修瑞瑞,何世穎,宋海亮,楊林章,張婉
?
改性硅藻土負(fù)載納米零價(jià)鐵去除水中硝酸鹽氮
修瑞瑞1,2,何世穎2,宋海亮1,楊林章2,張婉2
(1東南大學(xué)能源與環(huán)境學(xué)院,江蘇 南京 210096;2江蘇省農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與環(huán)境研究所,江蘇 南京 210014)
以改性硅藻土為載體,采用硼氫化鈉液相還原法制備了硅藻土負(fù)載的納米鐵(NZVI-CDt,nanoscale zero-valent iron supported on modified diatomite)復(fù)合材料。結(jié)果表明,所制得的納米零價(jià)鐵顆粒呈球形,粒徑小于100 nm,均勻分散在改性硅藻土表面,部分納米鐵顆粒鑲嵌在硅藻土孔隙內(nèi)。NZVI-CDt能高效去除水體中,當(dāng)pH7,溫度為25℃,初始濃度為20 mg·L-1,NZVI-CDt復(fù)合材料投加量為0.5141 g,反應(yīng)60 min時(shí),NZVI-CDt對(duì)的去除率達(dá)到90.1%。NZVI-CDt去除的反應(yīng)符合準(zhǔn)一級(jí)反應(yīng)動(dòng)力學(xué)方程,反應(yīng)速率常數(shù)obs隨著初始濃度的增加而呈現(xiàn)下降的趨勢(shì)。
改性硅藻土;納米材料;復(fù)合材料;硝酸鹽氮;去除率;動(dòng)力學(xué)
引 言
隨著農(nóng)用化肥的大量施用、生活污水的排放和循環(huán)污水農(nóng)業(yè)灌溉等活動(dòng)[1-2],大量污染物排放進(jìn)入水體,造成水體中硝酸鹽污染日益嚴(yán)重,已成為較為嚴(yán)重的環(huán)境問題之一。硝酸鹽化學(xué)穩(wěn)定性強(qiáng),不易與其他化合物結(jié)合,但其可在人體內(nèi)轉(zhuǎn)化成亞硝酸鹽,此外,在各種含氮有機(jī)化合物的作用下,硝酸鹽和亞硝酸鹽會(huì)形成“三致”物質(zhì),可引發(fā)癌癥、克山病和高鐵血紅蛋白癥等疾病[3-4]。因此,去除水體中硝酸鹽刻不容緩。
目前,硝酸鹽常用處理技術(shù)主要有生物反硝化法、反滲透法、離子交換法、化學(xué)還原法等[5-9]。生物反硝化法反應(yīng)慢,需要有機(jī)物作為電子供體[10];反滲透法和離子交換法費(fèi)用高且不能將其徹底去除;在化學(xué)還原法中,納米零價(jià)金屬如Zn、Fe、Mg和Al常用于硝酸鹽的去除,其中納米零價(jià)鐵以其粒徑小、比表面積大、表面活性高和還原能力強(qiáng)等優(yōu)點(diǎn)備受關(guān)注[11-13]。Shi等[14]、劉海波等[15]均將納米鐵用于處理水中的硝酸鹽氮,取得了良好的硝酸鹽氮去除效果。
但納米零價(jià)鐵顆粒細(xì)微、在水中易氧化和團(tuán)聚及受pH影響等問題,限制了其在實(shí)際中的應(yīng)用[16]。針對(duì)這些問題,通常將納米零價(jià)鐵負(fù)載于適宜的載體材料上,不但可以保持納米材料的特性而且能夠改善其穩(wěn)定性,增加活性位點(diǎn)[17],同時(shí)可以提高回收率。常用的載體通常為多孔材料(活性炭、膨潤(rùn)土和蒙脫石等),都提高了納米鐵的性能。本文將多孔硅藻土材料作為納米零價(jià)鐵的載體,應(yīng)用于水體硝酸鹽氮的去除,目前國(guó)內(nèi)外報(bào)道較少。其中硅藻土具有特殊的微孔結(jié)構(gòu),有很大的孔隙度和比表面積,化學(xué)穩(wěn)定性高,而且可以根據(jù)需要進(jìn)行表面改性,是一種優(yōu)良的載體材料。
