孫克輝傅元理
(1.中南大學(xué)物理與電子學(xué)院,長(zhǎng)沙 410083)(2.新疆大學(xué)物理科學(xué)與技術(shù)學(xué)院,烏魯木齊 830046)
簡(jiǎn)化Lorenz系統(tǒng)多翅膀混沌吸引子的設(shè)計(jì)與電路實(shí)現(xiàn)*
孫克輝1,2?傅元理1
(1.中南大學(xué)物理與電子學(xué)院,長(zhǎng)沙 410083)(2.新疆大學(xué)物理科學(xué)與技術(shù)學(xué)院,烏魯木齊 830046)
基于簡(jiǎn)化Lorenz系統(tǒng),通過設(shè)計(jì)非線性函數(shù),得到單方向多翅膀混沌吸引子.在此基礎(chǔ)上,通過引入切換控制函數(shù),得到了網(wǎng)格多翅膀混沌吸引子.通過相圖、耗散性、平衡點(diǎn)、分岔圖和Poincaré截面方法,分析了系統(tǒng)的動(dòng)力學(xué)特性.結(jié)果表明,該多翅膀系統(tǒng)具有豐富的動(dòng)力學(xué)行為.設(shè)計(jì)并實(shí)現(xiàn)了網(wǎng)格多翅膀系統(tǒng)的模擬電路,通過示波器觀測(cè)到網(wǎng)格多翅膀混沌吸引子,驗(yàn)證了該系統(tǒng)的物理可實(shí)現(xiàn)性,電路實(shí)驗(yàn)結(jié)果與數(shù)值仿真結(jié)果相一致.
混沌, 網(wǎng)格多翅膀吸引子, 簡(jiǎn)化Lorenz系統(tǒng), 非線性函數(shù),電路實(shí)現(xiàn)
1963年Lorenz提出了Lorenz系統(tǒng)[1],掀起混沌研究的熱潮.1984年,蔡少棠教授提出能產(chǎn)生雙渦卷的蔡氏電路[2],首次在混沌理論和非線性電路之間架起了橋梁.混沌在保密通信、系統(tǒng)控制等領(lǐng)域具有廣泛的應(yīng)用前景.為了將混沌更好的應(yīng)用于保密通信,人們長(zhǎng)期致力于研究結(jié)構(gòu)更復(fù)雜、性能更優(yōu)的混沌系統(tǒng),既強(qiáng)化混沌系統(tǒng)[3-6].多翅膀混沌系統(tǒng)由于具有更復(fù)雜的動(dòng)力學(xué)行為,成為混沌領(lǐng)域的研究熱點(diǎn)之一.
經(jīng)典的Lorenz混沌系統(tǒng)其吸引子的拓?fù)浣Y(jié)構(gòu)與蝴蝶的形狀十分相似,被稱為雙翅膀混沌系統(tǒng).類似的還有Lü系統(tǒng)[7],Chen系統(tǒng)[8],統(tǒng)一混沌系統(tǒng)[9]等.如何基于雙翅膀混沌系統(tǒng)設(shè)計(jì)出多翅膀混沌吸引子一直是眾多研究者的研究課題.一類多翅膀吸引子是通過計(jì)算機(jī)仿真偶然得到的[10-12].另外,文獻(xiàn)[13]報(bào)道了環(huán)狀多翅膀吸引子的研究成果,但都沒有形成系統(tǒng)的方法,不具有普適性.另一類主要是采用與構(gòu)造多渦卷混沌吸引子相同的思想,即在系統(tǒng)中引入合適函數(shù),擴(kuò)展指標(biāo)為2的鞍焦平衡點(diǎn).文獻(xiàn)[14-15]在部分廣義Lorenz系統(tǒng)中實(shí)現(xiàn)了數(shù)量可控的單方向2N多翅膀吸引子.文獻(xiàn)[16-17]報(bào)道了在單方向多翅膀吸引子的基礎(chǔ)上,在另一方向引入非線性函數(shù)生成N×M網(wǎng)格狀多翅膀吸引子,但總的來說這類系統(tǒng)數(shù)量有限,設(shè)計(jì)新的網(wǎng)格多翅膀混沌系統(tǒng)仍然是個(gè)富有挑戰(zhàn)性的課題.文獻(xiàn)[18]提出了簡(jiǎn)化Lorenz系統(tǒng),該系統(tǒng)只含有單參數(shù),卻有三參數(shù)經(jīng)典Lorenz系統(tǒng)的性質(zhì).但是到目前為止,還沒有關(guān)于簡(jiǎn)化Lorenz系統(tǒng)的多翅膀吸引子的研究報(bào)道.
