国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

3D-T2-DRIVE聯(lián)合3D TOFMRA診斷面聽(tīng)神經(jīng)微血管壓迫的意義探討

2016-05-17 01:50潘希敏胡美玉潘碧濤江波
磁共振成像 2016年11期
關(guān)鍵詞:腦神經(jīng)聽(tīng)神經(jīng)小腦

潘希敏,胡美玉,潘碧濤,江波,*

3D-T2-DRIVE聯(lián)合3D TOFMRA診斷面聽(tīng)神經(jīng)微血管壓迫的意義探討

潘希敏1,胡美玉1,潘碧濤2,江波1,2*

目的探討應(yīng)用3D-T2-DRIVE聯(lián)合3D TOFMRA診斷面聽(tīng)神經(jīng)血管性壓迫的意義。材料與方法36例臨床擬診面聽(tīng)神經(jīng)血管壓迫患者行3D-T2-DRIVE與3D TOFMRA序列的各向同性和等體素掃描,觀察各例原始圖和各方位重組圖,評(píng)價(jià)其顯示患側(cè)面聽(tīng)神經(jīng)、責(zé)任血管的效果,由差至優(yōu)分別記0~3分。分別比較3D-T2-DRIVE、3D TOFMRA及3D-T2-DRIVE+3D TOFMRA三種方法在顯示患側(cè)面聽(tīng)神經(jīng)、責(zé)任血管的差異。結(jié)果行Kruskal-Wallis H檢驗(yàn),以P<0.01為差異有統(tǒng)計(jì)學(xué)意義。結(jié)果在顯示面聽(tīng)神經(jīng)方面,3D-T2-DRIVE+3D TOFMRA優(yōu)于3D TOFMRA (H=58.78,P=0.0000),T2-3D-DRIVE優(yōu)于3D TOFMRA (H=53.18,P=0.0000),3D-T2-DRIVE+3D TOFMRA、T2-3D-DRIVE間差異無(wú)統(tǒng)計(jì)學(xué)意義(H=2.28,P=0.1313);在顯示責(zé)任血管方面,3D-T2-DRIVE+3D TOFMRA優(yōu)于T2-3D-DRIVE (H=54.12,P=0.0000)和3D TOFMRA (H=62.42,P=0.0000),3D-T2-DRIVE 與3D TOFMRA間差異無(wú)統(tǒng)計(jì)學(xué)意義(H=0.0083,P=0.9274)。36例中,3D-T2-DRIVE+3D TOFMRA檢出面聽(tīng)神經(jīng)根性細(xì)動(dòng)脈壓迫陽(yáng)性32例,陰性4例,分別為手術(shù)和隨訪證實(shí),診斷靈敏度100%,特異度100%。結(jié)論3D-T2-DRIVE聯(lián)合3D TOFMRA 技術(shù)是診斷面聽(tīng)神經(jīng)血管壓迫性病變的精準(zhǔn)方法。

磁共振成像;顱神經(jīng);面神經(jīng);微血管減壓術(shù)

面聽(tīng)神經(jīng)的微血管壓迫可導(dǎo)致面肌痙攣、耳鳴和眩暈等癥狀,其中以細(xì)動(dòng)脈壓迫神經(jīng)根區(qū)最為常見(jiàn),微血管減壓術(shù)是目前公認(rèn)的最佳治療手段[1-2]。術(shù)前準(zhǔn)確了解面聽(tīng)神經(jīng)與周?chē)艿慕馄赎P(guān)系、明確責(zé)任血管,對(duì)指導(dǎo)手術(shù)方案的制定有重要意義[3-4]。利用三維時(shí)間飛躍法MRA(3D TOFMRA) 顯示神經(jīng)、動(dòng)脈關(guān)系來(lái)診斷腦神經(jīng)的動(dòng)脈壓迫,已有較多研究報(bào)道,但3D TOFMRA 上腦神經(jīng)與背景的對(duì)比度低以致清晰顯示腦神經(jīng)較困難[5]。磁共振嵌驅(qū)動(dòng)平衡射頻重聚脈沖三維快速自旋回波序列(3D T2-weighted TSE with driven equilibrium radio frequency reset pulse,3D-T2-DRIVE),具有高對(duì)比度顯示腦神經(jīng)的優(yōu)勢(shì)[6-8]。聯(lián)合應(yīng)用3D-T2-DRIVE和3D TOFMRA,可實(shí)現(xiàn)同時(shí)高分辨顯示腦神經(jīng)和細(xì)動(dòng)脈的效果,此類(lèi)研究少見(jiàn)報(bào)道。本研究通過(guò)3D-T2-DRIVE和3D TOFMRA的等體素、各向同性成像,比較3D-T2-DRIVE、3D TOFMRA及3D-T2-DRIVE+3D TOFMRA三種方法檢測(cè)面聽(tīng)神經(jīng)微血管壓迫的效能,以探討3D-T2-DRIVE聯(lián)合3D TOFMRA在面聽(tīng)神經(jīng)微血管壓迫性病變?cè)\斷中的實(shí)際作用。