本文首先利用草酸和殼聚糖對(duì)硅藻土載體材料進(jìn)行改性,一方面使硅藻土的孔數(shù)目和孔面積增大;另一方面使其表面帶有OH和NH2基團(tuán),有利于提高硅藻土對(duì)Fe的負(fù)載能力。在此基礎(chǔ)上,采用液相還原法原位制備了改性硅藻土負(fù)載的納米零價(jià)鐵復(fù)合材料,并將其應(yīng)用于硝酸鹽氮污染物的去除??疾齑藦?fù)合材料對(duì)水中硝酸鹽氮的去除性能,探討其作用機(jī)制,為實(shí)際應(yīng)用提供理論依據(jù)。
1 實(shí)驗(yàn)材料與方法
1.1 實(shí)驗(yàn)材料
七水合硫酸亞鐵(≥99%):分析純,南京化學(xué)試劑;硼氫化鈉(≥98%):分析純,天津華東試劑廠;無(wú)水乙醇(≥99.7%):分析純,國(guó)藥集團(tuán);硅藻土:化學(xué)純,天津科密歐化學(xué)試劑;草酸(≥99.5%):分析純,南京化學(xué)試劑;殼聚糖:生化試劑,國(guó)藥集團(tuán);硝酸鉀(≥99%):分析純,國(guó)藥集團(tuán)。
1.2 實(shí)驗(yàn)方法
1.2.1 改性硅藻土(CDt)的制備
具體步驟如 下[18]:取25.208 g草酸溶于1000 ml去離子水中,接著將100 g硅藻土(0.15 mm)溶于上述草酸溶液中,25℃下攪拌3 h,過濾,洗滌,在80℃下烘干;取10 g殼聚糖緩慢加入到1000 ml草酸溶液中,50℃下攪拌3 h,然后向其加入100 g經(jīng)草酸改性后的硅藻土,30℃攪拌24 h,過濾洗滌,60℃真空24 h。
1.2.2 改性硅藻土負(fù)載納米零價(jià)鐵復(fù)合材料(NZVI-CDt)的制備
將11.2 g改性硅藻土加入到200 ml 2.24 g Fe·L-1FeSO4·7H2O溶液中,25℃攪拌3 h,用恒壓漏斗向混合體系緩慢滴加等體積的NaBH4溶液,保證B/Fe3:1,反應(yīng)過程中持續(xù)攪拌,待滴定完畢后,持續(xù)攪拌30 min,反應(yīng)完成后以5000 r·min-1離心10 min,用去離子水和乙醇清洗多次,60℃真空干燥,制備整個(gè)過程保持無(wú)氧。反應(yīng)如下
1.2.4 表征與分析
采用德國(guó)Bruker公司的X射線衍射儀對(duì)材料進(jìn)行成分分析;采用日本HITACHI公司的掃描電子顯微鏡分析材料的表面形貌;采 用美國(guó)ThermoFisher Scientific公司的X射線光電子能譜儀進(jìn)行材料表面成分分析;硝酸鹽氮分析采 用紫外分光光度法;氨氮分析采用納氏試劑分光光度法;亞硝酸鹽氮分析采用-(1-萘基)-乙二胺光度法。
2 實(shí)驗(yàn)結(jié)果與討論
2.1 負(fù)載型納米鐵的表征
2.1.1 XRD表征分析
圖1為NZVI、CDt和NZVI-CDt的XRD譜圖。NZVI和NZVI-CDt在243°~45°均出現(xiàn)Fe0的特征衍射峰,且兩者均未出現(xiàn)鐵的氧化物。說明NZVI負(fù)載于CDt上,且無(wú)明顯氧化。
圖1 NZVI、CDt和NZVI-CDt的XRD譜圖
2.1.2 SEM分析
