許 祥,胡瑾華
?
粒細(xì)胞集落刺激因子促進(jìn)肝臟再生的機(jī)制
許 祥,胡瑾華
[摘要]肝臟的一個(gè)特性即是在受到損傷后會(huì)通過(guò)自身的再生能力來(lái)恢復(fù)原有肝臟體積和功能,目前越來(lái)越多的證據(jù)顯示重組人粒細(xì)胞集落刺激因子(granulocyte-colony stimulating factor, G-CSF)在促進(jìn)肝臟再生的過(guò)程中有多方面的作用。深入了解G-CSF促進(jìn)肝臟再生的機(jī)制對(duì)于其應(yīng)用于肝損傷患者,促進(jìn)肝臟再生,提高生存率有著重要意義。本文就G-CSF促進(jìn)肝臟再生的機(jī)制進(jìn)行綜述。
[關(guān)鍵詞]粒細(xì)胞集落刺激因子;肝再生;干細(xì)胞
[作者單位] 100039,北京大學(xué)解放軍第三○二醫(yī)院教學(xué)醫(yī)院肝衰竭診療研究中心(許祥、胡瑾華)
肝臟是成年人體內(nèi)損傷后有明顯再生能力,成熟的肝細(xì)胞很少再生,但保留著強(qiáng)大的再生能力。在各種類型的肝損傷中,肝臟均能發(fā)生明顯的再生過(guò)程,如酒精性肝炎中,肝臟祖細(xì)胞即卵原細(xì)胞發(fā)生增殖,促進(jìn)肝臟再生[1],而活體肝移植的應(yīng)用關(guān)鍵也在于使受體肝及供者的剩余肝盡快再生,以滿足需要。肝衰竭時(shí)肝細(xì)胞發(fā)生大量壞死、凋亡,因此肝臟再生是肝衰竭救治成功的重要環(huán)節(jié)之一。
重組人粒細(xì)胞集落刺激因子(granulocytecolony stimulating factor, G-CSF)是通過(guò)DNA重組技術(shù)合成的175個(gè)氨基酸蛋白,其作為一種造血源性生長(zhǎng)因子,促進(jìn)造血細(xì)胞系的增殖作用已被熟知,并廣泛應(yīng)用于臨床。Chavez-Tapia等[2]通過(guò)Meta分析證明G-CSF治療慢加急性肝衰竭能夠明顯降低短期病死率。而且,目前有研究發(fā)現(xiàn),G-CSF通過(guò)動(dòng)員骨髓干細(xì)胞(bone marrow-derived cells, BMC)至肝臟,一方面BMC定向分化為肝細(xì)胞促進(jìn)肝臟再生,另一方面G-CSF還可促進(jìn)肝卵原細(xì)胞的增殖分化來(lái)促進(jìn)肝臟再生[3]。本文就G-CSF促進(jìn)肝臟再生的可能機(jī)制進(jìn)行闡述。
1.1動(dòng)員BMC歸巢肝臟并定向分化為成熟肝細(xì)胞BMC是重要的成體干細(xì)胞,具有定向分化或橫向分化為一些成體細(xì)胞的潛能,其中包括肝實(shí)質(zhì)細(xì)胞[4]。在機(jī)體出現(xiàn)損傷的情況下,BMC可以進(jìn)入到外周血循環(huán)中,并遷移到損傷部位或臟器,但其數(shù)量有限。
已證實(shí)G-CSF是BMC強(qiáng)有力的動(dòng)員劑,不僅可增加外周血干細(xì)胞數(shù)量,也可使干細(xì)胞遷移到肝損傷部位[5]。Yoshizato等[6]在血液病患者的治療中發(fā)現(xiàn),給健康捐獻(xiàn)者注射G-CSF后4 d是取外周血干細(xì)胞的最佳時(shí)機(jī)。Gaia等[7]通過(guò)流式細(xì)胞術(shù)在嚴(yán)重肝硬化患者的肝組織內(nèi)檢測(cè)到G-CSF刺激的骨髓干細(xì)胞,表明G-CSF可以促進(jìn)BMC在損傷肝組織中的定植作用。Kimura等[8]在對(duì)肝損傷大鼠進(jìn)行60%肝臟切除手術(shù)前應(yīng)用G-CSF 5 d,通過(guò)免疫組化在肝靜脈周圍檢測(cè)到了CD34+細(xì)胞,而未進(jìn)行G-CSF治療的對(duì)照組未檢測(cè)到CD34+細(xì)胞。