1 材料與方法

1.1 病例資料

收集我院2009年1月至2015年6月間單側(cè)面肌痙攣或不明原因耳鳴、眩暈患者的MRI與相關(guān)臨床資料。所有患者中,19例基底動(dòng)脈瘤、23例椎動(dòng)脈重度迂曲擴(kuò)張及11例橋小腦角區(qū)占位性病變被排除,余下36例納入研究。男性11例,女性25例,年齡13~71歲,結(jié)果均經(jīng)手術(shù)或臨床追蹤隨訪證實(shí)。

1.2 掃描及圖像重組方法

采用Philips Achieva Nova Dual 1.5 T超導(dǎo)磁共振成像系統(tǒng),相控陣頭部8通道線圈?;颊哐雠P,頭先進(jìn),以內(nèi)聽(tīng)道為中心做橫軸面掃描,于同一容積內(nèi)依次行3D-T2-DRIVE與3D TOFMRA序列掃描。3D-T2-DRIVE 序列掃描參數(shù): FOV 130 mm×130 mm,層面數(shù)60,層厚0.7 mm,各向同性體素0.7×0.7×0.7,重建矩陣512×512,TR 1500 ms,TE 250 ms,反轉(zhuǎn)角90°,平均采集次數(shù)為2次,掃描時(shí)間6 min 15 s。3D TOFMRA序列掃描參數(shù):FOV 130 mm×130 mm, 層面數(shù)60,層厚0.7 mm,各向同性體素0.7×0.7×0.7,重建矩陣512×512,TR 25 ms,TE 4.6 ms,反轉(zhuǎn)角(FA) 30°,平均采集次數(shù)2,掃描時(shí)間3 min 28 s。將原始圖像發(fā)送至MR工作站行T2-3D-DRIVE與3D TOFMRA序列圖像的疊加、最大信號(hào)強(qiáng)度投影(MIP)和多平面重組(MPR)處理。MPR沿面聽(tīng)神經(jīng)方向行斜冠狀面重組和垂直于面聽(tīng)神經(jīng)行斜矢狀面重組,獲取任一觀察層面T2-3D-DRIVE與3D TOFMRA的2組序列圖像。

1.3 圖像診斷質(zhì)量比較

以顯示患側(cè)面聽(tīng)神經(jīng)、責(zé)任血管(含細(xì)動(dòng)脈、細(xì)靜脈)為目標(biāo),根據(jù)軸位及MPR、MIP圖的信噪比、對(duì)比度及辨識(shí)度,對(duì)3D-T2-DRIVE (A組)、3D TOFMRA (B組)及3D-T2-DRIVE+3D TOFMRA (C組) 三種方法進(jìn)行綜合評(píng)估并評(píng)分。評(píng)分標(biāo)準(zhǔn):不能顯示0分;顯示模糊不能診斷1分;顯示良好能基本滿足診斷需要2分;顯示非常清晰能滿足診斷需要3分。神經(jīng)血管關(guān)系的判斷:選取3組中得分最高者,在清晰顯示相關(guān)神經(jīng)基礎(chǔ)上,參考文獻(xiàn)中的等級(jí)分法[9],確定是壓迫移位、接觸或是無(wú)接觸,其中壓迫移位、接觸判為責(zé)任血管,無(wú)接觸則判為非責(zé)任血管。由2名高年資影像診斷主治醫(yī)師采用雙盲法讀片。

