許曉勤,陳淑梅
(1.福建船政交通職業(yè)學(xué)院汽車運(yùn)用工程系,福建福州350007; 2.福州大學(xué)機(jī)械工程及自動(dòng)化學(xué)院,福建福州350116)
垂直指數(shù)延伸板駐點(diǎn)混合對(duì)流與傳熱研究
許曉勤1,2,陳淑梅2
(1.福建船政交通職業(yè)學(xué)院汽車運(yùn)用工程系,福建福州350007; 2.福州大學(xué)機(jī)械工程及自動(dòng)化學(xué)院,福建福州350116)
研究不可壓縮粘性流體在垂直指數(shù)延伸壁面上的二維駐點(diǎn)混合對(duì)流與傳熱問(wèn)題,借助相似變換將邊界層控制方程轉(zhuǎn)換為非線性常微分方程,通過(guò)打靶法對(duì)其進(jìn)行數(shù)值計(jì)算,用圖表詳細(xì)分析順流和逆流時(shí)浮力參數(shù)λ和Prandtl數(shù)Pr對(duì)流體流動(dòng)和傳熱特性的影響.結(jié)果顯示:順流時(shí),表面摩擦系數(shù)和Nusselt數(shù)均隨浮力參數(shù)λ的增大而增大;隨著Pr數(shù)增大,Nusselt數(shù)增大而表面摩擦系數(shù)減小.逆流時(shí),表面摩擦系數(shù)和Nusselt數(shù)均隨浮力參數(shù)λ的增大而減小,隨Pr增大而增大.
垂直指數(shù)延伸板;駐點(diǎn)流;混合對(duì)流;傳熱;邊界層
具有延伸表面邊界層流動(dòng)問(wèn)題和傳熱問(wèn)題顯見于科學(xué)研究的諸多領(lǐng)域,且具有廣闊的應(yīng)用前景,比如冶金、化工,工業(yè)制造工藝中熱軋、拔絲、玻璃纖維和造紙、塑料薄膜拉伸、金屬聚合物的擠出等領(lǐng)域[1].HIEMENZ[2]首次介紹了二維駐點(diǎn)流,隨后HOMANN[3]又把它擴(kuò)展成軸對(duì)稱流動(dòng)并由HOWARTH[4]加以完善.LAYEK等[5]研究帶有熱源的多孔延伸板駐點(diǎn)流傳熱與傳質(zhì)問(wèn)題,BHATTACHARYYA等做了很多工作,主要研究帶抽吸延伸板上駐點(diǎn)流磁流體邊界層[6],過(guò)可滲透收縮板的MHD駐點(diǎn)流與傳質(zhì)問(wèn)題[7],非均勻熱流邊界層駐點(diǎn)流傳熱問(wèn)題[8]等.國(guó)內(nèi)對(duì)這方面的研究比較少,但研究隊(duì)伍也在不斷壯大,如FAN等[9]研究收縮板上非定常駐點(diǎn)流與熱傳遞,XU等[10]研究非定常延伸板上納米液膜的流動(dòng)與傳熱問(wèn)題,SI等[11]研究多孔膨脹缸的非定常流動(dòng)與傳熱問(wèn)題.值得一提的是,上述文獻(xiàn)所提的延伸板大多是線性延伸板,而板的延伸速度不一定呈線性規(guī)律,如加速器、發(fā)電機(jī)等系統(tǒng)的冷卻過(guò)程,薄膜拉伸、金屬聚合物的擠出等都存在非線性現(xiàn)象.非線性拉伸規(guī)律有分段函數(shù)、二次函數(shù)、指數(shù)函數(shù)等,不同場(chǎng)合有不同的應(yīng)用.
