率介于兩單種之間(表 2)。與0處理相比, 在5 cm處理下的兩物種混合在分解117d后的干重剩余率提高了37.44%。在分解過(guò)程中, 物種混合在0和5 cm埋深處理下干重剩余率的實(shí)測(cè)值與期望值均無(wú)顯著性差異(P>0.05), 物種混合對(duì)分解速率的影響均表現(xiàn)為加和效應(yīng)(表 3、4)。
2.3 埋深對(duì)苦草、微齒眼子菜及兩物種混合分解的N、P釋放動(dòng)態(tài)的影響
苦草在0和5 cm處理下的N、P剩余率均呈快速下降趨勢(shì)(圖 2)。與0相比, 5 cm處理下苦草分解19d后N、P釋放率顯著降低, 其N(xiāo)、P剩余率分別提高了42.48%和17.06%;在分解35d后N剩余率分別為0和31.28%, P剩余率分別為0和24.45%。隨著分解的進(jìn)行, 在5 cm處理下苦草的N、P剩余率呈繼續(xù)下降趨勢(shì), 82d后N、P剩余率為0。苦草在兩種處理下的N、P元素均表現(xiàn)為凈釋放。微齒眼子菜在0和5 cm處理下的N、P剩余率在分解初期下降明顯, 在分解7d后N的剩余率分別為56.93%和54.70%,P的剩余率分別為26.17%和28.88%, 隨著分解的進(jìn)行N元素持續(xù)釋放, P元素則出現(xiàn)積累。與0相比,5 cm處理下微齒眼子菜分解56d后的N、P釋放率顯著降低, N、P剩余率分別提高了16.21%和15.37%。隨著分解的進(jìn)行, 微齒眼子菜的N、P剩余率保持平穩(wěn)下降趨勢(shì), 5 cm處理下分解117d后的N、P剩余率分別比0處理提高了19.45%和14.73%(圖 2)。微齒眼子菜在兩種處理下的N、P元素均表現(xiàn)為凈釋放。兩物種混合在0和5 cm處理下的N、P釋放均表現(xiàn)為先快后慢(圖 2)。與0處理相比, 5 cm埋深處理下物種混合分解117d之后的N、P剩余率分別提高了41.57% 和22.82%。總體上看, 在5 cm埋深處理下苦草、微齒眼子菜及兩物種混合的N、P釋放受到顯著抑制(P<0.05)。
表 2 兩種埋深處理下苦草、微齒眼子菜及兩物種混合的分解速率比較Tab. 2 Comparison of the decomposition rates of V. natans, P. maackianus and their mixture in two burial depth treatments
在分解前期, 在0和5 cm 埋深處理下物種混合的N、P剩余率的實(shí)測(cè)值與期望值無(wú)顯著性差異(P>0.05), 表現(xiàn)出加和效應(yīng)。隨著分解進(jìn)行, 在0處理下的N剩余率實(shí)測(cè)值顯著低于期望值(P<0.05),表現(xiàn)出協(xié)同效應(yīng), 即混合促進(jìn)了N元素的釋放, P剩余率實(shí)測(cè)值與期望值無(wú)顯著差異, 即混合對(duì)P元素的釋放無(wú)影響, 但在5 cm處理下的N、P剩余率實(shí)測(cè)值顯著高于期望值(P<0.05), 表現(xiàn)出拮抗效應(yīng), 即混合抑制了N、P元素的釋放(圖 3)。
圖 1 兩種埋深處理下苦草、微齒眼子菜和兩物種混合在分解過(guò)程中的干重剩余率(%)變化Fig. 1 Changes of dry mass remaining percentage (%) of V. natans, P. maackianus and their mixture during the decomposing process under two burial depth treatments
表 3 兩種埋深處理下苦草和微齒眼子菜混合分解的干重剩余率(實(shí)測(cè)值和期望值)Tab. 3 Observed and expected values of the dry mass remaining percentage (%) of the mixed V. natans and P. maackianus in decomposition under two burial depth treatments
表 4 兩種埋深處理下苦草和微齒眼子菜混合的分解速率(實(shí)測(cè)值和期望值)Tab. 4 Observed and expected decomposition rates of the mixture of V. natans and P. maackianus in decomposition under two burial depth treatments
2.4 苦草、微齒眼子菜及其混合分解過(guò)程中的微生物呼吸與生物量變化
與0處理相比, 苦草和微齒眼子菜在5 cm處理下的微生物呼吸速率顯著降低(P<0.05)。苦草在0處理下的微生物生物量均高于5 cm處理;微齒眼子菜在兩種處理下的微生物生物量在分解前期無(wú)顯著性差異(P>0.05), 但5 cm處理下的微生物生物量在分解后期顯著低于0處理(P<0.05)(圖 4)。
兩物種混合在兩種處理下的微生物呼吸速率在分解前期無(wú)顯著性差異(P>0.05), 5 cm處理下的微生物呼吸速率在分解后期顯著低于0處理(P<0.05)(圖 4)。物種混合在5 cm處理下的微生物生物量在分解過(guò)程中均低于0處理。除分解中期兩種處理下的生物量差異不顯著(P>0.05)外, 其余分解階段均存在顯著性差異(P<0.05)。
圖 2 苦草、微齒眼子菜和兩物種混合分解在兩種埋深處理下的N、P剩余率(%)變化Fig. 2 Changes of nitrogen and phosphorus remaining percentages (%) of V. natans, P. maackianus and their mixture during the decomposing process under two burial depth treatments
3.1 泥沙埋深對(duì)苦草、微齒眼子菜及兩物種混合分解快慢的影響