1.4 統(tǒng)計(jì)學(xué)分析

應(yīng)用SPSS 17.0軟件進(jìn)行:(1) Kruskal-Wallis H檢驗(yàn)統(tǒng)計(jì)分析,計(jì)算各組得分的秩次和平均秩次(均秩),依次比較在顯示面聽(tīng)神經(jīng)和責(zé)任血管方面,三種方法之間均秩的差異,以P<0.01為差異有統(tǒng)計(jì)學(xué)意義。(2) 2名讀片者評(píng)分結(jié)果的Kappa一致性檢驗(yàn)。一致性水平定義如下:K<0.4,一致性較差;0.4<K<0.6,一致性一般;0.6<K<0.8,一致性良好;0.8<K<1.0,一致性很好。

2 結(jié)果

三種方法在顯示面聽(tīng)神經(jīng)方面的得分見(jiàn)表 1。A組均秩69.53,B組均秩19.64,C組均秩74.33,三組間差異有統(tǒng)計(jì)學(xué)意義(H=86.02,P=0.0000)。組間分析,A、C組間差異無(wú)統(tǒng)計(jì)學(xué)意義(H=2.28,P=0.1313);A、B組間(H=53.18,P=0.0000)及B、C組間差異有統(tǒng)計(jì)學(xué)意義(H=58.78,P=0.0000)。結(jié)果提示,在顯示面聽(tīng)神經(jīng)方面,3D-T2-DRIVE+3D TOFMRA、T2-3D-DRIVE優(yōu)于3D TOFMRA。顯示面聽(tīng)神經(jīng)方面,2名讀片者的評(píng)分分別為2.35±0.25和2.48±0.28,其一致性很好(K=0.85)。

三種方法在顯示責(zé)任血管方面的得分見(jiàn)表 2。A組均秩38.21,B組均秩36.29,C組均秩89,三組間差異有統(tǒng)計(jì)學(xué)意義(H=11.045,P=0.0000)。組間分析,A、B組間(H=0.0083,P=0.9274)差異無(wú)統(tǒng)計(jì)學(xué)意義,A、C組間(H=54.12,P=0.0000)及B、C組間(H=62.42,P=0.0000)差異有統(tǒng)計(jì)學(xué)意義。結(jié)果提示,在顯示責(zé)任血管方面,3D-T2-DRIVE+3D TOFMRA優(yōu)于T2-3D-DRIVE和3D TOFMRA。顯示責(zé)任血管方面,2名讀片者的評(píng)分分別為1.79±0.15和1.88±0.21,其一致性很好(K=0.91)。

由表1、2可知,在顯示面聽(tīng)神經(jīng)和責(zé)任血管方面,3D-T2-DRIVE+3D TOFMRA 效果最佳。根據(jù)3D-T2-DRIVE+3D TOFMRA的軸位及MPR、MIP圖像(圖1~9),36例中檢出面聽(tīng)神經(jīng)根細(xì)動(dòng)脈壓迫陽(yáng)性32例,陰性4例,均經(jīng)手術(shù)或臨床追蹤證實(shí)。陽(yáng)性32例中,面神經(jīng)受壓11例,聽(tīng)神經(jīng)受壓13例,面、聽(tīng)神經(jīng)同時(shí)受壓8例;責(zé)任血管源自小腦上動(dòng)脈19例,小腦前下動(dòng)脈8例及小腦后下動(dòng)脈9例,未見(jiàn)責(zé)任靜脈。陽(yáng)性患者均經(jīng)乙狀竇后入路膜片隔離責(zé)任動(dòng)脈與受累神經(jīng),術(shù)中所見(jiàn)證實(shí)了MRI所示面聽(tīng)神經(jīng)根性細(xì)動(dòng)脈壓迫,未見(jiàn)假陽(yáng)性或假陰性病例。術(shù)后耳鳴、眩暈、面肌抽搐癥狀消失。陰性4例,隨訪2~4年,癥狀均逐漸消失。3D-T2-DRIVE+3D TOFMRA 診斷面聽(tīng)神經(jīng)細(xì)動(dòng)脈壓迫的靈敏度100%,特異度100%。

表1三種方法顯示面聽(tīng)神經(jīng)的得分Tab. 1Scores of three methods in the demonstration of facial-acoustic nerves

