彭劍李祿欣馬建軍
(1.湖南科技大學(xué)土木工程學(xué)院,湘潭 411201)(2.河南科技大學(xué)土木工程學(xué)院,洛陽(yáng) 471023)
時(shí)滯反饋?zhàn)饔孟聣弘娏旱膮?shù)共振分析*
彭劍1?李祿欣1馬建軍2
(1.湖南科技大學(xué)土木工程學(xué)院,湘潭 411201)(2.河南科技大學(xué)土木工程學(xué)院,洛陽(yáng) 471023)
基于Hamilton原理建立了受控壓電梁的參數(shù)振動(dòng)方程,研究了軸向激勵(lì)壓電梁時(shí)滯速度反饋控制的主參數(shù)共振.采用非線性振動(dòng)的多尺度法研究了壓電梁的亞諧波主參數(shù)共振,并對(duì)其穩(wěn)定域進(jìn)行分析.通過(guò)算例分析得到了不同時(shí)滯,控制增益,軸力影響下壓電梁參數(shù)共振的穩(wěn)定域和時(shí)程曲線.結(jié)果表明:時(shí)滯值增大,系統(tǒng)承受軸向力減小,相對(duì)于控制增益則反之.同時(shí),隨著軸向力增大,在一定范圍內(nèi)主動(dòng)阻尼增加,時(shí)滯反饋能有效降低響應(yīng)幅值.隨著時(shí)滯值增大,減振效果變差.
壓電梁, 時(shí)滯, 穩(wěn)定性, 參數(shù)共振
梁結(jié)構(gòu)作為一個(gè)基本構(gòu)件,廣泛應(yīng)用于土木、機(jī)械和航空航天等工程領(lǐng)域.在承受外荷載作用下,易發(fā)生大幅振動(dòng)[1-2],影響系統(tǒng)的正常工作.因此,梁結(jié)構(gòu)的大幅振動(dòng)控制問(wèn)題亟待解決.
國(guó)內(nèi)外學(xué)者從理論研究、實(shí)驗(yàn)分析等方面開(kāi)展了研究[3].特別值得指出的是,時(shí)滯反饋控制技術(shù)的發(fā)展為梁結(jié)構(gòu)的振動(dòng)控制提供了新的思路[4-10].王在華和胡海巖[4]對(duì)時(shí)滯動(dòng)力系統(tǒng)的理論和應(yīng)用研究現(xiàn)狀做了詳盡的闡述.趙艷影和徐鑒[5]研究了時(shí)滯非線性動(dòng)力吸振器的減振機(jī)理.Daqaq[6]研究了時(shí)滯反饋?zhàn)饔孟聭冶哿旱姆蔷€性振動(dòng).劉銘等[7]對(duì)中立型時(shí)滯反饋扭轉(zhuǎn)控制系統(tǒng)的穩(wěn)定性進(jìn)行了分析.賈雁兵等[8]研究了異質(zhì)性和時(shí)滯作用下神經(jīng)元網(wǎng)絡(luò)的共振動(dòng)力學(xué).李欣業(yè)等[9]研究了陀螺系統(tǒng)的受迫振動(dòng)并采用時(shí)滯反饋進(jìn)行振動(dòng)控制.馮志宏和霍睿[10]對(duì)壓電耦合懸臂梁的時(shí)滯反饋控制及穩(wěn)定性進(jìn)行了分析.彭劍等[11]研究了時(shí)滯反饋及軸力作用下彈性梁的非線性振動(dòng).
本文采用時(shí)滯速度反饋控制對(duì)受軸向激勵(lì)作用下的壓電梁的主參數(shù)共振開(kāi)展研究,分析控制系統(tǒng)中關(guān)鍵參數(shù)對(duì)受控系統(tǒng)穩(wěn)定域及共振響應(yīng)的影響.
簡(jiǎn)支梁如圖1所示,截面形狀為矩形,壓電材料良好,粘貼在梁表面,梁端沿軸線方向受激振力P(t)=P0+PtcosΩt作用,P0為軸力初值,Pt為軸力幅值,Ω為激振軸力頻率.建立坐標(biāo)系如圖1所示,假設(shè)梁不可伸長(zhǎng)且忽略扭轉(zhuǎn)和剪切變形.