在治療組中剩余肝臟達(dá)到正常體積的時(shí)間比對(duì)照組早24 h,說(shuō)明G-CSF能夠促進(jìn)剩余肝臟的再生,其作用為促進(jìn)BMC遷移至肝臟。目前關(guān)于機(jī)制的研究顯示,G-CSF的受體在人體內(nèi)各組織細(xì)胞(包括造血干細(xì)胞)中廣泛表達(dá),G-CSF可能通過(guò)促進(jìn)中性粒細(xì)胞彈性蛋白酶、基質(zhì)金屬蛋白酶2和9的釋放,形成骨髓的蛋白水解微環(huán)境,從而促進(jìn)BMC從骨髓釋放入血[9],再通過(guò)細(xì)胞因子的趨化作用使造血干細(xì)胞遷移至肝臟,其中最重要的是基質(zhì)細(xì)胞衍生因子(stromal cell-derived factor, SDF)-1,其受體為CXCR-4。肝損傷時(shí),G-CSF在促進(jìn)BMC動(dòng)員的同時(shí)還可增加SDF-1在肝臟中的表達(dá),并建立起肝組織、外周血和骨髓間的濃度梯度差。這種濃度梯度將引導(dǎo)BMC向肝臟遷移、歸巢[10],用CXCR-4的抗體中和CXCR-4后,BMC的歸巢作用消失[11]。BMC的遷移過(guò)程還可能與晚期激活抗原4及血管內(nèi)皮生長(zhǎng)因子的作用有關(guān),并且其作用與SDF-1相似[12]。
Kedarisetty等[13]使用G-CSF治療失代償期肝硬化,提高了生存率,并且通過(guò)免疫組化檢測(cè)到這部分患者肝組織中CD34+、CD133+和S期蛋白Ki67增加。Wan等[14]在慢加急性肝衰竭患者中檢測(cè)到了更高的CD34+細(xì)胞數(shù)量,同時(shí)內(nèi)源性的G-CSF含量增加,從而促進(jìn)肝臟再生,減少肝損傷。Duan等[15]用G-CSF治療乙型肝炎相關(guān)慢加急性肝衰竭患者,觀察到外周血CD34+細(xì)胞的數(shù)量明顯增加,肝功能顯著改善,3個(gè)月生存率明顯提高(21.4%~48.1%,P=0.018)。Garg等[16]也發(fā)現(xiàn)G-CSF能夠提高酒精性慢加急性肝衰竭患者的生存率(29%~69.6%,P=0.003),同時(shí)發(fā)現(xiàn)使用G-CSF治療的患者肝組織中CD34+細(xì)胞增多。Lorenzini 等[17]發(fā)現(xiàn)15 μg/(kg·d)是動(dòng)員BMC的最佳劑量,并且觀察到外周血中的CD34+和CD133+細(xì)胞明顯增多。Singh等[18]報(bào)道G-CSF能夠提高重癥酒精性肝炎患者的生存率,機(jī)制研究顯示G-CSF可以動(dòng)員這些患者的CD34+BMC,并在肝臟定植和分化為成熟肝細(xì)胞。
1.2促進(jìn)肝卵原細(xì)胞增殖和肝臟再生 卵原細(xì)胞被認(rèn)為是肝臟祖細(xì)胞,存在于肝內(nèi)膽道系統(tǒng)的末端小膽管內(nèi),位于肝實(shí)質(zhì)組織與膽道的交界處,可分化為肝細(xì)胞、膽管上皮細(xì)胞以及一個(gè)多潛能的細(xì)胞亞群。當(dāng)肝臟受到刺激時(shí),卵原細(xì)胞轉(zhuǎn)化為CD44+細(xì)胞,進(jìn)而形成網(wǎng)絡(luò),轉(zhuǎn)化成實(shí)質(zhì)細(xì)胞[19]。分化增殖反應(yīng)分為激活、增殖、遷移和分化4個(gè)階段,最終分裂成肝實(shí)質(zhì)細(xì)胞或膽管上皮細(xì)胞。G-CSF能夠提高內(nèi)源性干細(xì)胞再生,其中包括卵原細(xì)胞[20]。