国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

ω-3多不飽和脂肪酸對(duì)大腦突觸結(jié)構(gòu)和傳遞功能影響的研究進(jìn)展*

2016-03-09 14:43:33劉志國張宏宇王華林王麗梅劉烈炬
關(guān)鍵詞:磷脂酶谷氨酸海馬

劉志國, 張宏宇, 王華林, 王麗梅, 劉烈炬

武漢輕工大學(xué)生物與制藥工程學(xué)院,武漢 430023

?

ω-3多不飽和脂肪酸對(duì)大腦突觸結(jié)構(gòu)和傳遞功能影響的研究進(jìn)展*

劉志國, 張宏宇, 王華林, 王麗梅, 劉烈炬△

武漢輕工大學(xué)生物與制藥工程學(xué)院,武漢 430023

-3多不飽和脂肪酸; 大腦功能; 突觸傳遞; 神經(jīng)細(xì)胞; 受體

當(dāng)突觸前釋放的谷氨酸遞質(zhì)與突觸后膜谷氨酸受體結(jié)合后,可觸發(fā)一系列連鎖反應(yīng),導(dǎo)致突觸功能的持續(xù)增強(qiáng)或減弱,形成長時(shí)程增強(qiáng)(long term potentiation,LTP)或長時(shí)程抑制(long term depression,LTD)。突觸后谷氨酸受體可分為促離子型受體和促代謝型受體2種類型。促離子型受體可再分為海人藻酸(kainic acid,KA)受體、AMPA(2-amino-3-propionic acid)受體和NMDA(N-methyl-d-aspartate)受體(包括NR1、NR2A、NR2B等亞型)。促代謝型受體包括mGluR1~8等亞型。LTP的形成主要依靠蛋白激酶,如CaMKⅡ(calcium-calmodulin-dependent protein kinase Ⅱ),使目標(biāo)蛋白,如CREB(cyclic adenosine monophosphate response element binding protein)等磷酸化,導(dǎo)致突觸后膜AMPA受體增加,突觸傳遞功能增強(qiáng)。不同于LTP,LTD的產(chǎn)生主要依靠鈣依賴性磷酯酶對(duì)目標(biāo)蛋白的去磷酸化作用。突觸后磷酸酯酶可導(dǎo)致突觸AMPA受體內(nèi)吞,從而減少對(duì)谷氨酸遞質(zhì)的敏感性。

遞質(zhì)在突觸前神經(jīng)元末梢的釋放包括神經(jīng)遞質(zhì)的合成、囊泡的形成、動(dòng)員(mobilization)、擺渡(trafficking)、錨泊(targeting)、融合(fusion)和出胞(exocytosis)等過程。膜脂質(zhì)是大腦質(zhì)膜主要的組件,對(duì)出胞、擺渡、內(nèi)吞起著重要的作用[11]。-3 PUFA(特別是DHA)作為膜的重要成分,可通過影響大腦質(zhì)膜的特性或是作為游離脂肪酸對(duì)突觸前谷氨酸遞質(zhì)釋放進(jìn)行干預(yù)[12]。-3 PUFA可以促進(jìn)囊泡的更新和出胞過程。適量的-3 PUFA可以增加神經(jīng)遞質(zhì)的釋放并提高突觸的傳遞效率[13]。在富含DHA的培養(yǎng)液中,胚胎海馬神經(jīng)元自發(fā)突觸電流振幅和頻率均高于對(duì)照,而這種突觸活動(dòng)增加主要發(fā)現(xiàn)于谷氨酸類神經(jīng)元[4]。