圖2是納米材料的電鏡表征結(jié)果。圖2(a)、(b)為NZVI的TEM和SEM表征,由圖可知,納米零價(jià)鐵顆粒呈球形,團(tuán)聚嚴(yán)重,顆粒間聚集成鏈狀。圖2(c)是CDt的SEM表征,可見硅藻土為球形多孔材料。圖2(d)為NZVI-CDt的SEM表征,圖片顯示納米鐵顆粒存在于改性硅藻土上,均勻分布且分散,部分負(fù)載在其表面,部分鑲嵌在孔隙內(nèi)。電鏡結(jié)果表明,改性硅藻土的引入很好地解決了納米鐵易團(tuán)聚和不穩(wěn)定的問題。
圖2 NZVI、CDt和NZVI-CDt材料的電鏡圖
2.1.3 XPS分析
XPS常用于分析物質(zhì)表面的元素組成、價(jià)態(tài)及其含量。由圖3(a)全譜掃描圖檢測(cè)到所制備的NZVI-CDt復(fù)合材料有較強(qiáng)的Fe、O、N、C、Si和Na特征峰,表明材料表面主要由這6種元素組成。為了進(jìn)一步分析納米零價(jià)鐵的表面結(jié)構(gòu)和組成,對(duì)Fe 2p軌道進(jìn)行了XPS譜圖掃描。由圖3(b)可見,納米零價(jià)鐵在718.92 eV處出現(xiàn)特征峰,對(duì)應(yīng)Fe(0) 2pl/2的結(jié)合能,表明零價(jià)鐵成功負(fù)載在硅藻土上。且在711.1和725.2 eV處出現(xiàn)兩個(gè)峰,分別對(duì)應(yīng)Fe(Ⅲ)2p3/2和Fe(Ⅲ)2p1/2的結(jié)合能[19]。這是由于制得的負(fù)載型納米鐵存放于空氣中,零價(jià)鐵被空氣中氧氣氧化所致,且硅藻土也含有少量的氧化鐵。
圖3 NZVI-CDt的XPS全譜掃描圖(a)以及Fe 2p的XPS譜圖(b)
2.2.1 CDt、NZVI和NZVI-CDt去除效果比較
為了考察不同材料(CDt、NZVI和NZVI-CDt)對(duì)去除率的影響,設(shè)置實(shí)驗(yàn)條件:初始濃度為20 mg·L-1,pH為7,溫度為25℃,轉(zhuǎn)速250 r·min-1,按照含鐵量相同,分別投加0.1 g NZVI、0.5141 g NZVI-CDt和0.4141 g CDt,結(jié)果如圖4所示。反應(yīng)進(jìn)行60 min后,CDt對(duì)去除率極低,小于3%,因?yàn)镃Dt表面帶負(fù)電荷對(duì)有排斥作用;NZVI去除率為72.3%,而NZVI-CDt達(dá)到90.1%,可能因?yàn)樨?fù)載后NZVI-CDt上的NZVI分散均勻、性質(zhì)穩(wěn)定,活性位點(diǎn)多于團(tuán)聚的NZVI,從而反應(yīng)活性升高。
圖4 CDt、NZVI和NZVI-CDt對(duì)去除率的影響
2.2.2 不同pH的影響
圖5 pH對(duì)NZVI和NZVI-CDt去除的影響
圖6 ??初始濃度對(duì)去除率(a)和去除量(b)的影響
2.2.4 反應(yīng)動(dòng)力學(xué)研究
準(zhǔn)一級(jí)反應(yīng)動(dòng)力學(xué)模型是一種常用的描述物理化學(xué)反應(yīng)的動(dòng)力學(xué)模型,公式為
其中,0為初始濃度,為時(shí)刻濃度,obs為反應(yīng)速率常數(shù)。
利用準(zhǔn)一級(jí)反應(yīng)動(dòng)力學(xué)模型,對(duì)NZVI及NZVI-CDt復(fù)合材料對(duì)的降解反應(yīng)進(jìn)行動(dòng)力學(xué)擬合。由圖7可知,準(zhǔn)一級(jí)反應(yīng)動(dòng)力學(xué)方程可以較好地描述的反應(yīng)進(jìn)程。反應(yīng)動(dòng)力學(xué)模擬出的具體參數(shù)見表1。