已證實(shí)卵原細(xì)胞能夠表達(dá)G-CSF的受體[21],Piscaglia等[22]的一項(xiàng)病例報(bào)道證明血漿置換和G-CSF治療能夠促進(jìn)肝卵原細(xì)胞再生,而其中的作用分別為血漿置換清除循環(huán)中的有害因子,G-CSF促進(jìn)肝細(xì)胞再生,因此G-CSF不但可以促進(jìn)BMC再生,同時(shí)也可以促進(jìn)內(nèi)源性修復(fù)程序即卵原細(xì)胞的再生。Spahr等[3]在對(duì)酒精性脂肪性肝炎的研究中觀察到在接受G-CSF治療的患者中,通過(guò)免疫組化雙染Ki67/Ctokeratin 7(CK7)證明G-CSF能夠促進(jìn)肝卵原細(xì)胞的增殖。實(shí)驗(yàn)研究顯示在部分肝切除的大鼠模型中,在肝臟受損的早期階段,肝細(xì)胞生長(zhǎng)因子(hepatatic growth factor, HGF)/c-Met能夠促進(jìn)卵原細(xì)胞的早期擴(kuò)增[21]。
Spahr等[3]的研究還發(fā)現(xiàn)G-CSF能夠增加HGF的含量。HGF除了能夠促進(jìn)卵原細(xì)胞的早期擴(kuò)增,還能夠促進(jìn)多種基因的翻譯,如CyclinD1 在MAPK后的激活,以及HGF依賴信號(hào)通過(guò)蛋白降解來(lái)影響G1期組件的穩(wěn)態(tài)性。研究發(fā)現(xiàn)HGF受體c-Met敲除小鼠的肝臟再生能力嚴(yán)重受損,且不能被其他受體所替代,所以HGF是一個(gè)不可替代的因子[23-25]。Ishikawa等[24]通過(guò)觀察二乙基二硫代氨基甲酸鈉(DDC)造成肝損傷的小鼠發(fā)現(xiàn),c-Met基因敲除的小鼠肝細(xì)胞和膽管上皮細(xì)胞會(huì)有嚴(yán)重?fù)p傷,Ki-67蛋白含量下降,細(xì)胞外基質(zhì)的產(chǎn)生和平衡受到破壞。Factor等[26]研究發(fā)現(xiàn)缺乏c-Met的小鼠在肝臟再生過(guò)程中會(huì)造成G2/M細(xì)胞周期停滯。Yannaki等[27]把G-CSF作為尚未被公認(rèn)的HGF誘導(dǎo)劑。因此,G-CSF可通過(guò)增加HGF的含量從而促進(jìn)肝臟再生。
雖然G-CSF可以通過(guò)動(dòng)員BMC歸巢肝臟從而促進(jìn)肝臟再生,然而愈來(lái)愈多研究者認(rèn)為,G-CSF動(dòng)員BMC歸巢肝臟并不是依靠BMC分化成為肝細(xì)胞,因?yàn)锽MC遷移至肝臟的數(shù)量太少;而這個(gè)過(guò)程的作用更重要的可能是改善肝臟微環(huán)境,促進(jìn)內(nèi)源性卵原細(xì)胞反應(yīng)。同時(shí)有研究認(rèn)為無(wú)論在生理或病理情況下,造血干細(xì)胞對(duì)肝細(xì)胞的形成作用很小,可能是通過(guò)分泌一些細(xì)胞因子或生長(zhǎng)因子來(lái)促進(jìn)肝細(xì)胞功能,因此有理由認(rèn)為G-CSF促進(jìn)肝臟再生的主要作用是促進(jìn)卵原細(xì)胞增殖[21,27-28]。
免疫失衡是目前公認(rèn)的一些肝臟疾病如慢加急性肝衰竭的病因,例如,Th1分泌的干擾素γ和腫瘤壞死因子被認(rèn)為與肝衰竭的發(fā)生有著重要關(guān)系[29-30]。目前的研究發(fā)現(xiàn)在自體移植以及同種異體外周血干細(xì)胞移植前應(yīng)用G-CSF可以提高成功率[31],因此有理由相信應(yīng)用G-CSF可以促進(jìn)免疫平衡。而肝臟再生的過(guò)程是個(gè)精密的免疫調(diào)節(jié)過(guò)程,如白細(xì)胞介素(interleukin, IL)-6能夠在肝卵原細(xì)胞移植后的7 d內(nèi)調(diào)節(jié)卵原細(xì)胞的增殖[32],而G-CSF有類IL-6的抗炎作用,因此是否可以推測(cè)G-CSF通過(guò)免疫調(diào)節(jié)與某些細(xì)胞因子共同作用來(lái)促進(jìn)肝臟再生,還有待進(jìn)一步研究。