本文以簡(jiǎn)化Lorenz系統(tǒng)模型為基礎(chǔ),研究了多翅膀混沌系統(tǒng)的設(shè)計(jì)與電路實(shí)現(xiàn)問題.首先在x軸引入偶對(duì)稱分段非線性函數(shù)替代原方程中的交叉乘積項(xiàng),使系統(tǒng)翅膀數(shù)在x方向上延伸,然后在z軸方向引入切換控制器,使系統(tǒng)吸引子在z軸方向延伸,生成了網(wǎng)格狀多翅膀吸引子;并對(duì)系統(tǒng)進(jìn)行了耗散性、平衡點(diǎn)分布、分岔圖和Poincaré截面等分析;最后設(shè)計(jì)了相應(yīng)的模擬電路,并進(jìn)行電路實(shí)驗(yàn).
1.1 簡(jiǎn)化Lorenz系統(tǒng)模型
單參數(shù)簡(jiǎn)化Lorenz系統(tǒng)的數(shù)學(xué)模型為[18]其中,x、y、z為系統(tǒng)狀態(tài)變量,c是系統(tǒng)參數(shù).圖1為c=1時(shí)的吸引子相圖及系統(tǒng)隨參數(shù)c變化的分岔圖,可見,系統(tǒng)通過倍周期分岔進(jìn)入混沌態(tài),擁有多個(gè)周期窗口,且具有雙翅膀狀吸引子.
圖1 簡(jiǎn)化Lorenz系統(tǒng)的相圖和分岔圖(a)c=1時(shí)的吸引子x-z相平面圖(b)系統(tǒng)隨參數(shù)c變化的分岔圖Fig.1 Phase diagram and bifurcation diagram of simplified Lorenz system(a)Phase diagram of attractor inx-zplane forc=1(b)Bifurcation diagram(cis varying)
1.2 單方向多翅膀混沌吸引子的設(shè)計(jì)
多翅膀混沌吸引子的設(shè)計(jì)原理為拓展指標(biāo)2鞍焦點(diǎn)的個(gè)數(shù),每個(gè)指標(biāo)2的鞍焦點(diǎn)對(duì)應(yīng)于一個(gè)翅膀吸引子.為了得到簡(jiǎn)化Lorenz多翅膀混沌吸引子,在簡(jiǎn)化Lorenz系統(tǒng)的基礎(chǔ)上,引入偶對(duì)稱分段非線性函數(shù)替代原系統(tǒng)中的交叉乘積項(xiàng),且考慮到電路設(shè)計(jì)與實(shí)現(xiàn)需要,使系統(tǒng)變量范圍在電子元器件動(dòng)態(tài)范圍之內(nèi),對(duì)系統(tǒng)變量進(jìn)行等比例壓縮.比例壓縮系數(shù)p=0.05,則系統(tǒng)方程變?yōu)?/p>
其中f(x)為偶對(duì)稱分段非線性函數(shù),由一個(gè)平方函數(shù)和偶對(duì)稱的階梯波序列組合而成,表達(dá)式為
其中F0、Fi、Ei為可調(diào)參數(shù),共同控制非線性函數(shù)各段的斜率、幅度和寬度.圖2為當(dāng)參數(shù)選擇如表1時(shí)的非線性函數(shù)f(x)的圖形,可見,系統(tǒng)關(guān)于x=0對(duì)稱.令c=1,N=1、N=2、N=3、N=4,以(0.1,0.1,0.1)為初始值進(jìn)行仿真,可得系統(tǒng)的吸引子相圖如圖3所示.與圖1(a)對(duì)比可知,在x方向引入偶對(duì)稱分段非線性函數(shù)之后,系統(tǒng)從兩翅膀混沌吸引子拓展成了多翅膀混沌吸引子.