圖1 軸向激勵(lì)下的壓電梁的理論模型Fig.1 Model of a piezoelectric beam subjected to axial excitation
根據(jù)Hamilton變分原理:
其中,δ為變分符號(hào),T和U為整體結(jié)構(gòu)的動(dòng)能和勢(shì)能,δWP為外力虛功.考慮梁橫向位移w的一階展開(kāi)式,將其表示為:
其中,q(t)為位移幅值,即廣義坐標(biāo),L為梁長(zhǎng).則動(dòng)能、勢(shì)能和外力功分別表示為[3]:
c為阻尼系數(shù),h為基梁厚底,b表示壓電層的寬,m為基梁和壓電片單位長(zhǎng)度的質(zhì)量,V0為外加電壓,hp為壓電片厚度,e31為壓電常數(shù).將方程(3)~(5)代入方程(1),并對(duì)廣義坐標(biāo)w求變分,得到結(jié)構(gòu)的非線性運(yùn)動(dòng)方程如下:
根據(jù)壓電材料控制機(jī)理,采用速度傳感器測(cè)量梁結(jié)構(gòu)某一點(diǎn)x0處的速度并傳給控制器,采用時(shí)滯速度反饋控制策略施加沿壓電作動(dòng)器控制電壓[6],即:
式中k為反饋控制增益.則受控系統(tǒng)運(yùn)動(dòng)運(yùn)動(dòng)方程為:
下面運(yùn)用多尺度法[12]對(duì)時(shí)滯反饋壓電梁的參數(shù)共振進(jìn)行分析.將P(t)代入方程(9),并整理如下:
為書寫方便,在以下分析中略去方程中的星號(hào).同時(shí)將系數(shù)調(diào)整為:
其中ε為小擾動(dòng)參數(shù).設(shè)方程(13)的解為:
方程(16)的通解可以寫為:
將An表示成極坐標(biāo)其中a和nβn是關(guān)于T1的實(shí)函數(shù).分離實(shí)虛部,可得:
令a′n0=γ′n0=0則可得穩(wěn)定解.考慮非平凡解,即an≠0,則由方程(20)和(21)可得:
將方程(22)代入方程(21),得到定常解的振幅為:
上式稱為幅頻曲線方程,反映了外激勵(lì)和主動(dòng)阻尼等對(duì)結(jié)構(gòu)振動(dòng)幅值的影響.
根據(jù)An為實(shí)函數(shù)的條件,由方程(23)得到結(jié)構(gòu)運(yùn)動(dòng)穩(wěn)定性條件如下:
本節(jié)通過(guò)具體算例分析參數(shù)對(duì)結(jié)構(gòu)參數(shù)共振的影響.梁和壓電材料的幾何和物理參數(shù)如下[3].梁:彈性模量E=71GPa,線密度ρ=2710kg·m· s-2,長(zhǎng)度L=0.5m,寬度b=0.01m,厚度h=0.005 m.壓電材料:彈性模量c=126GPa,線密度ρP=7500kg·m·s-2,壓電系數(shù)e31=-6.5cm-2,長(zhǎng)度LP=0.5m,寬度bP=0.01m,厚度hP=0.001m,x0=L/2.
圖2給出了時(shí)滯τ對(duì)壓電梁參數(shù)共振穩(wěn)定性的影響,縱坐標(biāo)μ與軸力幅值Pt有關(guān),此處P0=120N.從圖2中可以看到,當(dāng)k=2時(shí),隨著時(shí)滯值的減小,穩(wěn)定性區(qū)域邊界處于曲線的最低點(diǎn)附近向上移動(dòng).此時(shí),2ω/Ω=1附近上方移動(dòng),該點(diǎn)是亞諧波-主參數(shù)共振點(diǎn),也就是說(shuō),給定控制增益,不同時(shí)滯下,結(jié)構(gòu)穩(wěn)定性區(qū)域發(fā)生變化并且相對(duì)亞諧波-主參數(shù)共振區(qū)有一定偏移.圖3分析了控制增益k對(duì)壓電梁參數(shù)共振的影響.當(dāng)給定時(shí)滯τ=π/4時(shí),隨著控制增益的增長(zhǎng),穩(wěn)定區(qū)域邊界線上移.值得注意的是:控制增益越大,結(jié)構(gòu)所能承受的軸向力越大(限于屈曲荷載范圍).