有研究發(fā)現(xiàn), 泥沙淤積對(duì)河流中沿岸帶植物枯落物、濕地和沼澤植物分解有明顯的抑制作用[9—11,24,25]。在本研究結(jié)果中, 與0處理比較, 苦草、微齒眼子菜在5 cm埋深處理下的分解速率顯著降低, 苦草在0和5 cm埋深處理下分別在分解35d、82d后干重剩余率為0, 微齒眼子菜在5 cm處理下分解117d后干重剩余率比0處理下提高了31.09%。這說(shuō)明泥沙淤積也同樣抑制苦草和微齒眼子菜的分解快慢。
植物的初始質(zhì)量特征是影響植物分解快慢的因素之一。有研究表明, 初始N含量、C/N比對(duì)分解有較大影響, 初始N含量較高、C/N比較低其分解較快[26];具有較高P含量、較低C/P比的材料其分解也相對(duì)較快[27]。苦草較微齒眼子菜具有較高的N、P含量和較低的C/N、C/P比, 苦草在0和5 cm埋深處理下都比微齒眼子菜分解快。這說(shuō)明苦草和微齒眼子菜的分解快慢也受其初始N、P含量所控制。另外, 有研究表明初始纖維素、半纖維素、木質(zhì)素、總酚含量與分解快慢呈負(fù)相關(guān)[15,25,28]??嗖莸某跏祭w維素、半纖維素、木質(zhì)素、總酚含量顯著低于微齒眼子菜, 苦草在兩種處理下其分解速率都較微齒眼子菜高。其中, 苦草在埋深0處理下分解速率為0.114/d, 并于35d后分解完成, 在5 cm處理下分解速率為0.031/d, 并于82d后分解完成, 微齒眼子菜在0和5 cm處理下其分解速率分別為0.022/d和0.007/d, 在分解117d后其干重剩余率分別為22.18%和53.27%。這表明苦草和微齒眼子菜分解快慢不但與其初始N、P含量有關(guān), 也受初始纖維素、木質(zhì)素等含量的影響。
物種混合對(duì)分解的影響可表現(xiàn)為非加和效應(yīng)(即混合提高或降低分解速率和養(yǎng)分的釋放)或表現(xiàn)為加和效應(yīng)(即混合對(duì)分解速率和養(yǎng)分的釋放沒(méi)有顯著影響)[17]。有研究表明, 分解對(duì)物種混合的響應(yīng)不但受混合物種各組分質(zhì)量特征的控制, 而且受分解的環(huán)境條件的影響[17]。本研究結(jié)果中, 兩物種混合在5 cm處理下的分解速率顯著低于0處理, 分解117d后混合分解的干重剩余率提高了37.44%。這說(shuō)明泥沙淤積抑制了兩物種混合的分解。通常,在缺氧環(huán)境下植物枯落物分解變慢[8,15], 沉積可通過(guò)阻隔空氣的連通性造成缺氧環(huán)境而抑制微生物活動(dòng), 從而降低枯落物的分解速率[10,11,14,15]。另外,沉積對(duì)分解材料所產(chǎn)生的擠壓作用也可能通過(guò)減小微生物對(duì)分解材料的有效作用面積從而使枯落物的分解速率降低[8]。本研究結(jié)果中, 苦草、微齒眼子菜及其混合在5 cm埋深處理下的微生物生物量及呼吸速率均顯著低于0處理, 微生物活動(dòng)減弱,這很有可能是苦草、微齒眼子菜及其混合的分解速率在5 cm埋深下均顯著降低的原因之一。
圖 3 苦草和微齒眼子菜混合分解在兩種埋深處理下的干重和N、P的實(shí)測(cè)剩余率(%)和期望剩余率(%)Fig. 3 The values of observed and expected dry mass and N and P remaining percentage (%) of the mixed V. natans and P. maackianus materials during the decomposing process under two burial depth treatments
3.2 苦草、微齒眼子菜及兩物種混合N、P釋放對(duì)泥沙埋深的響應(yīng)
在本研究中, 與0處理相比, 5 cm埋深處理顯著抑制苦草、微齒眼子菜及其混合的N、P釋放??嗖菰?和5 cm處理下分解35d后的N剩余率分別為0和31.28%、P剩余率分別為0和24.45%, 微齒眼子菜在5 cm處理下分解117d后的N、P剩余率分別提高了19.45%和14.73%, 兩物種混合N、P剩余率分別提高了41.57%和22.82%。這說(shuō)明泥沙埋深抑制了苦草、微齒眼子菜及其物種混合的N、P釋放。這與已有研究[16,29,30]關(guān)于河流中沿岸帶植物枯落物、濕地和沼澤植物等分解的N、P元素釋放受到泥沙淤積抑制的研究結(jié)論是一致的。
圖 4 苦草、微齒眼子菜和兩物種混合分解在兩種埋深處理下的微生物呼吸和生物量變化Fig. 4 Changes of microbial respiration and biomass of V. natans, P. maackianus and their mixture during the decomposing process under two burial depth treatments
在0和5 cm埋深處理下, 苦草、微齒眼子菜及其物種混合在分解初期的N、P元素含量均呈現(xiàn)出一個(gè)快速下降過(guò)程。這可能與分解初期階段的淋溶作用導(dǎo)致植物材料中的可溶性成分迅速釋放有關(guān)[25,31,32]。另外, 有研究表明植物在分解過(guò)程中其N(xiāo)剩余率的變化與微生物固N(yùn)有密切聯(lián)系, 微生物對(duì)N的固定可導(dǎo)致分解材料N含量的升高, 分解材料中N含量越低, 微生物固N(yùn)趨勢(shì)越強(qiáng), 反之亦然[33]。在本研究中, 苦草在兩種處理下N剩余率在整個(gè)分解過(guò)程中均呈持續(xù)下降趨勢(shì), 這說(shuō)明苦草N含量較高, 其自身N源能夠滿(mǎn)足微生物活動(dòng)的需求, 在分解過(guò)程中微生物沒(méi)有發(fā)生對(duì)外源N元素的固定。另外苦草P剩余率也呈持續(xù)下降趨勢(shì), 這很有可能與在分解過(guò)程中微生物的營(yíng)養(yǎng)需求沒(méi)有受到P供給的限制, 或者說(shuō)沒(méi)有發(fā)生微生物對(duì)P元素的固定有關(guān)。與苦草N、P元素的釋放動(dòng)態(tài)相比, 在兩種處理下微齒眼子菜N、P剩余率在分解過(guò)程中均呈平緩下降趨勢(shì)。微齒眼子菜初始N含量較苦草低, 初始C/N較苦草高, 在分解過(guò)程中微生物對(duì)外源N很可能產(chǎn)生固定。有研究發(fā)現(xiàn), 當(dāng)初始C/P<80時(shí),P元素發(fā)生礦化, 當(dāng)C/P>80時(shí), P元素將被固定[34]。微齒眼子菜初始C/P比為202.53±2.72, 在分解過(guò)程中微生物對(duì)P元素發(fā)生了固定。另外, 本研究中, 與0處理相比, 5 cm埋深處理下的苦草和微齒眼子草在實(shí)驗(yàn)結(jié)束時(shí)的N、P剩余率均較高, 微生物生物量也明顯降低, 因此N、P剩余量的積累可能與微生物活動(dòng)的減弱密切相關(guān)。本研究表明苦草和微齒眼子菜在分解過(guò)程中N、P剩余率的變化不但與分解材料的初始質(zhì)量特征有關(guān), 也與微生物對(duì)N、P元素的礦化和對(duì)外源N、P固定趨勢(shì)有密切關(guān)系。