雖然普遍認(rèn)為G-CSF能夠改善肝細(xì)胞再生減少的肝衰竭患者的臨床癥狀,提高生存率,但同時(shí)也有研究證明在急性肝衰竭小鼠模型中,G-CSF并沒(méi)有通過(guò)動(dòng)員BMC歸巢肝臟促進(jìn)肝臟再生,反而會(huì)通過(guò)產(chǎn)生IL-1β?lián)p害肝臟再生[33]。這還有待于進(jìn)一步研究證實(shí)。
G-CSF以其安全性和有效性已被廣泛應(yīng)用于臨床,但是仍有一些問(wèn)題須要解決:①在肝損傷時(shí),G-CSF能夠直接促進(jìn)肝臟再生,也能夠通過(guò)動(dòng)員造血干細(xì)胞后促進(jìn)肝臟再生,二者之間的具體關(guān)系如何,G-CSF又是通過(guò)具體哪條通路促進(jìn)肝臟再生的?②G-CSF與傳統(tǒng)的促進(jìn)肝臟再生的細(xì)胞因子如HGF、表皮生長(zhǎng)因子和轉(zhuǎn)化生長(zhǎng)因子α之間的關(guān)系如何,它們之間是否有協(xié)同作用來(lái)促進(jìn)肝臟再生?當(dāng)肝臟再生到與人體比例合適的體積時(shí),再生就會(huì)停止,G-CSF是否與停止的信號(hào)有相互作用?③在各種病因引起的肝損傷中,G-CSF治療的效果是否相同,治療的時(shí)機(jī)和劑量是否相同,在何種時(shí)機(jī)能夠使肝臟再生率達(dá)到最大?這些都須要在進(jìn)一步的研究中得到驗(yàn)證。
【參考文獻(xiàn)】
[1] Lanthier N, Rubbia-Brandt L, Lin-Marq N, et al. Hepatic cell proliferation plays a pivotal role in the prognosis of alcoholic hepatitis[J]. J Hepatol, 2015, 63(3):609-621.
[2] Chavez-Tapia NC, Mendiola-Pastrana I, Ornelas-Arroyo VJ, et al. Granulocyte-colony stimulating factor for acute-on-chronic liver failure: systematic review and meta-analysis[J]. Ann Hepatol, 2015, 14(5):631-641.
[3] Spahr L, Lambert JF, Rubbia-Brandt L, et al. Granulocyte-colony stimulating factor induces proliferation of hepatic progenitors in alcoholic steatohepatitis: a randomized trial[J]. Hepatology, 2008, 48(1):221-229.
[4] Sato Y, Araki H, Kato J, et al. Human mesenchymal stem cells xenografted directly to rat liver are differentiated into human hepatocytes without fusion[J]. Blood, 2005, 106(2):756-763.