3 討論

DRIVE是由-90°脈沖、梯度重聚焦脈沖和毀損梯度組成的一列脈沖。在回波信號(hào)的峰值-90°脈沖激發(fā),以極短時(shí)間繞過(guò)T1弛豫直接將全部橫向磁化回復(fù)至縱向磁化,其效應(yīng)是顯著增強(qiáng)組織的T2信號(hào),對(duì)長(zhǎng)T1、長(zhǎng)T2組織的作用尤為明顯[6]。 3D-T2-DRIVE是在三維快速自旋回波中加入DRIVE 的整合序列,一方面大大縮短掃描時(shí)間、減少流動(dòng)偽影,另一方面顯著增強(qiáng)圖像的T2信號(hào)與對(duì)比度,因此特別適用于橋小腦角區(qū)的神經(jīng)微血管形態(tài)學(xué)觀察[7-8]。3D-T2-DRIVE圖上,腦神經(jīng)、中小動(dòng)脈和流速快的細(xì)動(dòng)脈、細(xì)靜脈表現(xiàn)為極低信號(hào), 腦組織為低信號(hào)而腦脊液(CSF)呈顯著高信號(hào),細(xì)血管、腦神經(jīng)與腦組織及CSF三者形成強(qiáng)對(duì)比而易于辨識(shí)。對(duì)于同樣表現(xiàn)為低信號(hào)的神經(jīng)與小血管,在二者排列、走行無(wú)序情況下,其鑒別比較困難。

3D TOFMRA是利用血流的流入增強(qiáng)效應(yīng)原理、立體展示成像容積內(nèi)血流信號(hào)的血管造影技術(shù),根據(jù)血流方向的選擇可分別產(chǎn)生動(dòng)脈、靜脈或動(dòng)靜脈混合影像,常用于顯示血流較快的動(dòng)脈系統(tǒng)[5]。由于靜態(tài)組織信號(hào)被飽和抑制,3D TOFMRA上血管與周?chē)M織間的信噪比較高。橋小腦角區(qū)3D TOFMRA上,細(xì)動(dòng)脈呈條狀或圓形高信號(hào)影,腦神經(jīng)呈等信號(hào)、CSF呈略低信號(hào),動(dòng)脈與背景產(chǎn)生強(qiáng)對(duì)比得以凸顯;而腦神經(jīng)與CSF信號(hào)的弱對(duì)比,在腦池CSF背景上不易辨識(shí)腦神經(jīng)[5,9-11]。在顯示橋小腦角區(qū)的神經(jīng)血管形態(tài)方面, 3D-T2-DRIVE和3D TOFMRA各有長(zhǎng)處與不足。因此,同時(shí)觀察、分析兩組圖像可望實(shí)現(xiàn)優(yōu)勢(shì)互補(bǔ),達(dá)到同時(shí)高對(duì)比度、高信噪比展示腦神經(jīng)及其周?chē)?xì)動(dòng)脈的效果。

圖8,9分別為圖4患者3D-T2-DRIVE斜矢狀面不同層厚的重組圖,右側(cè)小圖為其定位線圖,十字交叉處對(duì)準(zhǔn)左側(cè)小腦前下動(dòng)脈。圖8 層厚3.0 mm,結(jié)合圖4~7示左側(cè)小腦前下動(dòng)脈行經(jīng)路徑,同側(cè)面神經(jīng)受其推壓、移位,與蝸神經(jīng)關(guān)系密切;圖9 層厚0.4 mm,明確示左側(cè)面神經(jīng)受同側(cè)小腦前下動(dòng)脈推壓、移位,與蝸神經(jīng)無(wú)接觸。圖中黑箭為面神經(jīng)、白箭為蝸神經(jīng)、黑箭頭為左側(cè)小腦前下動(dòng)脈Fig. 8, 9Obliquely sagittal-orientation reformatted images of 3D-T2-DRIVE in the patient of Fig.4 with different thickness, respectively, and the localization maps located at the right side with the cross aimed at left AICA. Fig.8: Thickness at 3.0 mm, displayed the course of left AICA, and compression and displacement of ipsilateral facial nerve, and proximity to the cochlear nerve along with Fig.4—7. Fig.9: Thickness at 0.4 mm, clearly delineatedeft facial nerve being compressed and displaced by ipsilateral AICA with cochlear nerve spared. The black arrow indicates facial nerve, white arrow cochlear nerve, and black arrowhead left AICA.