本研究表明, 在0處理下混合分解的N元素釋放
[1]Swift M J, Heal O W, Anderson J M. Decomposition in Terrestrial Ecosystems [M]. Blackwell Scientific Publications. 1979, 1—372
[2]H?ttenschwiler S, Tiunov A V, Scheu S. Biodiversity and litter decomposition in terrestrial ecosystems [J]. Annual Review of Ecology, Evolution, and Systematics, 2005, 36: 191—218
[3]Lecerf A, Risnoveanu G, Popescu C, et al. Decomposi-呈持續(xù)下降趨勢(shì), 僅在分解后期N剩余率有所增加,這說(shuō)明在混合分解的很長(zhǎng)一段時(shí)間里微生物沒(méi)有發(fā)生對(duì)N的固定。N元素釋放的混合效應(yīng)在分解初期表現(xiàn)為加和效應(yīng), 隨著分解的進(jìn)行表現(xiàn)出協(xié)同效應(yīng), 這可能與物種混合后養(yǎng)分(如N)在分解材料之間發(fā)生轉(zhuǎn)移有關(guān)[35]。與N元素的釋放動(dòng)態(tài)相比, 混合分解的P元素剩余率變化也呈下降趨勢(shì)(除在分解第56、117天略有上升外), 但P元素的釋放在整個(gè)分解過(guò)程中均沒(méi)有產(chǎn)生混合效應(yīng), 這可能與微生物沒(méi)有對(duì)外源P元素產(chǎn)生固定所致。研究結(jié)果同時(shí)也說(shuō)明N元素對(duì)苦草和微齒眼子菜混合的響應(yīng)比P元素敏感。在5 cm埋深處理下, 混合分解的N、P元素釋放在經(jīng)過(guò)淋溶期快速下降后變得緩慢并達(dá)到相對(duì)穩(wěn)定狀態(tài), 隨著分解的進(jìn)行N、P元素釋放的混合效應(yīng)表現(xiàn)為拮抗效應(yīng), N、P剩余率在實(shí)驗(yàn)結(jié)束時(shí)增加。有研究表明, 微生物在缺氧環(huán)境中其活動(dòng)易受到抑制[8,11,15]、微生物對(duì)N、P的礦化作用減弱[36], 本研究結(jié)果也說(shuō)明埋深對(duì)分解的抑制作用與微生物活動(dòng)顯著降低有密切的關(guān)系。
水生植物腐爛分解對(duì)水體的營(yíng)養(yǎng)元素循環(huán)有重要影響[24,25]。江漢湖群是我國(guó)湖泊密集度最大的淡水湖泊群, 高等水生植物物種多樣性高、分布廣、生物量大, 特別是沉水植物在湖泊沿岸帶的水生植被類(lèi)型中占據(jù)明顯優(yōu)勢(shì)。由于汛期江河來(lái)水挾帶大量泥沙入湖, 風(fēng)浪和湖流經(jīng)常強(qiáng)烈地翻攪著湖底, 大量底泥被翻起等都會(huì)產(chǎn)生泥沙淤積, 這將影響水生植物腐爛分解過(guò)程, 也會(huì)影響底質(zhì)營(yíng)養(yǎng)物動(dòng)態(tài)。本研究初步表明, 泥沙埋深可顯著降低沉水植物苦草、微齒眼子菜及其混合的分解速率和N、P元素釋放動(dòng)態(tài), 尤其是N、P元素釋放的混合效應(yīng)對(duì)泥沙埋深的響應(yīng)表現(xiàn)為明顯的拮抗作用, 混合分解的N、P元素積累與微生物活動(dòng)顯著降低有密切的關(guān)系。由于泥沙淤積影響包括淤積類(lèi)型、淤積強(qiáng)度和行為等作用因素, 很有必進(jìn)一步開(kāi)展相關(guān)研究, 以期為進(jìn)一步了解泥沙淤積對(duì)水生植物分解的影響提供資料, 并為認(rèn)識(shí)水生植物分解對(duì)底質(zhì)營(yíng)養(yǎng)物動(dòng)態(tài)的影響提供參考。tion of diverse litter mixtures in streams [J]. Ecology,2007, 88(1): 219—227
[4]Gessner M O, Swan C M, Dang C K, et al. Diversity meets decomposition [J]. Trends in Ecology & Evolution,2010, 25(6): 372—380
[5]Boyero L, Pearson R G, Gessner M O, et al. A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration [J]. Ecology Letters, 2011, 14(3): 289—294
[6]Gustafsson C, Bostr?m C. Biodiversity influences ecosystem functioning in aquatic angiosperm communities [J]. Oikos, 2011, 120(7): 1037—1046
[7]Reice S R. Environmental patchiness and the breakdown of leaf litter in a woodland stream [J]. Ecology, 1974,55(6): 1271—1282