已釋放的遞質(zhì)通常經(jīng)突觸前末梢重?cái)z取,或被酶代謝消除。星形膠質(zhì)細(xì)胞在谷氨酸和GABA神經(jīng)元突觸間遞質(zhì)的清除中扮演重要的角色[1],同時(shí)是-3 PUFA調(diào)節(jié)突觸傳遞功能的重要靶點(diǎn)。星形膠質(zhì)細(xì)胞可根據(jù)信號(hào)的強(qiáng)度,通過谷氨酸的攝取和運(yùn)輸以及對(duì)突觸小體體積的調(diào)節(jié),將谷氨酸的濃度維持在一定的安全范圍內(nèi)[18-19]。過度的刺激(如應(yīng)激反應(yīng))以及星形膠質(zhì)細(xì)胞調(diào)制功能的下降都會(huì)破壞谷氨酸能神經(jīng)元突觸內(nèi)環(huán)境的穩(wěn)定,導(dǎo)致谷氨酸的濃度過高,引起神經(jīng)細(xì)胞興奮中毒(excitotoxicity)以致死亡。上述過程與衰老和多種疾病引起的腦損傷密切相關(guān)[19]。

PUFA除了通過影響突觸前膜遞質(zhì)的釋放和突觸后膜受體的活動(dòng)而調(diào)節(jié)突觸傳遞功能外,還可以通過從神經(jīng)和神經(jīng)膠質(zhì)細(xì)胞質(zhì)膜分離出來的游離脂肪酸(特別是DHA和AA),作為體內(nèi)重要的信號(hào)分子,參與體內(nèi)信號(hào)轉(zhuǎn)導(dǎo),涉及肌醇磷脂信使系統(tǒng)[28]、類花生酸信號(hào)轉(zhuǎn)導(dǎo)系統(tǒng)[29]以及磷脂酰肌醇-3激酶(PI3K)-AKT通路等[30]。磷脂酶是決定局部游離脂肪酸可用度的關(guān)鍵酶。磷脂酶包括3種重要的亞型,即磷脂酶A2(Phospholipase A2,PLA2)、磷脂酶C(phospholipase C,PLC)和磷脂酶D(phospholipase D,PLD)。3種磷脂酶分別作用于磷脂中的不同基團(tuán),產(chǎn)生不同的酶解產(chǎn)物。在哺乳動(dòng)物細(xì)胞中包含多種PLA2的同工酶,例如分泌型磷脂酶A2(sPLA2)、胞漿型磷脂酶A2(cPLA2,Ca2+依賴型磷脂酶)和Ca2+非依賴型磷脂酶A2(iPLA2)等。PLA2可直接催化磷脂sn-2脂酰鍵的水解,產(chǎn)生AA、DHA和溶血磷脂。PLC和PLD則不能直接產(chǎn)生AA,但可以通過AA的前體,二酰甘油(DAG)或磷脂酸(PA)釋放AA。釋放出的AA或成為逆行信使(retrograde messenger)[31],或通過各種代謝酶類(如環(huán)氧酶、脂氧合酶和加雙氧酶等)生成多種類花生酸物質(zhì),如前列腺素、白細(xì)胞三烯和凝血蒽烷等[32]。類花生酸在機(jī)體炎性反應(yīng)中起著重要的作用。不同的是,類花生酸主要產(chǎn)生的是促炎因子,而DHA主要產(chǎn)生抗炎因子[32]。