本組病例3種方法評(píng)價(jià)效果的比較,證實(shí)了上述設(shè)想。在觀察面聽(tīng)神經(jīng)和判斷責(zé)任血管效能方面,3D-T2-DRIVE、3D TOFMRA二者聯(lián)合均明顯優(yōu)于單一的3D-T2-DRIVE或3D TOFMRA序列。本研究中,3D-T2-DRIVE和3D TOFMRA被設(shè)定相同的方位、層厚、層數(shù)和體素掃描,保證了二者所采集到的每一個(gè)層面位置都是一致的,能進(jìn)行軸位圖及任一方位之MPR圖的無(wú)差異性比對(duì)觀察。同時(shí),3D-T2-DRIVE各向同性掃描技術(shù),使其MPR圖像同樣擁有高分辨力,清晰顯示腦神經(jīng)和細(xì)血管的邊界與輪廓,展現(xiàn)腦神經(jīng)與鄰近細(xì)血管的伴行、斜穿、騎跨等關(guān)系,并進(jìn)一步判斷腦神經(jīng)與細(xì)血管的接觸、壓迫性改變。

橋小腦角區(qū)空間狹小,面神經(jīng)和蝸、前庭神經(jīng)前后上下緊鄰,且此處行程迂曲及走行變異的細(xì)動(dòng)脈常常貼著橋腦邊緣發(fā)出,3D-T2-DRIVE上腦神經(jīng)與細(xì)動(dòng)脈的鑒別有一定困難[12-13]。本組中,4例血管與面聽(tīng)神經(jīng)均表現(xiàn)為細(xì)條狀同一方向的低信號(hào)影,結(jié)合對(duì)應(yīng)3D TOFMRA上高信號(hào)動(dòng)脈穿過(guò),神經(jīng)動(dòng)脈得以區(qū)分。在辨識(shí)責(zé)任動(dòng)脈方面,3D-T2-DRIVE和3D TOFMRA的MPR有著獨(dú)特作用,通過(guò)重組方位的細(xì)微旋轉(zhuǎn)及層厚的調(diào)整,可完整勾畫(huà)出責(zé)任動(dòng)脈的穿行及其與面神經(jīng)、蝸前庭神經(jīng)的空間毗鄰關(guān)系,但這須建立在3D TOFMRA對(duì)可疑細(xì)動(dòng)脈的清晰展示基礎(chǔ)之上。責(zé)任動(dòng)脈為末梢動(dòng)脈,其信號(hào)相對(duì)于大動(dòng)脈較弱,在大范圍的MIP中常常不被顯示,此時(shí)需行局部MIP處理。確定責(zé)任動(dòng)脈起源,需綜合3D TOFMRA軸位原始圖上對(duì)細(xì)動(dòng)脈的追蹤觀察及局部MIP圖的立體顯示。正是基于優(yōu)勢(shì)序列的聯(lián)合,本研究中3D-T2-DRIVE+3D TOFMRA診斷面聽(tīng)神經(jīng)細(xì)動(dòng)脈壓迫的靈敏度和特異度均為100%,其結(jié)果與已報(bào)道的診斷靈敏度97%以上、特異度100%的DRIVE研究非常接近[7-8],說(shuō)明DRIVE診斷方法是穩(wěn)定可靠且是高效的。

有關(guān)腦神經(jīng)血管壓迫的MRI診斷研究,已有多種序列和方法報(bào)道。代表性的有GE的三維穩(wěn)態(tài)快速成像(3D-FIESTA)[9-11,14],Siemens的三維T2可變反轉(zhuǎn)角快速自旋回波成像(3D-SPACE)和穩(wěn)態(tài)構(gòu)成干擾成像(3D-CISS)等[15],常常與容積內(nèi)插法腦部成像(VIBE)、3D TOFMRA等血管成像序列聯(lián)合應(yīng)用,診斷靈敏度83%~88%,特異度75%~96%[5,14]。3D-FIESTA和3D-CISS,都是采用穩(wěn)態(tài)進(jìn)動(dòng)成像技術(shù),對(duì)比度取決于組織的T2/T1比值,具有突顯長(zhǎng)T2液體信號(hào)的特點(diǎn),其椎基動(dòng)脈及分支呈高信號(hào)而不易與CSF區(qū)分,干擾對(duì)神經(jīng)血管關(guān)系的觀察。3D-T2-DRIVE和3D-SPACE均有三維高對(duì)比度分辨的優(yōu)勢(shì),其快速自旋回波T2成像上腦內(nèi)血管均呈流空低信號(hào),有利于橋小腦角區(qū)神經(jīng)血管關(guān)系的判斷。VIBE和3D TOFMRA采用擾相梯度重聚序列[5,15],動(dòng)脈血流呈高信號(hào),但VIBE上靜脈也表現(xiàn)為高信號(hào),且動(dòng)靜脈與CSF、腦神經(jīng)的對(duì)比度不如3D TOFMRA。因此,3D TOFMRA常常與3D-FIESTA、3D-SPACE或3D-T2-DRIVE合并使用。此類(lèi)雙序列聯(lián)合應(yīng)用研究中,采用各向同性及等體素參數(shù)掃描的,未見(jiàn)文獻(xiàn)報(bào)道。