圖2 不同時(shí)滯時(shí)壓電梁參數(shù)共振穩(wěn)定性域Fig.2 Stability region of parametrically excited piezoelectric beam with different time delay
圖3 不同控制增益時(shí)壓電梁參數(shù)共振穩(wěn)定性域Fig.3 Stability region of parametrically excited piezoelectric beam with different control gain
圖4 軸力影響下壓電梁參數(shù)共振穩(wěn)定性域Fig.4 Stability region of parametrically excited piezoelectric beam with the effect of axial force
圖4給出了無(wú)控和受控作用下軸力對(duì)壓電梁參數(shù)共振的影響.可見(jiàn),隨著軸力的增大,穩(wěn)定域邊界線逐漸升高,同時(shí)可以看到,施加控制的穩(wěn)定域較有降低,說(shuō)明軸力增加,需較大的主動(dòng)阻尼才能使結(jié)構(gòu)處于穩(wěn)定區(qū)域,而施加控制的效果明顯.
圖5~圖7給出了無(wú)控和受控作用下壓電梁參數(shù)振動(dòng)響應(yīng)的時(shí)程曲線.可以看出,采用時(shí)滯反饋控制后,響應(yīng)幅值明顯受到抑制,但隨著時(shí)滯值的增大,結(jié)構(gòu)響應(yīng)也逐漸增大,甚至可能導(dǎo)致失穩(wěn).
圖5 無(wú)控梁的時(shí)程曲線Fig.5 Time history of an apiezoelectric beam without control
圖6 k=2,τ=π/4時(shí)受控梁的時(shí)程曲線Fig.6 Time history of a controlled piezoelectric beam whenk=2,τ=π/4
圖7 k=2,τ=π時(shí)受控梁的時(shí)程曲線Fig.7 Time history of a controlled piezoelectric beam whenk=2,τ=π
本文研究了壓電梁參數(shù)共振的時(shí)滯反饋控制,采用多尺度法得到了參數(shù)共振的穩(wěn)定性曲線,分析了控制增益、時(shí)滯值、軸力等因素對(duì)穩(wěn)定性區(qū)域的影響.得到結(jié)論如下:時(shí)滯反饋控制下,較小的時(shí)滯值和較大的控制增益結(jié)構(gòu)能承受的軸向與激勵(lì)越大.在穩(wěn)定域內(nèi),增大控制增益有利于增大主動(dòng)阻尼.結(jié)構(gòu)主參數(shù)共振響應(yīng)隨著時(shí)滯的增大出現(xiàn)拍振,甚至可能失穩(wěn).
1 Zhang W,Wang F X,Zu JW.Local bifurcations and codimension-3 degenerate bifurcations of a quintic nonlinear beam under parametric excitation.Chaos,Solitons and Fractals,2005,24(4):977~998
2 李海濤,秦衛(wèi)陽(yáng),田瑞蘭.隨機(jī)及移動(dòng)荷載激勵(lì)下彈性梁分岔與混沌.動(dòng)力學(xué)與控制學(xué)報(bào),2015,13(6):417~422(Li H T,Qin W Y,Tian R L.Bifurcation and chaos of beam subjected tomoving loads and random excitations.Journal of Dynamics and Control,2015,13(6):417~422(in Chinese))
3 李鳳明,劉春川.非線性梁結(jié)構(gòu)的參數(shù)振動(dòng)穩(wěn)定性及其主動(dòng)控制.應(yīng)用數(shù)學(xué)與力學(xué),2012,33(11):1284~1293(Li FM,Liu C C.Parametric vibration stability and active control of nonlinear beams.Applied Mathematics and Mechanics,2012,33(11):1284~1293(in Chinese))
4 王在華,胡海巖.時(shí)滯動(dòng)力系統(tǒng)的穩(wěn)定性與分岔:從理論走向應(yīng)用.力學(xué)進(jìn)展,2013,43(1):1~20(Wang Z H,Hu H Y.Stability and bifurcation of delayed dynamics systems:From theory to application,2013,43(1):1~20(in Chinese))
5 趙艷影,徐鑒.時(shí)滯非線性動(dòng)力吸振器的減振機(jī)理.力學(xué)學(xué)報(bào),2008,40(1):98~105(Zhao Y Y,Xu J.Mechanism analysis of delayed nonlinear vibration absorber.Chinese Journal of Theoretical and Applied Mechanics,2008,40(1):98~105(in Chinese))
6 Daqaq M F,Alhazza K A,Arafat H N.Non-linear vibrations of cantilever beamswith feedback delays.International Journal of Non-Linear Mechanics,2008,43:962~978
7 劉銘,徐曉峰,張春蕊.中立型時(shí)滯反饋扭轉(zhuǎn)控制系統(tǒng)的穩(wěn)定性分析.動(dòng)力學(xué)與控制學(xué)報(bào),2015,13(6):449~453(Liu M,Xu X F,Zhang CR.Stability analysis of delayed torsional vibration system of neutral type.Journal of Dynamics and Control,2015,13(6):449~453(in Chinese))