圖2 N=4時(shí)參數(shù)可調(diào)多分段非線性函數(shù)f(x)Fig.2 Non-linearmulti-segment functionf(x)forN=4
表1 可調(diào)參數(shù)Fi、Ei的取值Table 1 Values ofFiandEi
圖3 單方向多翅膀混沌吸引子相圖(a)N=1,4翅膀;(b)N=2,6翅膀(c)N=3,8翅膀;(d)N=4,10翅膀Fig.3 Phase diagram ofN-wing chaotic attractor(a)N=1,4-wing attractor;(b)N=2,6-wing attractor(c)N=3,8-wing attractor;(d)N=4,10-wing attractor
1.3 網(wǎng)格多翅膀混沌吸引子的設(shè)計(jì)
為了能得到網(wǎng)格多翅膀混沌吸引子,在系統(tǒng)(2)的基礎(chǔ)上,在z方向上引入切換控制器g(z),得到網(wǎng)格多翅膀系統(tǒng)方程為
其中f(x)是偶對(duì)稱分段非線性函數(shù),其定義由式(3)給出.切換控制器g(z)的定義為
其中G與單方向多翅膀吸引子在z方向的跨度相關(guān),zi為切換控制點(diǎn).這樣,系統(tǒng)(4)可產(chǎn)生(2N+2)×(M+1)網(wǎng)格狀多翅膀混沌吸引子.若令M=3,g(z)=1.3[1+sgn(z-2.8)]-1.3[1-sgn(z-0.1)]-1.3[1-sgn(z+2.5)],則切換控制器函數(shù)圖形如圖4所示.令c=1,N=2,M=1;N=2,M=2;N=2,M=3;N=4,M=1;N=4,M=2;N=4,M=3時(shí),可分別產(chǎn)生6×2,6×3,6×4;10×2,10 ×3,10×4網(wǎng)格多翅膀混沌吸引子.其數(shù)值仿真結(jié)果如圖5所示.
圖4 切換控制函數(shù)波形圖Fig.4 Curve of the switch control function
圖5 網(wǎng)格狀多翅膀混沌吸引子(a)2×6翅膀吸引子;(b)2×10翅膀吸引子;(c)3×6翅膀吸引子;(d)3×10翅膀吸引子;(e)4×6翅膀吸引子;(f)4×10翅膀吸引子Fig.5 Phase diagram of grid multi-wing chaotic attractor(a)2×6-wing attractor;(b)2×10-wing attractor;(c)3×6-wing attractor;(d)3×10-wing attractor;(e)4×6-wing attractor;(f)4×10-wing attractor
單方向多翅膀混沌系統(tǒng)可以看成是網(wǎng)格多翅膀混沌系統(tǒng)中g(shù)(z)=0的一個(gè)特例.因此,以網(wǎng)格多翅膀混沌系統(tǒng)為例,分析多翅膀混沌系統(tǒng)的動(dòng)力學(xué)特性,包括c=1時(shí)系統(tǒng)(4)的耗散性、平衡點(diǎn)分布、系統(tǒng)隨控制參數(shù)c改變時(shí)的分岔圖和Poincaré截面.
2.1 耗散性分析
由耗散性定義可得
可見系統(tǒng)(4)是耗散的.意味著當(dāng)t→∞時(shí),所有的系統(tǒng)軌跡都會(huì)被限制在體積為零的集合上,其演化軌跡將表現(xiàn)為奇異吸引子.