本研究不足之處為病例中沒(méi)有責(zé)任靜脈,這可能跟我們的樣本不夠大有關(guān)。另外,有臨床癥狀、被證實(shí)的MRI診斷陰性病例較少,未能做診斷有效性與實(shí)用性分析。責(zé)任靜脈盡管較少,且診斷較責(zé)任動(dòng)脈困難,但術(shù)前的診斷仍有積極意義[16]。除對(duì)比增強(qiáng)MRA外,VIBE也能直接顯示高信號(hào)的細(xì)靜脈,有一定互補(bǔ)作用[15]。綜上,本研究采用3D-T2-DRIVE聯(lián)合3D TOFMRA的途徑,充分發(fā)揮兩者之長(zhǎng),證實(shí)并闡明了這一方法在面聽(tīng)神經(jīng)微血管壓迫性病變?cè)\斷中的重要應(yīng)用意義。各向同性與等體素掃描,是高質(zhì)量圖像的保證,而兩組圖像的整合觀察及多方位、不同層厚的MPR與MIP后處理,在明確神經(jīng)血管關(guān)系中起著核心作用。腦神經(jīng)微血管壓迫性疾病的MRI診斷仍面臨諸多新挑戰(zhàn),有待廣大學(xué)者繼續(xù)深入研究。

[References]

[1] Lu AY, Yeung JT, Gerrard JL, et al. Hemifacial Spasm and Neurovascular Compression. Scien World J, 2014, 2014(5): 741-747.

[2] Soriano-Baron H, Vales-Hidalgo O, Arvizu-Saldana E, et al. Hemifacial spasm: 20-year surgical experience, lesson learned. Surg Neurol Int, 2015, 6(1): 83-96.

[3] Mikami T, Minamida Y, Akiyama Y, et al. Microvascular decompression for hemifacial spasm associated with the vertebral artery. Neurosurg Rev, 2013, 36(2): 303-308.

[4] Zhao YH, Cai QG, Weng W, et al. Ten cases report of vascular compressive syndrome caused by the facial, acoustic nerves. J Clin Otorhinolaryngol Head Neck Surg, 2014, 28(7): 440-442.趙永宏, 蔡其剛, 翁維, 等. 面聽(tīng)神經(jīng)根血管壓迫綜合癥10例分析.臨床耳鼻咽喉顱底外科雜志, 2014, 28(7): 440-442.

[5] Cai J, Xin ZX, Zhang YQ, et al. Diagnostic value of 3D time-offlight MRA in trigeminal neuralgia. J Clin Neurosci, 2015, 22(8): 1343-1348.

[6] Ciftci E, Anik Y, Arslan A, et al. Driven equilibrium (drive) MR imaging of the cranial nerves Ⅴ-Ⅷ: comparison with the T2-weighted 3D TSE sequence. Eur J Radiol, 2004, 51(3): 234-240.

[7] Leal PR, Hermier M, Souza MA, et al. Visualization of vascular compression of the trigeminal nerve with high-resolution 3T MRI: a prospective study comparing preoperative imaging analysis to surgical findings in 40 consecutive patients who underwent microvascular decompression for trigeminal neuralgia. Neurosurgery, 2011, 69(1): 15-25.

[8] Yang LX, Jia WX, He L, et al. Evaluation of 3D-TSE with Drive in the diagnosis of hemifacial spasm. J Xinjiang Med University, 2008, 31(4): 374-376.楊利霞, 賈文霄, 何樂(lè), 等. 3D-TSE序列結(jié)合DRIVE診斷面肌痙攣病因的價(jià)值. 新疆醫(yī)科大學(xué)學(xué)報(bào), 2008, 31(4): 374-376.