如前所述,谷氨酸是腦內(nèi)主要的興奮性神經(jīng)元,而γ-氨基丁酸(GABA)則是主要的抑制性神經(jīng)元。GABA在大腦皮層淺層和小腦浦肯野細(xì)胞層含量最高,同時(shí)存在于新紋狀體內(nèi)的中間神經(jīng)元。GABA受體可分為GABAa、GABAb和GABAc等3種類型。GABAa和GABAc屬于離子通道型受體,與Cl-通道偶聯(lián)。GABAb屬于代謝型受體。GABAa和GABAb廣泛分布于中樞神經(jīng)系統(tǒng),參與了神經(jīng)系統(tǒng)的各種功能。雖然GABA能神經(jīng)元分布的區(qū)域與大腦的認(rèn)知功能密切相關(guān),但GABA能神經(jīng)系統(tǒng)是否參與了-3 PUFA增強(qiáng)學(xué)習(xí)記憶的功能,只是在近年來才開始有所關(guān)注。雖然與谷氨酸相比,我們對(duì)GABA的作用知道得很少,然而卻是探討-3 PUFA作用機(jī)制的一個(gè)新的重要領(lǐng)域。實(shí)驗(yàn)發(fā)現(xiàn)高飽和脂肪酸飲食可以導(dǎo)致海馬和下丘腦GABAa、5-HT1及CB1與受體的結(jié)合密度增加。膳食中DHA的干預(yù)可防止高飽和脂肪酸飲食對(duì)海馬和下丘腦受體密度的影響。由于海馬和下丘腦與大腦認(rèn)知功能密切有關(guān),提示了GABAa等受體有可能介導(dǎo)了DHA增強(qiáng)大腦學(xué)習(xí)記憶的功能[40]。來自海馬體興奮性尖波(sharp waves,SPWs)被認(rèn)為顳葉癲癇患者發(fā)作的前兆。采用體外腦片灌流,發(fā)現(xiàn)在海馬切片CA1和CA3區(qū)域,DHA可以減少SPWs發(fā)生率,上述作用可以被GABA受體阻滯劑所拮抗。實(shí)驗(yàn)表明DHA可以減少小鼠海馬CA3回路的興奮性,而這種作用可能與GABA神經(jīng)系統(tǒng)的調(diào)節(jié)作用有關(guān),提示DHA有可能通過對(duì)海馬神經(jīng)元興奮性的調(diào)節(jié),影響大腦的學(xué)習(xí)記憶功能[41]。在大腦發(fā)育期,DHA迅速的積累對(duì)正常神經(jīng)的結(jié)構(gòu)和功能至關(guān)重要。在腦發(fā)育的關(guān)鍵時(shí)期,DHA缺乏會(huì)造成多種大腦功能障礙,包括學(xué)習(xí)記憶功能和成年后的抑郁和焦慮癥等,實(shí)驗(yàn)發(fā)現(xiàn)GABAa系統(tǒng)可能參與了這些作用[42]。此外GABA還可能介導(dǎo)了-3 PUFA對(duì)大腦的保護(hù)作用,如丙酸所造成的神經(jīng)中毒等,有利于大腦學(xué)習(xí)記憶功能的維持[43]。

在生理?xiàng)l件下膽堿能神經(jīng)元與機(jī)體的衰老密切相關(guān)。在病理?xiàng)l件下膽堿能神經(jīng)元與多種老年性神經(jīng)系統(tǒng)的疾病有關(guān),例如阿爾茨海默病(AD)等。AD是以進(jìn)行性智能衰退為主要臨床表現(xiàn)的大腦變性疾病,俗稱老年癡呆癥。在病理特征上表現(xiàn)為老年斑、神經(jīng)元纖維纏結(jié)、海馬錐體細(xì)胞膽堿能神經(jīng)元的變性壞死。AD的發(fā)病與腦內(nèi)Aβ(β淀粉樣蛋白)異常沉淀有關(guān)。Aβ對(duì)周圍的突觸和神經(jīng)元具有毒性作用,可導(dǎo)致神經(jīng)細(xì)胞變性死亡。隨著神經(jīng)元的變性壞死,導(dǎo)致腦內(nèi)相應(yīng)的神經(jīng)遞質(zhì)水平下降,其中最主要的是乙酰膽堿(acetylcholine,Ach)。在AD患者中,腦內(nèi)的Ach的水平下降得最早和最為明顯。增加腦內(nèi)Ach的水平是目前AD藥物治療的重要方法。例如,采用膽堿酯酶抑制劑,通過抑制Ach的酶解,增加Ach的含量,增加膽堿能神經(jīng)元的傳遞功能。但這些擬膽堿類藥物,雖然能緩解患者認(rèn)知能力的下降,但并不能延緩AD病程的發(fā)展。