[8]Herbst G N. Effects of burial on food value and consumption of leaf detritus by aquatic invertebrates in a lowland forest stream [J]. Oikos, 1980, 35(3): 411—424
[9]Vargo S M, Neely R K, Kirkwood S M. Emergent plant decomposition and sedimentation: response to sediments varying in texture, phosphorus content and frequency of deposition [J]. Environmental and Experimental Botany,1998, 40(1): 43—58
[10]Cornut J, Elger A, Lambrigot D, et al. Early stages of leaf decomposition are mediated by aquatic fungi in the hyporheic zone of woodland streams [J]. Freshwater Biology,2010, 55(12): 2541—2556
[11]Danger M, Cornut J, Elger A, et al. Effects of burial on leaf litter quality, microbial conditioning and palatability to three shredder taxa [J]. Freshwater Biology, 2012,57(5): 1017—1030
[12]Mayack D T, Thorp J H, Cothran M. Effects of burial and floodplain retention on stream processing of allochthonous litter [J]. Oikos, 1989, 54(3): 378—388
[13]Smith J J, Lake P S. The breakdown of buried and surface-placed leaf litter in an upland stream [J]. Hydrobiologia, 1993, 271(3): 141—148
[14]Chauvet E. Influence of the environment on willow leaf litter decomposition in the alluvial corridor of the Garonne River [J]. Archiv für Hydrobiologie, 1988,112(3): 371—386
[15]Freeman C, Ostle N J, Fenner N, et al. A regulatory role for phenol oxidase during decomposition in peatlands [J]. Soil Biology and Biochemistry, 2004, 36(10): 1663—1667
[16]Nichols D S, Keeney D R. Nitrogen and phosphorus release from decaying milfoil [J]. Hydrobiologia, 1973,42(4): 509—525
[17]Gartner T B, Cardon Z G. Decomposition dynamics in mixed-species leaf litter [J]. Oikos, 2004, 104(2): 230—246
[18]Wu A P, Wu S K, Ni L Y. Study of Macrophytes nitrogen and phosphorus contents of the shallow lakes in themiddle reaches of Changjiang River [J]. Acta Hydrobiologica Sinica, 2005, 29(4): 406—412 [吳愛(ài)平, 吳世凱, 倪樂(lè)意. 長(zhǎng)江中游淺水湖泊水生植物氮磷含量與水柱營(yíng)養(yǎng)的關(guān)系. 水生生物學(xué)報(bào), 2005, 29(4): 406—412]
[19]Graca M A S, Barlocher F, Gessner M O. Methods to Study Litter Decomposition: a Practical Guide [M]. Springer Science & Business Media. 2005, 53—121
[20]Anderson J P E, Page A L. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties [M]. American Society of Agronomy, Soil Science Society of America. 1982, 831—871
[21]Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C [J]. Soil Biology and Biochemistry, 1987, 19(6): 703—707
[22]Olson J S. Energy storage and the balance of producers and decomposers in ecological systems [J]. Ecology,1963, 44(2): 322—331