[5] 張智峰,趙鋼,趙天宇,等. 重組人粒細(xì)胞集落刺激因子動(dòng)員后自體外周血干細(xì)胞在大鼠纖維化肝臟內(nèi)的發(fā)育[J]. 中國(guó)組織工程研究與臨床康復(fù),2008,12(3):569-572.
[6] Yoshizato T, Watanabe-Okochi N, Nannya Y, et al. Prediction model for CD34 positive cell yield in peripheral blood stem cell collection on the fourth day after G-CSF administration in healthy donors[J]. Int J Hematol, 2013, 98(1):56-65.
[7] Gaia S, Smedile A , Omedè P, et al. Feasibility and safety of G-CSF administration to induce bone marrow-derived cells mobilization in patients with end stage liver disease[J]. J Hepatol, 2006, 45(1):13-19.
[8] Kimura M, Yamada T, Iwata H, et al. Preoperative granulocytecolony stimulating factor (G-CSF) treatment improves congested liver regeneration[J]. J Surg Res, 2010, 158(1):132-137.
[9] Ripa RS. Granulocyte-colony stimulating factor therapy to induce neovascularization in ischemic heart disease[J]. Dan Med J, 2012, 59(3):B4411.
[10] Lei Y, Liu ZW, Han QY, et al. G-CSF enhanced SDF-1 gradient between bone marrow and liver associated with mobilization ofperipheral blood CD34+cells in rats with acute liver failure[J]. Dig Dis Sci, 2010, 55(2):285-291.
[11] Kollet O, Shivtiel S, Chen YQ, et al. HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+stem cell recruitment to the liver[J]. J Clin Invest, 2003, 112(2):160-169.
[12] Di Campli C, Zocco MA, Saulnier N, et al. Safety and efficacy profile of G-CSF therapy in patients with acute on chronic liver failure[J]. Dig Liver Dis, 2007, 39(12):1071-1076.
[13] Kedarisetty CK, Anand L, Bhadoria AS, et al. Combination of granulocyte colony-stimulating factor and erythropoietin improves outcomes of patients with decompensated cirrhosis[J]. Gastroenterology, 2015, 148(7):1362-1370.
[14] Wan Z, You S, Rong Y, et al. CD34+hematopoietic stem cells mobilization, paralleled with multiple cytokines elevated in patients with HBV-related acute-on-chronic liver failure[J]. Dig Dis Sci, 2013, 58(2):448-457.
[15] Duan XZ, Liu FF, Hu JH, et al. Granulocyte-colony stimulating factor therapy improves survival in patients with hepatitis B virus-associated acute-on-chronic liver failure[J]. World J Gastroenterol, 2013, 19(7):1104-1110.
[16] Garg V, Garg HK, Khan A, et al. Granulocyte-colony stimulating factor mobilizes CD34+cells and improves survival of patients with acute-on-chronic liver failure[J]. Gastroenterology, 2012, 142(3):505-512.
[17] Lorenzini S, Isidori A, Catani L, et al. Stem cell mobilization and collection in patients with liver cirrhosis[J]. Aliment Pharmacol Ther, 2008, 27(10):932-939.
[18] Singh V, Sharma AK, Narasimhan RL, et al. Granulocyte colonystimulating factor in severe alcoholic hepatitis: a randomized pilot study[J]. Am J Gastroenterol, 2014, 109(9):1417-1423.
[19] Chiu CC, Sheu JC, Chen CH, et al. Global gene expression profiling reveals a key role of CD44 in hepatic oval-cell reaction after 2-AAF/CCl4 injury in rodents[J]. Histochem Cell Biol, 2009, 132(5):479-489.
[20] Than NN, Newsome PN. Stem cells for liver regeneration[J]. QJM, 2014, 107(6):417-421.
[21] Piscaglia AC, Shupe TD, Oh SH, et al. Granulocyte-colony stimulating factor promotes liver repair and induces oval cell migration and proliferation in rats[J]. Gastroenterology, 2007, 133(2):619-631.
[22] Piscaglia AC, Arena V, Passalacqua S, et al. A case of granulocytecolony stimulating factor/plasmapheresis-induced activation of granulocyte-colony stimulating factor-positive hepatic progenitors in acute-on-chronic liver failure[J]. Hepatology, 2015, 62(2):649-652.