多巴胺能神經(jīng)元的遞質(zhì)是多巴胺(DA)主要存在于中樞神經(jīng)系統(tǒng),包括黑質(zhì)-紋狀體系統(tǒng)、中腦邊緣和皮質(zhì)系統(tǒng)以及結(jié)節(jié)漏斗部3個(gè)部分。腦內(nèi)的DA主要由中腦黑質(zhì)產(chǎn)生,沿黑質(zhì)-紋狀體系統(tǒng)投射,在紋狀體內(nèi)儲(chǔ)存。DA神經(jīng)元投射的區(qū)域與大腦的學(xué)習(xí)記憶功能密切相關(guān)。多巴胺受體包括DA1~DA55種亞型,都是G蛋白偶聯(lián)受體。主要參與對(duì)軀體運(yùn)動(dòng)、精神情緒活動(dòng)、垂體內(nèi)分泌以及大腦的認(rèn)知功能的調(diào)節(jié)。

在中樞神經(jīng)系統(tǒng),5-羥色胺(5-HT)能神經(jīng)元胞體主要集中于低位腦干的中縫核內(nèi)。其纖維投射分上行部分和下行部分。下行部分支配脊髓和低位腦干。上行部分的神經(jīng)元位于中縫核頭部,纖維投射到紋狀體、丘腦、小丘腦、邊緣前腦和大腦皮層等區(qū)域。5-HT在中樞神經(jīng)系統(tǒng)的主要功能是調(diào)節(jié)痛覺和鎮(zhèn)痛、精神和情緒活動(dòng)等。但值得注意的是5-HT分布的區(qū)域與大腦的學(xué)習(xí)記憶和認(rèn)知功能密切相關(guān)。5-HT的受體多而復(fù)雜,已知有5-HT1至5-HT7等多種受體,進(jìn)一步分為不同的亞型如5-HT1A、5-HT2B等,其對(duì)大腦學(xué)習(xí)記憶功能的影響已開始受到關(guān)注。

綜上所述,突觸是完成大腦功能的基礎(chǔ),包括大腦的學(xué)習(xí)記憶功能和認(rèn)知能力。然而大腦的功能是復(fù)雜的,大腦的學(xué)習(xí)記憶功能和認(rèn)知能力受到多種精神因素的影響,例如抑郁癥、精神分裂癥和情緒失調(diào)癥、注意缺陷和多動(dòng)癥等,因此多個(gè)不同的系統(tǒng),從不同的方面,參與了大腦學(xué)習(xí)記憶功能的調(diào)節(jié)。-3 PUFA對(duì)谷氨酸、GABA、Ach、DA和5-HT受體外,還有許多受體參與了大腦學(xué)習(xí)記憶功能的調(diào)節(jié),包括Na+、K+、Ca2+離子通道型受體、辣椒素受體、酸通道受體和大麻素受體等,但具體作用機(jī)制并不清晰,亟待后期進(jìn)行深入研究。

[1] Denis I,Potier B,Vancassel S,et al.Omega-3 fatty acids and brain resistance to ageing and stress:body of evidence and possible mechanisms[J].Ageing Res Rev,2013,12(2):579-594.

[2] Neves G,Cooke S F,Bliss T V.Synaptic plasticity,memory and the hippocampus:a neural network approach to causality[J].Nat Rev Neurosci,2008,9(1):65-75.

[3] Nishikawa M,Kimura S,Akaike N.Facilitatory effect of docosahexaenoic acid on N-methyl-D-aspartate response in pyramidal neurones of rat cerebral cortex[J].J Neurophysiol,1994,475(1):83-93.

[4] Cao D,Kevala K,Kim J,et al.Docosahexaenoic acid promotes hippocampal neuronal development and synaptic function[J].J Neurochem,2009,111(2):510-521.

[5] Kawashima A,Harada T,Kami H,et al.Effects of eicosapentaenoic acid on synaptic plasticity,fatty acid profile and phosphoinositide 3-kinase signaling in rat hippocampus and differentiated PC12 cells[J].J Nutr Biochem,2010,21(4):268-277.

[6] Wu A,Ying Z,Gomez-Pinilla F.Docosahexaenoic acid dietary supplementation enhances the effects of exercise on synaptic plasticity and cognition[J].Neuroscience,2008,155(3):751-759.