[23]Salamanca E F, Kaneko N, Katagiri S. Effects of leaf litter mixtures on the decomposition of Quercus serrata and Pinus densiflora using field and laboratory microcosm methods [J]. Ecological Engineering, 1998, 10(1): 53—73
[24]Brinson M M, Lugo A E, Brown S. Primary productivity,decomposition and consumer activity in freshwater wetlands [J]. Annual Review of Ecology and Systematics,1981, 12: 123—161
[25]Webster J R, Benfield E F. Vascular plant breakdown in freshwater ecosystems [J]. Annual Review of Ecology and Systematics, 1986, 17: 567—594
[26]Enriquez S, Duarte C M, Sand-Jensen K. Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C: N: P content [J]. Oecologia,1993, 94(4): 457—471
[27]Berg B, Staaf H. Decomposition rate and chemical changes of Scots pine needle litter. II. Influence of chemical composition [J]. Ecological Bulletins, 1980, 32: 373—390
[28]Godshalk G L, Wetzel R G. Decomposition of aquatic Angiosperms. Ⅲ. Zostera marina L. and a conceptual model of decomposition [J]. Aquatic Botany, 1978, 5(4): 329—354
[29]Nielsen T, Andersen F ?. Phosphorus dynamics during decomposition of mangrove (Rhizophora apiculata)leaves in sediments [J]. Journal of Experimental Marine Biology and Ecology, 2003, 293(1): 73—88
[30]Longhi D, Bartoli M, Viaroli P. Decomposition of four macrophytes in wetland sediments: organic matter and nutrient decay and associated benthic processes [J]. Aquatic Botany, 2008, 89(3): 303—310
[31]Puriveth P. Decomposition of emergent macrophytes in a Wisconsin marsh [J]. Hydrobiologia, 1980, 72(3): 231—242
[32]Gong C X, Wang D. Effect of mixed floating and submerged macrophytes on decomposition rate and nutrient dynamics [J]. Acta Hydrobiologica Sinica, 2014, 38(6): 1098—1106 [鞏崇賢, 王東. 水生植物荇菜和菹草分解對(duì)物種混合的響應(yīng)研究. 水生生物學(xué)報(bào), 2014, 38(6): 1098—1106]
[33]Gessner M O. Mass loss, fungal colonization and nutrient dynamics of (Phragmites australis) leaves during senescence and early aerial decay [J]. Aquatic Botany, 2001,69(2): 325—339
[34]Canfield D E, Thamdrup B, Kristensen E. Aquatic Geimicrobiology [M]. Elsevier, Amsterdam. 2005, 424
[35]Briones M J I, Ineson P. Decomposition of eucalyptus leaves in litter mixtures [J]. Soil Biology and Biochemistry, 1996, 28(10): 1381—1388
[36]Enwezor W O. The mineralization of nitrogen and phosphorus in organic materials of varying C: N and C: P ratios [J]. Plant and Soil, 1976, 44(1): 237—240
DECOMPOSITION OF TWO SUBMERGED MACROPHYTES AND THEIR MIXTURE: EFFECT OF SEDIMENT BURIAL
CAO Dan-Dan, WANG Dong, YANG Xue, GUO Xuan and NIU Hong-Yu
(Key Laboratory for Geographical Process Analysis & Simulation, School of Life Sciences, Central China Normal University, Hubei Province, Wuhan 430079, China)