[9] Li CD, Zhu XJ, Sun SL, et al. Effectiveness of application of 3D-FIESTA and 3D-TOF-MRA in pre-operative assessment of hemifacial spasm. Chin Med Devices, 2015, 30(10): 67-69.李傳東, 朱先進(jìn), 孫士龍, 等. 3D-FIESTA和3D-TOF-MRA掃描對(duì)面肌痙攣的術(shù)前評(píng)估價(jià)值. 中國(guó)醫(yī)療設(shè)備, 2015, 30(10): 67-69.

[10] Zhao Z, Chen LP, Wang XH, et al. The Value of MRI 3D FIESTA combining 3D TOF MRA sequence in evaluation of the auditory nerve vascular compression syndrome. J Chin Clin Med Imaging, 2012, 23(1): 67-69.趙釗, 陳立鵬, 王秀河, 等. 磁共振3D FIESTA結(jié)合3D TOF MRA序列對(duì)診斷聽(tīng)神經(jīng)血管壓迫綜合癥的價(jià)值. 中國(guó)臨床醫(yī)學(xué)影像雜志, 2012, 23(1): 67-69.

[11] Jin J, Tang XL, Xiang H, et al. Evaluation of 3D-TOF and 3D-FIESTA combined with MPR in microvascular decompression for trigeminal neuralgia by 3.0 T MRI system. Chin J Magn Reson Imaging, 2015, 6(4): 277-282.金軍, 湯小俐, 香輝, 等. 3.0 T MRI 3DTOF序列聯(lián)合3D-FIESTA序列結(jié)合多平面重建在三叉神經(jīng)微血管減壓術(shù)術(shù)前評(píng)估中的應(yīng)用價(jià)值. 磁共振成像, 2015, 6(4): 277-282.

[12] QI J, XIA S. The application and research status of MRI in different ear diseases. Chin J Magn Reson Imaging, 2014, 5(Suppl): 15-19.祁吉, 夏爽. 磁共振成像在耳部疾病應(yīng)用及進(jìn)展. 磁共振成像, 2014, 5(增刊):15-19.

[13] Chen LJ, Chen SX, Ma N, et al. Research of 3.0 T MRI virtual endoscopy reconstruction in hemifacial spasm. Chin J Magn Reson Imaging, 2014, 5(3):189-192.陳利軍, 陳士新, 馬寧, 等. 3.0 T MRI仿真內(nèi)窺鏡重建技術(shù)在面肌痙攣中的應(yīng)用研究. 磁共振成像, 2014, 5(3): 189-192.

[14] Chen LJ, Chen SX, Sun ZD, et al. Application value of doubly excited Balance-SSFP sequence curvature plane reconstruction in vascular compressive trigeminal neuralgia and hemifacial spasm. Chin J Magn Reson Imaging, 2015, 6(10): 744-749.陳利軍, 陳士新, 孫澤棟, 等. 雙激發(fā)平衡式穩(wěn)態(tài)自由進(jìn)動(dòng)序列曲面重建在血管壓迫性三叉神經(jīng)痛及面肌痙攣的應(yīng)用價(jià)值. 磁共振成像, 2015, 6(10): 744-749.

[15] Li CX, Fu YG, Zhou X, et al. The application value of MR sequence in cranial neurovascular imaging. Chin J Magn Reson Imaging, 2016,7(3): 180-184.李春星, 符益綱, 周笑, 等. 磁共振序列在顱神經(jīng)血管成像中的應(yīng)用價(jià)值. 磁共振成像, 2016, 7(3): 180-184.

[16] Wang X, Thirumala PD, Shah A, et al. The role of vein in microvascular decompression for hemifacial spasm: a clinical analysis of 15 cases. Neurol Res, 2013, 35(4): 389-394.

Evaluation of the role of 3D-T2-DRIVE combining 3D TOF MRA in diagnosing microvascular compression for facialacoustic nerves

PAN Xi-min1, HU Mei-yu1, PAN Bi-tao2, JIANG Bo1,2*

1Department of Radiology, East Hospital, Sun Yat Sen University First Affiliated Hospital, Guangzhou 510700, China

2Department of Clinical Diagnostic Radiology, Sun Yat Sen University First Af fi liated Hospital, Guangzhou 510080, China