[7] Chytrova G,Ying Z,Gomez-Pinilla F.Exercise contributes to the effects of DHA dietary supplementation by acting on membrane-related synaptic systems[J].Brain Res,2010,1341:32-40.

[8] Sakamoto T,Cansev M,Wurtman R J.Oral supplementation with docosahexaenoic acid and uridine-5’-monophosphate increases dendritic spine density in adult gerbil hippocampus[J].Brain Res,2007,1182:50-59.

[9] Cansev M,Wurtman R J.Chronic administration of docosahexaenoic acid or eicosapentaenoic acid,but not arachidonic acid,alone or in combination with uridine,increases brain phosphatide and synaptic protein levels in gerbils[J].Neuroscience,2007,148(2):421-431.

[10] He C,Qu X,Cui L,et al.Improved spatial learning performance of fat-1 mice is associated with enhanced neurogenesis and neuritogenesis by docosahexaenoic acid[J].Proc Natl Acad Sci USA,2009,106(27):11370-11375.

[11] Rohrbough J,Broadie K.Lipid regulation of the synaptic vesicle cycle[J].Nat Rev Neurosci,2005,6(2):139-150.

[12] Mathieu G,Denis S,Langelier B,et al.DHA enhances the noradrenaline release by SH-SY5Y cells[J].Neurochem Int,2010,56(1):94-100.

[13] Hennebelle M,Champeil-Potokar G,Lavialle M,et al.Omega-3 polyunsaturated fatty acids and chronic stress-induced modulations of glutamatergic neurotransmission in the hippocampus[J].Nutr Rev,2014,72(2):99-112.

[14] Yoshida S,Yasuda A,Kawazato H,et al.Synaptic vesicle ultrastructural changes in the rat hippocampus induced by a combination of alpha-linolenate deficiency and a learning task[J].J Neurochem,1997,68(3):1261-1268.

[15] Latour A,Grintal B,Champeil-Potokar G,et al.Omega-3 fatty acids deficiency aggravates glutamatergic synapse and astroglial aging in the rat hippocampal CA1[J].Aging Cell,2013,12(1):76-84.

[16] Darios F,Davletov B.Omega-3 and omega-6 fatty acids stimulate cell membrane expansion by acting on syntaxin 3[J].Nature,2006,440(7085):813-817.

[17] Pongrac J L,Slack P J,Innis S M.Dietary polyunsaturated fat that is low in(n-3)and high in(n-6)fatty acids alters the SNARE protein complex and nitrosylation in rat hippocampus[J].J Nutr,2007,137(8):1852-1856.

[18] Maragakis N J,Rothstein J D.Glutamate transporters:animal models to neurologic disease[J].Neurobiol Dis,2004,15(3):461-473.

[19] Sheldon A L,Robinson M B.The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention[J].Neurochem Int,2007,51(6/7):333-355.

[20] Bourre J M,Pascal G,Durand G,et al.Alterations in the fatty acid composition of rat brain cells(neurons,astrocytes,and oligodendrocytes)and of subcellular fractions(myelin and synaptosomes)induced by a diet devoid of n-3 fatty acids[J].J Neurochem,1984,43(2):342-348.

[21] Champeil-Potokar G,Denis I,Goustard-Langelier B,et al.Astrocytes in culture require docosahexaenoic acid to restore the n-3/n-6 polyunsaturated fatty acid balance in their membrane phospholipids[J].J Neurosci Res,2004,75(1):96-106.

[22] Champeil-Potokar G,Chaumontet C,Guesnet P,et al.Docosahexaenoic acid(22:6 n-3)enrichment of membrane phospholipids increases gap junction coupling capacity in cultured astrocytes[J].Eur J Neurosci,2006,24(11):3084-3090.

[23] Appendino G,Minassi A,Berton L,et al.Oxyhomologues of anandamide and related endolipids:chemoselective synthesis and biological activity[J].J Med Chem,2006,49(7):2333-2338.

[24] Magistretti P J.Neuron-glia metabolic coupling and plasticity[J].J Exp Biol,2006,209(Pt 12):2304-2311.