2.2 平衡點(diǎn)及其穩(wěn)定性分析
由式(7)求得的平衡點(diǎn)Q0(0,0,0)、Qi(u,u,w).其中u,w由下式確定
根據(jù)前面給出的相關(guān)參數(shù)及式(8),令N=4,M=3,可得到4×10翅膀混沌吸引子的平衡點(diǎn)Qi(u,u,w)取值如式(9)所示.圖6給出了其在x-z相平面上的40個(gè)平衡點(diǎn)分布.可見,通過引入偶對(duì)稱分段非線性函數(shù)f(x),以及切換控制器g(z),系統(tǒng)原有的兩個(gè)鞍焦平衡點(diǎn)已被擴(kuò)展為(2N+2)×(M+1)個(gè).
將系統(tǒng)(4)在平衡點(diǎn)Qi(u,u,w)處做線性化處理,得到平衡點(diǎn)Qi(u,u,w)處的雅克比矩陣為
其中F*(x)、G*(z)分別為f(x)、g(z)在對(duì)應(yīng)平衡點(diǎn)處的導(dǎo)數(shù)值.為分析各個(gè)平衡點(diǎn)的類型,計(jì)算每個(gè)平衡點(diǎn)所對(duì)應(yīng)雅克比矩陣的特征值,相關(guān)結(jié)果如下:
圖6中用“°”標(biāo)明的40個(gè)平衡點(diǎn)為指標(biāo)2的鞍焦平衡點(diǎn),根據(jù)多翅膀吸引子構(gòu)造原理,每個(gè)指標(biāo)2鞍焦點(diǎn)產(chǎn)生一個(gè)翅膀吸引子,可見系統(tǒng)能得到40個(gè)翅膀吸引子.
圖6 x-z平面平衡點(diǎn)分布示意圖Fig.6 Distribution of equilibrium points inx-zphase plane whenN=4 andM=3
2.3 分岔分析
當(dāng)p=0.05,N=4,M=3時(shí),系統(tǒng)(4)的分岔圖如圖7所示.將圖7(a)方框區(qū)域放大得到圖7(b).與原系統(tǒng)分岔圖圖(1b)對(duì)比可知,圖7(b)幾乎與圖(1b)相一致,顯然,新構(gòu)造的網(wǎng)格多翅膀混沌系統(tǒng)較原系統(tǒng)具有更加復(fù)雜的動(dòng)力學(xué)行為.
圖7 4×10網(wǎng)格多翅膀系統(tǒng)分岔圖(a)當(dāng)c∈[-12,8]時(shí)的分岔圖(b)當(dāng)c∈[4.5,7.5]時(shí)的分岔圖Fig.7 Bifurcation diagrams of4×10-wing system(a)Bifurcation diagram whenc∈[-12,8](b)Bifurcation diagram whenc∈[4.5,7.5]
2.4 Poincaré截面
計(jì)算以y=0為截面的4×10網(wǎng)格多翅膀混沌系統(tǒng)的Poincaré截面,結(jié)果如圖8所示.可見,Poincaré截面上的點(diǎn)主要分布為4排,且清晰表示出每排所拓展出的翅膀形狀,與吸引子相圖圖5(f)相一致,同時(shí)也驗(yàn)證了網(wǎng)格多翅膀系統(tǒng)處于混沌狀態(tài).
圖8 4×10網(wǎng)格多翅膀混沌系統(tǒng)Poincaré截面Fig.8 Poincarésection of the 4×10-wing chaotic system
對(duì)網(wǎng)格多翅膀混沌系統(tǒng)(4)進(jìn)行模擬電路的物理實(shí)現(xiàn).以N=2,M=1為例設(shè)計(jì)其模擬電路,電路由兩部分構(gòu)成:第一部分為c=1時(shí)簡(jiǎn)化Lorenz系統(tǒng)主體電路,如圖9所示.當(dāng)S1、S2打開時(shí)電路產(chǎn)生單方向6翅膀吸引子,當(dāng)S1、S2閉合時(shí)電路產(chǎn)生6×2網(wǎng)格多翅膀.第二部分為偶對(duì)稱多分段非線性函數(shù)f(x)和切換控制函數(shù)g(z)的產(chǎn)生電路,如圖10所示.