本文主要研究垂直指數(shù)延伸板駐點(diǎn)附近混合對(duì)流與傳熱問(wèn)題,借助相似變換將邊界層控制方程轉(zhuǎn)換為非線性常微分方程,通過(guò)打靶法對(duì)其進(jìn)行數(shù)值計(jì)算,用圖表詳細(xì)分析順流和逆流時(shí)浮力參數(shù)λ和Prandtl數(shù)Pr對(duì)流體流動(dòng)和傳熱特性的影響.研究結(jié)果對(duì)于工程中探討垂直板上浮力參數(shù)及Prandtl數(shù)對(duì)表面摩擦力和傳熱特性的特殊影響具有重要意義.
考慮在二維不可壓縮粘性流體在垂直指數(shù)延伸壁面上穩(wěn)態(tài)的邊界層流動(dòng)與傳熱問(wèn)題.模型示意如圖1所示,x軸方向平行于壁面,y軸方向?yàn)榇怪北诿?壁面沿x方向延伸,延伸速度uw=bex/L,u和v分別為沿著x和y方向的速度分量,υ為流體的運(yùn)動(dòng)粘度,L為參考長(zhǎng)度.
控制方程:
式中:g為重力加速度;β為熱膨脹系數(shù);T為流體溫度;α為熱擴(kuò)散系數(shù);ue=aex/L為自由流速度;T∞為外界溫度.
邊界條件:
引入下列相似變量:
其中:ψ是流函數(shù).根據(jù)定義,可知速度分量為:
將速度分量代入式(1)~(3),可知式(1)自動(dòng)滿足,式(2)和式(3)分別簡(jiǎn)化為:
式中:λ為浮力參數(shù)或混合對(duì)流參數(shù),λ=GrL/(ReL)2,其中GrL=gβ(Tw-T∞)L3/υ2是格拉曉夫數(shù)[12-13],ReL=ueL/υ是雷諾數(shù);Pr=υ/α是Prandtl數(shù).注意λ=gβcL/a2是常數(shù),順流時(shí)λ>0,逆流時(shí)λ<0.
相應(yīng)邊界條件轉(zhuǎn)化為:
其中:ε=b/a為速度比參數(shù).
假定壓縮功和摩擦熱忽略不計(jì),流體表面摩擦力系數(shù)和Nusselt數(shù)(表示對(duì)流換熱強(qiáng)烈程度的一個(gè)準(zhǔn)數(shù))分別定義為:
此處表面摩擦力τw與熱通量qw可以分別寫成:
這里μ和κ分別表示動(dòng)力粘度和導(dǎo)熱系數(shù).利用相似變換式(5)可得:
常微分方程(7)和(8)及邊界條件(9)構(gòu)成兩點(diǎn)邊值問(wèn)題,解決此問(wèn)題的數(shù)值方法有同倫分析法(HAM)、Keller-box、Crand-Nicolson法(CNM)、打靶法等.本文采用打靶法進(jìn)行數(shù)值求解,為驗(yàn)證方法的有效性,將方程(7)修改成f-f'2+ff″+ε2=0,邊界條件改成f(0)=0,f'(0)=1,f'(∞)=ε,當(dāng)ε取不同值時(shí),用本方法求得的f″(0)與現(xiàn)有文獻(xiàn)結(jié)果進(jìn)行比較,結(jié)果很吻合,如表1所示.
表1 ε取不同值時(shí)f″(0)值與現(xiàn)有文獻(xiàn)比較(λ=0)Tab.1Comparison of f″(0)for different values of ε when λ=0
采用打靶法求解非線性常微分方程(7)和(8),用圖表詳細(xì)分析順流和逆流時(shí)浮力參數(shù)λ和Prandtl數(shù)Pr對(duì)流體流動(dòng)和傳熱特性的影響.表2和表3分別給出當(dāng)ε=1,λ=±1時(shí)不同的Pr對(duì)應(yīng)的f″(0)和-θ'(0)值.圖2~11給出表面摩擦系數(shù)、Nusselt數(shù)、速度和溫度分布曲線.
從表2可看出,對(duì)于順流(以λ=1為例)和逆流(以λ=-1為例),f″(0)幾乎大小相等、方向相反,f″(0)都隨Pr增大而減小.從表3可得出,對(duì)于順流和逆流,-θ'(0)都是正數(shù),且值均隨Pr增大而增大.