8 賈雁兵,楊曉麗,孫中奎.異質(zhì)性和時(shí)滯作用下神經(jīng)元網(wǎng)絡(luò)的共振動(dòng)力學(xué).動(dòng)力學(xué)與控制學(xué)報(bào),2014,12(1):86~91(Jia Y B,Yang X L,Sun ZK.Impactof diversity and delays on the resonance dynamics of neuronal networks.Journal of Dynamics and Control,2014,12(1):86~91(in Chinese))
9 李欣業(yè),張利娟,張華彪.陀螺系統(tǒng)的受迫振動(dòng)及其時(shí)滯反饋控制.振動(dòng)與沖擊,2012,31(9):63~68(Li XY,Zhang L J,Zhang H B.Forced vibration of a gyroscope system and its delayed feedback control.Journal of Vibration and Shock,2012,31(9):63~68(in Chinese))
10 馮志宏,霍睿.壓電耦合懸臂梁的時(shí)滯反饋控制及穩(wěn)定性分析.振動(dòng)與沖擊,2011,30(6):181~184(Feng Z H,Huo R.Time-delay feedback control and stability analysis of piezoelectric-coupling cantilever beam.Journal of Vibration and Shock,2011,30(6):181~184(in Chinese))
11 彭劍,趙珧冰,王連華.時(shí)滯反饋及軸力作用下彈性梁的非線性振動(dòng).湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2013,40(9):30~36(Peng J,Zhao Y B,Wang L H.Nonlinear vibrations of elastic beams subjected to axial force and delayed-feedback.Journal of Hunan University(Naturnal Science),2013,40(9):30~36(in Chinese))
12 Nayfeh A H.Linear and nonlinear structure mechanics.New York:Wiley Interscience,2004
PARAMETRIC RESONANCEOF PIEZOELECTRIC BEAMS W ITH TIME-DELAYED FEEDBACK*
Peng Jian1?Li Luxin1Ma Jianjun2
(1.School of Civil Engineering,Hunan University of Science and Technology,Xiangtan411201,China)
(2.College of Civil Engineering,Henan University of Science and Technology,Luoyang471023,China)
The primary parametric resonance of the time-delayed velocity feedback control on piezoelectric beams under axial excitation is studied.Based on Hamilton principle,the parameter vibration equations of the controlled piezoelectric beam are obtained.Themulti-scale method of the nonlinear vibration is used to study the subharmonic primary parameter resonance on the piezoelectric beam,and its stability regions are examined.The numerical example is given to investigate the effects of time delays,control gain and axial force on the stability region and obtain the time history curves of the primary parametric resonance on piezoelectric beams.The results show that the increase of time delay leads to the reduction of the axial force of the system,while the control gain exhibits opposite effect.Moreover,with the increase of the axial force,the active damping increases in a certain range,and the time-delayed feedback can effectively reduce the response amplitude.
piezoelectric beams, time delay, stability, parametric resonance
10.6052/1672-6553-2016-27
2016-1-20收到第1稿,2016-3-1收到修改稿.
*國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(973計(jì)劃)項(xiàng)目(2015CB057702)、國(guó)家自然科學(xué)基金(11402085,11502072)和湖南省教育廳資助項(xiàng)目(14C0464)
?通訊作者E-mail:pengjian@hnu.edu.cn
Received 20 January 2016,revised 1 March 2016.
*The project supported by the Natural Natural Science Foundation of China(2015CB057702),National Natural Science Foundation of China(11402085,11502072),Scientific Research Fund of Hunan Provincal Education Dapartment(14C0464)
?Corresponding author E-mail:pengjian@hnu.edu.cn