根據(jù)圖9和圖10的電路圖可得到非線性系統(tǒng)電路方程為
圖9 網(wǎng)格多翅膀混沌系統(tǒng)主體電路Fig.9 Main circuit of grid multi-wing chaotic system
圖10 N=2、M=1非線性函數(shù)電路(a)f(x)電路圖;(b)g(z)電路圖Fig.10 Circuit of non-linear function withN=2,M=1(a)Circuit realization off(x);(b)Circuit realization ofg(z)
對(duì)比方程(12)和(4)得到R0=R3=10kΩ,C0=1nF,R1=R2=R8=100kΩ,R4=1000kΩ,R5=R6=5kΩ、R7=R9=375kΩ.電路實(shí)現(xiàn)中用到了5%精度的線性電阻、線性電容、模擬乘法器和運(yùn)算放大器.其中模擬乘法器采用的是AD633芯片,增益系數(shù)為0.1.運(yùn)算放大器采用TL082,電源供電電壓為± 15V,此時(shí)運(yùn)算放大器的動(dòng)態(tài)范圍是±13.5V.圖11為電路實(shí)驗(yàn)結(jié)果,可見實(shí)驗(yàn)結(jié)果與數(shù)值仿真結(jié)果相一致.表明電路設(shè)計(jì)正確,系統(tǒng)具有物理可實(shí)現(xiàn)性.
圖11 電路實(shí)驗(yàn)相圖(a)單方向4翅膀;(b)單方向6翅膀;(c)網(wǎng)格2×4翅膀;(d)網(wǎng)格2×6翅膀Fig.11 Results of circuit experimental(a)4-wing attractor;(b)6-wing attractor;(c)2×4-wing attractor;(d)2×6-wing attractor
采用理論分析、數(shù)值仿真及電路實(shí)現(xiàn)的方法,研究了基于簡(jiǎn)化Lorenz系統(tǒng)的網(wǎng)格多翅膀混沌吸引子設(shè)計(jì)問題.通過在x方向引入偶對(duì)稱多分段非線性函數(shù)及在z方向進(jìn)行切換控制,拓展了系統(tǒng)指標(biāo)為2的鞍焦平衡點(diǎn),得到了網(wǎng)格多翅膀混沌吸引子.網(wǎng)格多翅膀混沌系統(tǒng)有更加復(fù)雜的動(dòng)力學(xué)行為.最后設(shè)計(jì)并實(shí)現(xiàn)了該系統(tǒng)的模擬電路,驗(yàn)證了該系統(tǒng)的物理可實(shí)現(xiàn)性,多翅膀系統(tǒng)的應(yīng)用將是我們下一步研究的課題.
1 Lorenz E N.Deterministic non-periodic flows.Journal of the Atmospheric Sciences,1963,20(3):130~141
2 Chua L O,Komuro M,Matsumoto T.The double scroll family.IEEE Transactions on Circuits and Systems,1986,33(11):1072~1118
3 孫克輝,艾星星,左婷.多渦卷Chua混沌吸引子的設(shè)計(jì)與性能分析.動(dòng)力學(xué)與控制學(xué)報(bào),2015,13(1):11~17(Sun K H,Ai X X,Zuo T,et al.Design of Chua multi-scroll chaotic attrator and its performance analysis.Journal of Dynamics&Control,2015,13(1):11~17(in Chinese))
4 Zhang C X,Yu SM.Generation ofmulti-wing chaotic attractor in fractional order system.Chaos Solitons&Fractals,2011,44(10):845~850
5 Sun K H,Wang Y,Wang Y L.Hyperchaos behaviors and chaos synchronization of two unidirectional coupled simplified Lorenz systems.Journal of Central South University,2014,21(3):948~955
6 艾星星,孫克輝,賀少波.不同類型混沌吸引子的復(fù)合.物理學(xué)報(bào),2014,63(4):040503(Ai X X,Sun K H,He S B.Compound attractors between different chaotic systems.Acta Physica Sinica,2014,63(4):40503~040503(in Chinese))
7 LüJH,Chen G R.A new chaotic attractor coined.International Journal of Bifurcation&Chaos,2002,12(3):659~661
8 Chen GR,Ueta T.Yetanother chaotic attractor.International Journal of Bifurcation and Chaos,1999,9(7):1465~1466
9 LüJH,Chen G R,Zhang S.Dynamical analysis of a new chaotic attractor.International Journal of Bifurcation&Chaos,2002,12(5):1001~1015
10王繁珍,齊國(guó)元,陳增強(qiáng).一個(gè)四翼混沌吸引子.物理學(xué)報(bào),2007,56(6):3137~3144(Wang F Z,Qi G Y,Chen Z Q,et al.A four-winged chaotic attractor.Acta Phys Sinica,2007,56(6):3137~3144(in Chinese))