Decomposition of aquatic macrophytes makes the nutrients stocked in biomass release to the surroundings,and thereby can considerably affect nutrient cycling and energy flow in aquatic ecosystem. In most case, aquatic macrophytes may readily produce a considerable amount of stem and/or leaf fragments due to both natural and anthropogenic disturbances. The detached fragments will be deposited within the sediment. To date, the breakdown of aquatic macrophytes associated with sedimentation remains largely unexplored. Vallisneria natans and Potamogeton maackianus are two dominant submerged plants in shallow lakes of the Yangtze River basin of China. In the field, a substantial amountof the detached plant parts may be produced and deposited separately or coupled with each other at the substrate surface or buried within the sediment, contributing to the formation of an organic slime in the lakeshore areas. To investigate the effect of sediment burial on the decomposition of V. natans, P. maackianus and their mixture, three types of plant materials confined in litterbags were incubated and subjected to 0 cm and 5 cm buried treatments for 117 days. There were 5 g materials used for each species and mixture (2.52.5 of V. natans: P. maackianus, w/w basis) in the litterbags. The decomposition rates, nitrogen and phosphorus content of the remaining materials, and microbial respiration and biomass were measured at days 7, 19, 35, 56, 82 and 117 respectively. Decomposition rates of both V. natans and P. maackianus were significantly and positively correlated with initial N contents (P < 0.05, r = 0.896), and negatively correlated with C/N ratio (P < 0.05, r = -0.963). The decomposition rate was the highest for V. natans, the lowest for P. maackianus, and intermediate for their mixture. The decomposition rate and nutrient release of V. natans, P. maackianus and their mixture were greatly reduced in 5 cm burial treatments compared to 0 cm treatments. After 35 days experiment, the dry mass remaining percentage of V. natans was 0 and 43.51% under 0 cm and 5 cm burial treatments, respectively. After 82 days experiment, the dry mass remaining percentage of V. natans was close to 0 in 5 cm burial treatments. Dry mass remaining of P. maackianus and V. natans×P. maackianus was significantly higher in 5 cm burial treatments compared to 0 cm treatments, with an increase of 31.09% and 37.44%, respectively. The nutrient release of V. natans, P. maackianus and their mixture were significantly inhibited when they were buried at 5 cm depth. After 117 days experiment, the N and P remaining percentage of P. maackianus was significantly higher in 5 cm burial treatments compared to 0 treatments, with an increase of 19.45% and 14.73%, respectively. For the mixture, the N and P remaining percentage was higher in 5 cm burial treatments than 0 treatments, with