圖7 NZVI和NZVI-CDt去除準(zhǔn)一級(jí)反應(yīng)動(dòng)力學(xué)擬合曲線
表1 NZVI、NZVI-CDt與反應(yīng)動(dòng)力學(xué)方程擬合參數(shù)
Table 1 Parameters for kinetics of??removal by NZVI and NZVI-CDt
表1 NZVI、NZVI-CDt與反應(yīng)動(dòng)力學(xué)方程擬合參數(shù)
concentration /mg·L-1kobs/min-1R2 NZVINZVI-CDtNZVINZVI-CDt 50.07140.14870.99700.9220 100.03560.09210.97620.9575 200.01940.04070.94020.9954 250.01880.03710.95990.9914 300.01330.03010.89720.9935
由表1可知反應(yīng)速率常數(shù)obs隨著初始濃度的增加而呈現(xiàn)下降的趨勢(shì),當(dāng)初始濃度為5 mg·L-1時(shí),NZVI和NZVI-CDt的obs分別為0.0714 min-1和0.1487 min-1,而當(dāng)初始濃度升高至30 mg·L-1時(shí),obs分別降至0.0133 min-1和0.0301 min-1。這可能由于在高濃度條件下,催化材料對(duì)的去除能力已接近飽和,此時(shí)催化材料的投加量是反應(yīng)的控制條件,因此反應(yīng)速率常數(shù)比低濃度條件下低。
2.2.5 反應(yīng)體系產(chǎn)物的分析
圖8 反應(yīng)體系產(chǎn)物分析
2.2.6 重復(fù)利用性
為了考察納米鐵復(fù)合材料的重復(fù)利用性,設(shè)置實(shí)驗(yàn)條件:100 ml 20 mg·L-1,pH為7,溫度為25℃,轉(zhuǎn)速250 r·min-1,加入0.1 g NZVI 和0.5141 g NZVI-CDt,反應(yīng)1 h后,分析上清液并將其過濾掉,再加入新鮮的100 ml 20 mg·L-1,按照上述實(shí)驗(yàn)條件重復(fù)進(jìn)行,結(jié)果如圖9所示。隨著循環(huán)次數(shù)的增加,NZVI和NZVI-CDt材料對(duì)去除率降低,當(dāng)循環(huán)3次時(shí),NZVI-CDt材料對(duì)去除率為66.88%,而NZVI去除率只有24.45%。結(jié)果表明,NZVI-CDt比NZVI穩(wěn)定性高,重復(fù)利用性強(qiáng)。
圖9 NZVI和NZVI-CDt重復(fù)利用性
3 結(jié) 論
(1)以改性硅藻土為載體,通過離子交換將Fe2+負(fù)載到硅藻土上,采用硼氫化鈉液相還原法成功制備出NZVI-CDt復(fù)合材料。所制得的納米零價(jià)鐵顆粒呈球形,粒徑小于100 nm,且均勻分散在硅藻土上。
References
[1] AN Y, LI T L, JIN Z H,. Effect of bimetallic and polymer-coated Fe nanoparticles on biological denitrification [J]. Bioresource Technology, 2010, 101 (24): 9825-9828.
[2] 李德生, 胡倩怡, 崔玉瑋, 等. 化學(xué)催化法脫除模擬地下水中硝酸鹽氮 [J]. 化工學(xué)報(bào), 2015, 66 (6): 2288-2294.