11 Li Y X,Cao Y C,Huang X.A new 4D four-wing hyperchaotic attractor and its circuit implementation.IEEE Communications,Circuits and Systems(ICCCAS),2010:742~746
12 Giuseppe G.Novel four-wing and eight-wing attractors using coupled chaotic Lorenz systems.Chinese Physics B,2008,17(9):3247-3251
13 Yu SM,LüJH,Tang K S,et al.A general muli-scroll Lorenz system family and its realization via digital signal processors.Chaos,2006,16(3):033126(1~10)
14 Yu SM,Wallace K S,LüJH,et al.Generating 2n-wing attractors from Lorenz-like systems.International Journal of Bifurcation and Chaos,2010,38(3):243~258
15 Bao BC,Wang X F,Xu JP.Multi-wing butterfly attractors in Lüsystem.2010 InternationalWorkshop on Chaos-Fractal Theory and its applications,2010,211~215
16 周欣,王春華,郭小蓉.一個(gè)新的網(wǎng)格多翅膀混沌系統(tǒng)及其電路實(shí)現(xiàn).物理學(xué)報(bào),2012,61(20):200506(Zhou X,Wang C H,Guo X R.A new grid multi-wing chaotic system and its circuit implementation.Acta Physica Sinica,2012,61(20):200506~379(in Chinese))
17 Yu SM,Zhang C X.On constructing complex grid multiwing hyperchaotic system:Theoretical design and circuit implementation.International Journal of Circuit Theory and Applications,2013,41(3):221~237
18 Sun K H,Sprott JC.Dynamics of a simplified Lorenz system.International Journal of Bifurcation and Chaos,2009, 19(4):1357~1366
DESIGN AND CIRCUIT IMPLEMENTATION OF THE SIMPLIFIED LORENZ MULTI-W ING CHAOTIC ATTRACTOR*
Sun Kehui1,2?Fu Yuanli1
(1.School of Physics and Electronics,Central South University,Changsha410083,China)
(2.School of Physics Science and Technology,Xinjiang University,Urumqi830046,China)
N-wing attractorswere first obtained by introducing a nonlinear function on the simplified Lorenz system in this paper.The gridmulti-wing attractorswere then realized through switching the control function in the z direction.Moreover,the dynamical characteristics of the Lorenz system were studied by the attractor phase diagram,dissipation,equilibrium points,bifurcation diagram and Poincarésection.The results show that the simplified Lorenz system exhibited a rich dynamical behaviors.Finally,the analog circuitof the system was designed and developed.The grid multi-wing attractors were observed through the oscilloscope,and the physical implementation of chaotic circuitwas verified.It is found that the results of circuit experimentand numerical simulation were accordant.
chaos, grid multi-wing attractor, simplified Lorenz system, nonlinear function, circuit implementation
10.6052/1672-6553-2015-85
2015-10-12收到第1稿,2015-11-13收到修改稿.
*國(guó)家自然科學(xué)基金資助項(xiàng)目(61161006,61573383)
?通訊作者E-mail:kehui@csu.edu.cn
Received 12 October 2015,revised 13 November 2015.
*The project supported by the National Natural Science Foundation of China(61161006、61573383)
?Corresponding author E-mail:kehui@csu.edu.cn