[25] Pifferi F,Jouin M,Alessandri J M,et al.n-3 Fatty acids modulate brain glucose transport in endothelial cells of the blood-brain barrier[J].Prostag Leukotr Ess,2007,77(5/6):279-286.

[26] Grintal B,Champeil-Potokar G,Lavialle M,et al.Inhibition of astroglial glutamate transport by polyunsaturated fatty acids:evidence for a signalling role of docosahexaenoic acid[J].Neurochem Int,2009,54(8):535-543.

[27] Volterra A,Trotti D,Cassutti P,et al.High sensitivity of glutamate uptake to extracellular free arachidonic acid levels in rat cortical synaptosomes and astrocytes[J].J Neurochem,1992,59(2):600-606.

[28] Ma D,Zhang M,Larsen C P,et al.DHA promotes the neuronal differentiation of rat neural stem cells transfected with GPR40 gene[J].Brain Res,2010,1330:1-8.

[29] Wall R,Ross R P,F(xiàn)itzgerald G F,et al.Fatty acids from fish:the anti-inflammatory potential of long-chain omega-3 fatty acids[J].Nutr Rev,2010,68(5):280-289.

[30] Gu Z,Wu J,Wang S,et al.Polyunsaturated fatty acids affect the localization and signaling of PIP3/AKT in prostate cancer cells[J].Carcinogenesis,2013,34(9):1968-1975.

[31] Bazan N G.Synaptic signaling by lipids in the life and death of neurons[J].Mol Neurobiol,2005,31(1-3):219-230.

[32] Tassoni D,Kaur G,Weisinger R S,et al.The role of eicosanoids in the brain[J].Asia Pac J Clin Nutr,2008,17(Suppl 1):220-228.

[33] Sun G Y,Xu J,Jensen M D,et al.Phospholipase A2 in the central nervous system:implications for neurodegenerative diseases[J].J Lipid Res,2004,45(2):205-213.

[34] Phillis J W,O’regan M H.A potentially critical role of phospholipases in central nervous system ischemic,traumatic,and neurodegenerative disorders[J].Brain Res Rev,2004,44(1):13-47.

[35] Ramadan E,Rosa A O,Chang L,et al.Extracellular-derived calcium does not initiateinvivoneurotransmission involving docosahexaenoic acid[J].J Lipid Res,2010,51(8):2334-2340.

[36] Farooqui A A,Horrocks L A,F(xiàn)arooqui T.Modulation of inflammation in brain:a matter of fat[J].J Neurochem,2007,101(3):577-599.

[37] Rao J S,Ertley R N,Demar J C,et al.Dietary n-3 PUFA deprivation alters expression of enzymes of the arachidonic and docosahexaenoic acid cascades in rat frontal cortex[J].Mol Psychiatr,2007,12(2):151-157.

[38] Sun G Y,Shelat P B,Jensen M B,et al.Phospholipases A2 and inflammatory responses in the central nervous system[J].Neuromol Med,2010,12(2):133-148.

[39] Menard C,Chartier E,Patenaude C,et al.Calcium-independent phospholipase A(2)influences AMPA-mediated toxicity of hippocampal slices by regulating the GluR1 subunit in synaptic membranes[J].Hippocampus,2007,17(11):1109-1120.

[40] Yu Y,Wu Y,Patch C,et al.DHA prevents altered 5-HT1A,5-HT2A,CB1 and GABAA receptor binding densities in the brain of male rats fed a high-saturated-fat diet[J].J Nutr Biochem,2013,24(7):1349-1358.

[41] Taha A Y,Zahid T,Epps T,et al.Selective reduction of excitatory hippocampal sharp waves by docosahexaenoic acid and its methyl ester analogex-vivo[J].Brain Res,2013,1537:9-17.

[42] Chen H F,Su H M.Exposure to a maternal n-3 fatty acid-deficient diet during brain development provokes excessive hypothalamic-pituitary-adrenal axis responses to stress and behavioral indices of depression and anxiety in male rat offspring later in life[J].J Nutr Biochem,2013,24(1):70-80.