LI D S, HU Q Y, CUI Y W,. Chemical catalytic method for removal of nitrate nitrogen in simulated groundwater [J]. CIESC Journal, 2015, 66 (6): 2288-2294.
[3] RUI A, CASTRO A C M, BAPTISTA J S,. Nanosized iron based permeable reactive barriers for nitrate removal—systematic review [J]. Physics & Chemistry of the Earth, 2015, DOI: 10.1016/j.pce.2015.11.007.
[4] KHALIL A M E, ELJAMAL O, JRIBI S,. Promoting nitrate reduction kinetics by nanoscale zero valent iron in watercopper salt addition [J]. Chemical Engineering Journal, 2015, 287: 367-380.
[5] BARRABéS N, JUST J, DAFINOV A,. Catalytic reduction of nitrate on Pt-Cu and Pd-Cu on active carbon using continuous reactor: the effect of copper nanoparticles [J]. Applied Catalysis B Environmental, 2006, 62 (s 1/2): 77-85.
[6] CHEW C F, ZHANG T C.-remediation of nitrate-contaminated ground water by electrokinetics/iron wall processes [J]. Water Science & Technology, 1998, 38 (38): 135-142.
[7] DASH B P, CHAUDHARI S. Electrochemical denitrificaton of simulated ground water [J]. Water Research, 2005, 39 (17): 4065-4072.
[8] COOPER D C, PICARDAL F W, SCHIMMELMANN A,. Chemical and biological interactions during nitrate and goethite reduction by200 [J]. Applied Environment Microbiology,2003,69 (6): 3517-3525.
[9] PINTAR A, BATISTA J, BER?I? G. A novel process for the removal of nitrates from drinking water [J]. Studies in Surface Science & Catalysis, 1997, 110 (00): 633-642.
[10] KASSAEE M Z, MOTAMEDI E, MIKHAK A,. Nitrate removal from water using iron nanoparticles produced by arc discharge. reduction [J]. Chemical Engineering Journal, 2011, 166 (2): 490-495.
[11] SALAM M A, FAGEEH O, AL-THABAITI S A,. Removal of nitrate ions from aqueous solution using zero-valent iron nanoparticles supported on high surface area nanographenes [J]. Journal of Molecular Liquids, 2015, 212: 708-715.
[12] FANG L, YANG D, CHEN Z,. The mechanism for degrading Orange II based on adsorption and reduction by ion-based nanoparticles synthesized by grape leaf extract [J]. Journal of Hazardous Materials, 2015, 296: 37-45.
[13] JIANG C, XU X, MEGHARAJ M,. Inhibition or promotion of biodegradation of nitrate bysp. in the presence of nanoscale zero-valent iron [J]. Science of the Total Environment, 2015, 530/531: 241–246.
[14] SHI J L, LONG C, LI A M. Selective reduction of nitrate into nitrogen using Fe-Pd bimetallic nanoparticle supported on chelating resin at near-neutral pH [J]. Chemical Engineering Journal, 2016, 86: 408–415.
[15] 陳斌, 陳天虎, 慶承松,等. 一種用褐鐵礦礦石制備多孔納米鐵的方法: 103357884A [P]. 2013.
CHEN B, CHEN T H, QING C S,. A method of preparation of porous nanoparticles iron with limonite ore: 103357884A [P]. 2013.
[16] SHI J L, YI S N , HE H L,. Preparation of nanoscale zero-valent iron supported on chelating resin with nitrogen donor atoms for simultaneous reduction of Pb2+and[J]. Chemical Engineering Journal, 2013, 230: 166-171.
[17] GANESAN P, KAMARAJ R, VASUDEVAN S. Application of isotherm, kinetic and thermodynamic models for the adsorption of nitrate ions on graphene from aqueous solution [J]. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44 (5): 808-814.