表2f″(0)與Pr的關(guān)系(ε=1,λ=±1)Tab.2Values of f″(0)for various Prwhen ε=1,λ=±1
表3 -θ'(0)與Pr的關(guān)系(ε=1,λ=±1)Tab.3Values of-θ'(0)for various Prwhen ε=1,λ=±1
從圖2和圖4可得出,順流時(shí)浮力參數(shù)越大,表面摩擦系數(shù)越大,而逆流時(shí)浮力參數(shù)越大,表面摩擦系數(shù)越小.這是因?yàn)轫樍鲿r(shí)浮力參數(shù)越大,速度越大,壁面剪切應(yīng)力相應(yīng)增大,從而使表面摩擦系數(shù)增大,而逆流正好相反.從圖4還可以看出,所有的曲線都在λ=0處相交,且f″(0)=0,這是因?yàn)榇藭r(shí)方程(7)與溫度無(wú)關(guān),流場(chǎng)不受溫度場(chǎng)影響;順流時(shí)f″(0)隨Pr數(shù)增大而減小(這與表1的數(shù)據(jù)相符合),這是因?yàn)镻r數(shù)越大,粘度越大,流動(dòng)速度越慢,表面剪切應(yīng)力越小,從而使表面摩擦系數(shù)減小,逆流時(shí)正好相反.圖3顯示-θ'(0)與浮力參數(shù)λ的關(guān)系與f″(0)類似,但對(duì)于給定的浮力參數(shù),f″(0)與-θ'(0)隨ε的變化方向相反.
圖5顯示順流時(shí)當(dāng)Pr不變時(shí),Nusselt數(shù)隨λ緩慢增加,逆流時(shí)情況相反,因?yàn)轫樍鲿r(shí)浮力產(chǎn)生的壓力梯度會(huì)使流動(dòng)變快,從而加快表面熱傳遞,而逆流會(huì)產(chǎn)生相反的壓力梯度,使流動(dòng)變慢,Nusselt數(shù)減小.從圖5還可以看出Nusselt數(shù)隨Pr的增大而增大,因?yàn)镻r越大,粘度越大,導(dǎo)熱系數(shù)越小,從而使-θ'(0)增大.
圖6 ~11給出ε,λ和Pr取不同值時(shí)的速度與溫度分布圖.從圖6可以看出,流體速度隨ε的增大而增大,且ε越大,在壁面處速度梯度越小,與圖2相吻合;ε<1與ε>1邊界層方向相反;對(duì)于同樣的ε,當(dāng)ε<1時(shí)順流的邊界層較薄,當(dāng)ε>1時(shí)逆流的邊界層較薄.
從圖8和圖10可以看出,對(duì)于順流,速度先增加,達(dá)到一定值后開始減小,最后達(dá)到穩(wěn)定值,即跟外界速度趨于一致;浮力參數(shù)λ值越大,速度變化越明顯.這是因?yàn)棣酥翟酱?,浮力越大,?dòng)能越大;流體流動(dòng)時(shí)要克服阻力,因此速度降低,在無(wú)窮遠(yuǎn)處達(dá)到一個(gè)穩(wěn)定值.逆流時(shí)速度變化趨勢(shì)正好相反.
從圖7、圖9和圖11可以看出,不管是順流還是逆流,對(duì)所有的ε、λ和Pr值,離壁面越遠(yuǎn),溫度越小,最后達(dá)到穩(wěn)定值0.這是因?yàn)榱黧w從壁面吸熱,熱能轉(zhuǎn)化為其他形式的能,包括動(dòng)能.從圖11可以看出,Pr越大,熱邊界層越薄,同時(shí)壁面溫度梯度值越大(這與表2數(shù)據(jù)一致),這是因?yàn)镻r大表示熱擴(kuò)散速率會(huì)比速度(動(dòng)量)擴(kuò)散速率要慢,熱邊界層厚度就會(huì)減小;Pr較小時(shí),浮力對(duì)速度和溫度分布的影響較明顯.