[43] El-Ansary A K,Al-Daihan S K,El-Gezeery A R.On the protective effect of omega-3 against propionic acid-induced neurotoxicity in rat pups[J].Lipids Health Dis,2011,10:142.

[44] Aid S,Vancassel S,Linard A,et al.Dietary docosahexaenoic acid[22:6(n-3)]as a phospholipid or a triglyceride enhances the potassium chloride-evoked release of acetylcholine in rat hippocampus[J].J Nutr,2005,135(5):1008-1013.

[45] Aid S,Vancassel S,Poumes-Ballihaut C,et al.Effect of a diet-induced n-3 PUFA depletion on cholinergic parameters in the rat hippocampus[J].J Lipid Res,2003,44(8):1545-1551.

[46] Nishizaki T,Ikeuchi Y,Matsuoka T,et al.Short-term depression and long-term enhancement of ACh-gated channel currents induced by linoleic and linolenic acid[J].Brain Res,1997,751(2):253-258.

[47] Minami M,Kimura S,Endo T,et al.Dietary docosahexaenoic acid increases cerebral acetylcholine levels and improves passive avoidance performance in stroke-prone spontaneously hypertensive rats[J].Pharmacol Biochem,1997,58(4):1123-1129.

[48] Favreliere S,Perault M C,Huguet F,et al.DHA-enriched phospholipid diets modulate age-related alterations in rat hippocampus[J].Neurobiol Aging,2003,24(2):233-243.

[49] Taepavarapruk P,Song C.Reductions of acetylcholine release and nerve growth factor expression are correlated with memory impairment induced by interleukin-1 beta administrations:effects of omega-3 fatty acid EPA treatment[J].J Neurochem,2010,112(4):1054-1064.

[50] Zhang W,Li R,Li J,et al.Alpha-linolenic acid exerts an endothelial protective effect against high glucose injury via PI3K/Akt pathway[J].PLoS One,2013,8(7):e68489.

[51] Lavialle M,Denis I,Guesnet P,et al.Involvement of omega-3 fatty acids in emotional responses and hyperactive symptoms[J].J Nutr Biochem,2010,21(10):899-905.

[52] Lavialle M,Champeil-Potokar G,Alessandri J M,et al.An(n-3)polyunsaturated fatty acid-deficient diet disturbs daily locomotor activity,melatonin rhythm,and striatal dopamine in Syrian hamsters[J].J Nutr,2008,138(9):1719-1724.

[53] Shioda N,Yamamoto Y,Owada Y,et al.Dopamine D2 receptor as a novel target molecule for heart-type fatty acid binding protein[J].Nihon Shinkei Seishin Yakurigaku Zasshi,2011,31(3):125-130.

[54] Carey A N,F(xiàn)isher D R,Joseph J A,et al.The ability of walnut extract and fatty acids to protect against the deleterious effects of oxidative stress and inflammation in hippocampal cells[J].Nutr Neurosci,2013,16(1):13-20.

[55] Shin S S,Dixon C E.Oral fish oil restores striatal dopamine release after traumatic brain injury[J].Neurosci Lett,2011,496(3):168-171.

[56] Narendran R,F(xiàn)rankle W G,Mason N S,et al.Improved working memory but no effect on striatal vesicular monoamine transporter type 2 after omega-3 polyunsaturated fatty acid supplementation[J].PLoS One,2012,7(10):e46832.

[57] Avraham Y,Saidian M,Burston J J,et al.Fish oil promotes survival and protects against cognitive decline in severely undernourished mice by normalizing satiety signals[J].J Nutr Biochem,2011,22(8):766-776.

[58] Baumgartner J,Smuts C M,Malan L,et al.In male rats with concurrent iron and(n-3)fatty acid deficiency,provision of either iron or(n-3)fatty acids alone alters monoamine metabolism and exacerbates the cognitive deficits associated with combined deficiency[J].J Nutr,2012,142(8):1472-1478.

[59] Sublette M E,Galfalvy H C,Hibbeln J R,et al.Polyunsaturated fatty acid associations with dopaminergic indices in major depressive disorder[J].Int J Neuropsychopharmacol,2014,17(3):383-391.