[18] CANER N, SARI A, TUZEN M. Adsorption characteristics of mercury (Ⅱ) ions from aqueous solution onto chitosan-coated diatomite [J]. Industrial & Engineering Chemistry Research, 2015, 54 (30): 7524-7533.
[19] KONG X, HAN Z, ZHANG W,. Synthesis of zeolite-supported microscale zero-valent iron for the removal of Cr6+and Cd2+from aqueous solution [J]. Journal of Environmental Management, 2015, 169: 84-90.
[20] OH Y J, SONG H, SHIN W S,. Effect of amorphous silica and silica sand on removal of chromium (Ⅵ) by zero-valent iron [J]. Chemosphere, 2007, 66 (5): 858-65.
[21] LEE S, LEE K, RHEE S. Development of a new zero-valent iron zeolite material to reduce nitrate without ammonium release [J]. Industrial Water Treatment, 2007, 27 (2): 86-87.
[22] 王玉煥, 廉新穎, 李秀金, 等. 地下水環(huán)境因素對(duì)包覆型納米鐵降解的影響 [J]. 環(huán)境科學(xué)研究, 2014, 27 (11): 1367-1372.
WANG Y H, LIAN X Y, LI X J,. Effects of groundwater environmental factors onreduction using coated nano iron [J]. Research of Environmental Sciences, 2014, 27 (11): 1367-1372.
[23] SONG Y, SONG S. Preparation, characterization, and kinetics of nanoscale iron in nitrate nitrogen removal from polluted water [J]. Toxicological & Environmental Chemistry, 2015, 97 (3/4): 379-387.
Removal of nitrate nitrogen by nanoscale zero-valent iron supported on modified diatomite
XIU Ruirui1,2, HE Shiying2, SONG Hailiang1, YANG Linzhang2, ZHANG Wan2
(1School of Energy and Environment, Southeast University, Nanjing 210096, Jiangsu, China;2Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China)
With modified diatomite as support, the composite materials of nanoscale zero-valent iron and modified diatomite (NZVI-CDt) were prepared by using sodium borohydride as reducing agentthe liquid phase reduction method. The NZVI-CDt was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The influences of initial concentrations of nitrate nitrogen (5—30 mg·L-1) and pH (3, 5, 7 and 9) on removal of nitrate nitrogen were investigated, and the final degradation products were detected. The results showed that the iron nanoparticles were highly dispersed on the surface of diatomite and several iron nanoparticles were embedded within the diatomite porous. Iron nanoparticles had a nearly spherical shape with the range of 100 nm. The NZVI-CDt showed efficient removal of nitrate nitrogen. The removal efficiency could reach 90.1% after 60 min at proper conditions: pH 7, initial 20 mg·L-1concentration of nitrate nitrogen and 0.5141 g NZVI-CDt at the room temperature. Kinetic studies showed that the reduction of nitrate nitrogen by NZVI-CDt followed the pseudo-first-order kinetics. In addition,obsdecreased with increasing nitrate nitrogen concentration.
modified diatomite; nanomaterials; composites; nitrate nitrogen; removal efficiency; kinetics
X 52
10.11949/j.issn.0438-1157.20160412
江蘇省農(nóng)業(yè)科技自主創(chuàng)新資金項(xiàng)目(CX (15) 1004); 國(guó)家自然科學(xué)基金項(xiàng)目(41571476);江蘇省自然科學(xué)基金項(xiàng)目(BK20141117)。
date: 2016-04-01.
SONG Hailiang, associate professor, songhailiang@seu.edu.cn
supported by Jiangsu Agriculture Science and Technology Innovation (CX (15) 1004), the National Natural Science Foundation of China (41571476) and the Natural Science Foundation of Jiangsu Province (BK20141117).
A
0438—1157(2016)09—3888—07
2016-04-01收到初稿,2016-05-18收到修改稿。
聯(lián)系人:宋海亮。第一作者:修瑞瑞(1991—),女,碩士研究生。