Objective:To evaluate the application value of 3D-T2-DRIVE combining 3D TOF MRA in detecting microvascular compression for facial-acoustic nerves.Materials and Methods:Thirty-six patients were enrolled in the study with clinically suspected vascular compression of facial-acoustic nerves, of which both 3D-T2-DRIVE and 3D TOFMRA sequences images were obtained of isotropy and identical voxel size. Source images and reformatted images were observed to evaluate the effects on demonstration of facial-acoustic nerves and culprit vessels, which was scored from 0 to 3 points in the order from poor to excellent. The differences were compared of effects on displaying both the facial-acoustic nerves and culprit vessels among the three approaches of 3D-T2-DRIVE, 3D TOFMRA, and 3D-T2-DRIVE+3D TOFMRA. The Kruskal-Wallis H test was employed in data processing, with P<0.01 for the statistically signif i cant difference.Results:In displaying facial-acoustic nerves, 3D-T2-DRIVE+3D TOFMRA and T2-3D-DRIVE were superior to 3D TOFMRA (H=58.78, P=0.0000. H=53.18, P=0.0000. respectively), and no statistically signif i cant difference existed between 3D-T2-DRIVE+3D TOFMRA and T2-3D-DRIVE (H=2.28, P=0.1313). In displaying culprit vessels, 3D-T2-DRIVE+3D TOFMRA was superior to T2-3D-DRIVE and 3D TOFMRA (H=54.12, P=0.0000. H=62.42, P=0.0000. respectively), and no statistically significant difference existed between 3D-T2-DRIVE and 3D TOFMRA (H=0.0083, P=0.9274). Of 36 patients,32 were detected with arteriolar compression for facial-acoustic nerves by the approach of 3D-T2-DRIVE combining 3D TOFMRA, and 4 with no compression. The results were conf i rmed by surgical f i ndings or clinical follow-up, respectively. The sensitivity and specif i city was 100%, 100% of 3D-T2-DRIVE+3D TOFMRA in diagnosing microvascular compression for facial-acoustic nerves, respectively.Conclusions:The approach of 3D-T2-DRIVE combining 3D TOF MRA provides an precise and accurate diagnosis of micorvascular compression for facial-acoustic nerves.

Magnetic resonance imaging; Cranial nerves; Facial nerve; Microvascular decompression surgery

1. 中山大學(xué)附屬第一醫(yī)院東院放射科,廣州 510700

2. 中山大學(xué)附屬第一醫(yī)院放射診斷科,廣州 510080

江波,E-mail:csujbo@163.com

2016-09-11

接受日期:2016-10-13

R445.2;R747.2

A

10.12015/issn.1674-8034.2016.11.007

潘希敏, 胡美玉, 潘碧濤, 等. 3D-T2-DRIVE聯(lián)合3D TOFMRA診斷面聽(tīng)神經(jīng)微血管壓迫的意義探討. 磁共振成像, 2016, 7(11): 831-836.

*Correspondence to: Jiang B, E-mail: csujbo@163.com

Received 11 Sep 2016, Accepted 13 Oct 2016

猜你喜歡
腦神經(jīng)聽(tīng)神經(jīng)小腦
動(dòng)起來(lái),讓十二對(duì)腦神經(jīng)一起跳舞
患了聽(tīng)神經(jīng)瘤該怎么辦?
Nurr1基因修飾胚胎中腦神經(jīng)干細(xì)胞移植治療帕金森病
動(dòng)動(dòng)小手和小腦
聽(tīng)力下降、耳鳴原來(lái)是患了聽(tīng)神經(jīng)瘤
小腦發(fā)育不良性節(jié)細(xì)胞瘤1 例
哈哈哈哈,請(qǐng)跟著我大聲念出來(lái)
1例以小腦病變?yōu)橹饕憩F(xiàn)的Fahr’s病報(bào)道并文獻(xiàn)復(fù)習(xí)
大型聽(tīng)神經(jīng)瘤顯微外科手術(shù)后并發(fā)癥的護(hù)理
如何在腦神經(jīng)教學(xué)中培養(yǎng)學(xué)生的學(xué)習(xí)能力
中方县| 湘西| 南丹县| 邵阳市| 莱州市| 肇东市| 化州市| 鹤岗市| 大足县| 洪泽县| 永登县| 阿克苏市| 叙永县| 渭源县| 通化县| 淮滨县| 麻栗坡县| 兰州市| 垫江县| 哈巴河县| 兰溪市| 黑河市| 普陀区| 嘉义县| 麻江县| 新蔡县| 政和县| 铅山县| 股票| 蓝田县| 广水市| 太和县| 疏勒县| 济源市| 汉阴县| 库伦旗| 绥阳县| 西乌| 固原市| 武邑县| 荃湾区|