垂直延伸板駐點(diǎn)混合對(duì)流與傳熱問(wèn)題是一基本的物理現(xiàn)象,隨著技術(shù)進(jìn)步及科技發(fā)展這一問(wèn)題越來(lái)越受到科技及工程人員的重視.本文從理論上研究不可壓縮粘性流體在垂直指數(shù)延伸壁面上的二維駐點(diǎn)混合對(duì)流與傳熱問(wèn)題.借助于相似變換將偏微分方程組轉(zhuǎn)換成非線性的常微分方程,通過(guò)打靶法對(duì)數(shù)值計(jì)算結(jié)果的分析,更加深刻地理解了這一基本物理現(xiàn)象,得到如下結(jié)論.
1)對(duì)于順流和逆流,f″(0)幾乎大小相等、方向相反,f″(0)都隨Pr增大而減小;順流時(shí)浮力參數(shù)越大,表面摩擦系數(shù)越大,而逆流時(shí)浮力參數(shù)越大,表面摩擦系數(shù)越小;順流時(shí)f″(0)隨Pr數(shù)增大而減小,逆流時(shí)正好相反.在實(shí)際應(yīng)用中應(yīng)考慮板的延伸方向?qū)Ρ诿婺Σ亮Φ挠绊?
2)對(duì)于順流和逆流,-θ'(0)都是正數(shù),且值均隨Pr增大而增大;-θ'(0)與浮力參數(shù)λ的關(guān)系與f″(0)類似,但對(duì)于給定的浮力參數(shù),f″(0)與-θ'(0)隨ε的變化方向相反;順流時(shí)當(dāng)Pr不變時(shí),Nusselt數(shù)隨λ緩慢增加,逆流時(shí)情況相反.
3)流體速度隨ε的增大而增大,且ε越大,在壁面處速度梯度越小.速度比ε<1與ε>1邊界層方向相反;對(duì)于同樣的ε,當(dāng)ε<1時(shí)順流的邊界層較薄,當(dāng)ε>1時(shí)逆流的邊界層較薄;對(duì)于順流,速度先是增加,達(dá)到一定值后開始減小,最后達(dá)到穩(wěn)定值,即跟外界速度趨于一致;浮力參數(shù)λ值越大,速度變化越明顯;逆流時(shí)速度變化趨勢(shì)正好相反.流體的流動(dòng)規(guī)律與速度比有關(guān),在實(shí)際應(yīng)用中可通過(guò)設(shè)計(jì)合適的速度比來(lái)提高產(chǎn)品質(zhì)量.
4)不管是順流還是逆流,對(duì)所有的ε、λ和Pr值,離壁面越遠(yuǎn),溫度越小,最后達(dá)到穩(wěn)定值0;Pr越大,熱邊界層越薄,同時(shí)壁面溫度梯度值越大;Pr較小時(shí),浮力對(duì)速度和溫度分布的影響較明顯.
[1]朱婧,鄭連存,張欣欣.具有延伸表面的駐點(diǎn)流動(dòng)和傳熱問(wèn)題的級(jí)數(shù)解[J].應(yīng)用數(shù)學(xué)和力學(xué),2009,30(4):432-442.
[2]HIEMENZ K.Die grenzschicht in einem in dem gleichformingen flussigkeitsstrom eingetauchten gerade kreiszlinder[J].Dingler’s Polytechnic Journal,1911,326:321-410.
[3]HOMANN F.Die einfluss grosse zhigkeit bei der strmung um der zylinder und um die kugel[J].Zeitschrift für Angewandte Mathematik und Mechanik,1936,16(3):153-164.
[4]HOWARTH L.On the solution of the laminar boundary layer equations[J].Proceedings of the Royal Society of London,1938,164(919):547-579.
[5]LAYEK G C,MUKHOPADHYAY S,SAMAD S A.Heat and mass transfer analysis for boundary layer stagnation-point flow towards a heated porous stretching sheet with heat absorption/generation and suction/blowing[J].International Communications in Heat and Mass Transfer,2007,34(3):347-356.