an increase of 41.57% and 22.82%,respectively. After 35 days experiment, the N remaining percentage of V. natans was close to 0 and 31.28%, and P remaining percentage was close to 0 and 24.45% under 0 and 5 cm burial treatments, respectively. For the mixture, the observed mass remaining did not significantly differ from the expected under two treatments, indicating that an additive effect existed for the decomposition rate and the mixing effect was irrelevant to the incubated locations (i.e., at the surface or buried within the sediment). In addition, additive effect of N and P release of the mixed material also occurred at the early stage of decomposition. In the subsequent time, the observed N remaining of the mixed material were lower than the expected (P < 0.05) while the observed P remaining did not differ from the expected (P > 0.05) in 0 cm burial treatment, indicating a synergistic effect on N release and an additive effect on P release occurred. In contrast,the observed N and P remaining were higher than the expected in 5 cm burial treatment, indicating antagonistic effects on N and P release occurred. The microbial respiration rate of both V. natans and P. maackianus and the microbial biomass of the mixed material were much lower in 5 cm burial treatments compared to 0 treatments. This implied that limitation of microbial activities to plant materials induced from the sediment burial would greatly reduce the rate of decomposition and nutrient release of aquatic macrophytes. We concluded that sediment burial may lead to a decrease of decomposition rates and nutrient release of both single submerged plants and their mixture, which is closely linked to substantial decline of microbial activities by sedimentation. We further suggested that the observed N and/or P-stimulated increases of the mixed plant material in response to sedimentation would contribute to the changes in nutrient availability in the lakeshore area.
Aquatic macrophytes; Sediment burial; Decomposition rate; Nutrient dynamics; Mixing effects
10.7541/2016.44
Q948.8
A
1000-3207(2016)02-0327-10
2015-05-07;
2015-10-18
國(guó)家自然科學(xué)基金項(xiàng)目(31270378); “荊江航道整治工程對(duì)水生生物相互關(guān)系的影響及其生態(tài)效應(yīng)研究”項(xiàng)目; 國(guó)家標(biāo)本平臺(tái)教學(xué)標(biāo)本子平臺(tái)(http://mnh.scu.edu.cn/)資助 [Supported by National Natural Science Foundation of China (31270378), the project“Impact of Jingjiang River Channel Improvement Project on the aquatic organism interactions and its ecological effects”, and the specimen platform of China, teaching specimens sub-platform, Web, http://mnh.scu.edu.cn/(2005DKA21403-JK)]
曹丹丹(1989—), 女, 河南信陽(yáng)人, 碩士研究生; 研究方向?yàn)闈竦厣鷳B(tài)學(xué)。E-mail: 1224789140@qq.com
王東, E-mail: dongwang.cn@gmail.com