[23] Borowiak M, Garratt AN, Wüstefeld T, et al. Met provides essential signals for liver regeneration[J]. Proc Natl Acad Sci U S A, 2004, 101(29):10608-10613.
[24] Ishikawa T, Factor VM, Marquardt JU, et al. Hepatocyte growth factor/c-met signaling is required for stem-cell-mediated liver regeneration in mice[J]. Hepatology, 2012, 55(4):1215-1226.
[25] Hu Z, Evarts RP, Fujio K, et al. Expression of hepatocyte growth factor and c-met genes during hepatic differentiation and liver development in the rat[J]. Am J Pathol, 1993, 142(6):1823-1830.
[26] Factor VM, Seo D, Ishikawa T, et al. Loss of c-Met disrupts gene expression program required for G2/M progression during liver regeneration in mice[J]. PLoS One, 2010, 5(9):e12739.
[27] Yannaki E, Athanasiou E, Xagorari A, et al. G-CSF-primed hematopoietic stem cells or G-CSF per se accelerate recovery and improve survival after liver injury, predominantly by promoting endogenous repair programs[J]. Exp Hematol, 2005, 33(1):108-119.
[28] Thorgeirsson SS, Grisham JW. Hematopoietic cells as hepatocyte stem cells: a critical review of the evidence[J]. Hepatology, 2006, 43(1):2-8.
[29] Galun E, Axelrod JH. The role of cytokines in liver failure and regeneration: potential new molecular therapies[J]. Biochim Biophys Act, 2002, 1592(3):345-358.
[30] Odeh M, Sabo E, Srugo I, et al. Serum levels of tumor necrosis factor-alpha correlate with severity of hepatic encephalopathy due to chronic liver failure[J]. Liver Int, 2004, 24(2):110-116.
[31] Schmitt M, Publicover A, Orchard KH, et al. Biosimilar G-CSF based mobilization of peripheral blood hematopoietic stem cells for autologous and allogeneicstem cell transplantation[J]. Theranostics, 2014, 4(3):280-289.
[32] Best J, Dollé L, Manka P, et al. Role of liver progenitors in acute liver injury[J]. Front Physiol, 2013, 4:258.
[33] Ogiso T, Nagaki M, Takai S, et al. Granulocyte colony-stimulating factor impairs liver regeneration in mice through the up-regulation of interleukin-1beta[J]. J Hepatol, 2007, 47(6):816-825.
(2015-11-10 收稿 2016-01-19 修回)
(責(zé)任編委 張玲霞 本文編輯 王 姝)
Mechanism of granulocyte-colony stimulating factor accelerating liver regeneration
XU Xiang, HU Jin-hua*
Liver Failure Treatment and Research Center, 302 Military Hospital of China-Peking University Teaching Hospital, Beijing 100039, China
*Corresponding author, E-mail: hjh@medmail.com.cn
[Abstract]The liver is unique in its ability to regenerate itself and thereby restore its original mass and function after injury. Nowadays, increasing evidence suggests that the granulocyte-colony stimulating factor (G-CSF) plays important roles in accelerating the liver regeneration process. The deep understanding of the effect of G-CSF on liver regeneration has important significance in the use of G-CSF for the treatment of patients with liver injury to accelerate the liver regeneration and improve survival. This review focuses on the mechanism of G-CSF in accelerating liver regeneration.
[Key words]granulocyte colony-stimulating factor; liver regeneration; stem cells
[通訊作者]胡瑾華,E-mail: hjh@medmail.com.cn
[基金項(xiàng)目]國(guó)家自然科學(xué)基金 (81171641);北京市科技計(jì)劃首都臨床特色應(yīng)用研究項(xiàng)目(Z131107002213157)
DOI:10.3969/j.issn.1007-8134.2016.02.016
[文獻(xiàn)標(biāo)志碼][中國(guó)圖書資料分類號(hào)] R392.114 A
[文章編號(hào)]1007-8134(2016)02-0125-04