[6]BHATTACHARYYA K,MUKHOPADHYAY S,LAYEK G C.Reactive solute transfer in magnetohydrodynamic boundary layer stagnation-point flow over a stretching sheet with suction/blowing[J].Chemical Engineering Communications,2012,199(3): 368-383.
[7]BHATTACHARYYA K,ARIF M G,PRAMANIK W A.MHD boundary layer stagnation-point flow and mass transfer over a permeable shrinking sheet with suction/blowing and chemical reaction[J].Acta Technica,2012,57(1):1-15.
[8]BHATTACHARYYA K.Heat transfer in unsteady boundary layer stagnation-point flow towards a shrinking sheet[J].Ain Shams Engineering Journal,2013,44(2):259-264.
[9]FAN T,XU H,POP I.Unsteady stagnation flow and heat transfer towards a shrinking sheet[J].International Communications in Heat and Mass Transfer,2010,37(10):1 440-1 446.
[10]XU H,POP I,YOU X C.Flow and heat transfer in a nano-liquid film over an unsteady stretching surface[J].International Journal of Heat Transfer,2013,60:646-652.
[11]SI X H,LI L,ZHENG L C,et al.The exterior unsteady viscous flow and heat transfer due to a porous expanding stretching cylinder[J].Computers&Fluids,2014,105:280-284.
[12]ISHAK A,NAZAR R,POP I.Mixed convection boundary layers in the stagnation-point flow toward a stretching vertical sheet[J].Meccanica,2006,41(5):509-518.
[13]CHEN H.Mixed convection unsteady stagnation-point flow towards a stretching sheet with slip effects[J].Mathematical Problems in Engineering,2014,2014(1):1-7.
[14]MAHAPATRA T R,GUPTA A S.Heat transfer in stagnation-point flow towards a stretching sheet[J].Heat&Mass Transfer,2002,38(6):517-521.
[15]NAZAR R,AMIN N,F(xiàn)ILIP D,et al.Unsteady boundary layer flow in the region of the stagnation point on a stretching sheet[J].International Journal of Engineering Science,2004,15(supp 11/12):1 241-1 253.
(責(zé)任編輯:蔣培玉)
Mixed convection and heat transfer of stagnation-point flow towards an exponentially stretching vertical sheet
XU Xiaoqin1,2,CHEN Shumei2
(1.Automobile Application Engineering Dep,F(xiàn)ujian Chuanzheng Communications College,F(xiàn)uzhou,F(xiàn)ujian 350007,China; 2.School of Mechanical Engineering and Automation,F(xiàn)uzhou University,F(xiàn)uzhou,F(xiàn)ujian 350116,China)
The paper studies the mixed convection flow and heat transfer of an incompressible viscous fluid about a stagnation point on an exponentially stretching vertical sheet.The governing equations describing the stagnation point flow are reduced to differential equations by using the similarity transformations and numerically solved through the shooting method.Finally,the effects of the buoyancy parameter and the Prandtl number on the features of the flow and heat transfer characteristics are analyzed and discussed in detail.The results show that for assisting flow,both the skin friction coefficient and the Nusselt number increase as the buoyancy parameter increases,while only the Nusselt number increases but the skin friction coefficient decreases as the Prandtl number increases.For opposing flow,both the skin friction coefficient and the Nusselt number decrease as the buoyancy parameter increases,but both increase as the Prandtl number increases.
exponentially stretching vertical sheet;stagnation-point flow;mixed convection;heat transfer;boundary layer
O351.2
A
10.7631/issn.1000-2243.2016.06.0807
1000-2243(2016)06-0807-06
2016-01-12
許曉勤(1981-),講師,博士研究生,主要從事計(jì)算流體力學(xué)的研究,m140210004@fzu.edu.cn
2012年度中央財(cái)政支持地方高校發(fā)展專項(xiàng)資金資助項(xiàng)目(閩教財(cái)[2012]788號(hào))