[60] Jiang L H,Liang Q Y,Shi Y.Pure docosahexaenoic acid can improve depression behaviors and affect HPA axis in mice[J].Eur Rev Med Pharmaco,2012,16(13):1765-1773.

[61] Bondi C O,Taha A Y,Tock J L,et al.Adolescent behavior and dopamine availability are uniquely sensitive to dietary omega-3 fatty acid deficiency[J].Biol Psychiat,2014,75(1):38-46.

[62] Tanriover G,Seval-Celik Y,Ozsoy O,et al.The effects of docosahexaenoic acid on glial derived neurotrophic factor and neurturin in bilateral rat model of Parkinson’s disease[J].Folia Histochem Cytobiol,2010,48(3):434-441.

[63] Cardoso H D,Dos Santos Junior E F,De Santana D F,et al.Omega-3 deficiency and neurodegeneration in the substantia nigra:involvement of increased nitric oxide production and reduced BDNF expression[J].Bba-Biomembranes,2014,1840(6):1902-1912.

[64] Chang Y L,Chen S J,Kao C L,et al.Docosahexaenoic acid promotes dopaminergic differentiation in induced pluripotent stem cells and inhibits teratoma formation in rats with Parkinson-like pathology[J].Cell Transplant,2012,21(1):313-332.

[65] Bloch M H,Qawasmi A.Omega-3 fatty acid supplementation for the treatment of children with attention-deficit/hyperactivity disorder symptomatology:systematic review and meta-analysis[J].J Am Acad Child Psy,2011,50(10):991-1000.

[66] Balanza-Martinez V,F(xiàn)ries G R,Colpo G D,et al.Therapeutic use of omega-3 fatty acids in bipolar disorder[J].Expert Rev Neurother,2011,11(7):1029-1047.

[67] Buydens-Branchey L,Branchey M,Hibbeln J R.Higher n-3 fatty acids are associated with more intense fenfluramine-induced ACTH and cortisol responses among cocaine-abusing men[J].Psychiat Res,2011,188(3):422-427.

[68] Mcnamara R K,Able J,Liu Y,et al.Omega-3 fatty acid deficiency during perinatal development increases serotonin turnover in the prefrontal cortex and decreases midbrain tryptophan hydroxylase-2 expression in adult female rats:dissociation from estrogenic effects[J].J Psychiatr Res,2009,43(6):656-663.

[69] Vines A,Delattre A M,Lima M M,et al.The role of 5-HT1Areceptors in fish oil-mediated increased BDNF expression in the rat hippocampus and cortex:a possible antidepressant mechanism[J].Neuropharmacology,2012,62(1):184-191.

[70] Vancassel S,Leman S,Hanonick L,et al.n-3 polyunsaturated fatty acid supplementation reverses stress-induced modifications on brain monoamine levels in mice[J].J Lipid Res,2008,49(2):340-348.

[71] Haider S,Batool Z,Tabassum S,et al.Effects of walnuts(Juglans regia)on learning and memory functions[J].Plant Food Hum Nutr,2011,66(4):335-340.

(2015-12-10 收稿)

*國家自然科學(xué)基金資助項(xiàng)目(No.31271855);國家自然科學(xué)基金青年科學(xué)基金資助項(xiàng)目(No.31000772);湖北省自然科學(xué)基金資助項(xiàng)目(No.2014CFB887,No.2015CFC841),湖北省教育廳科學(xué)技術(shù)研究項(xiàng)目(No.D20141705)

R344.1

10.3870/j.issn.1672-0741.2016.06.023

劉志國,男,1963年生,教授,理學(xué)博士,E-mail:zhiguo_l@126.com

△通訊作者,Corresponding author,E-mail:liulieju@qq.com

猜你喜歡
磷脂酶谷氨酸海馬
海馬
磷脂酶Cε1在1型糖尿病大鼠病理性神經(jīng)痛中的作用初探
海馬
基于正交設(shè)計(jì)的谷氨酸發(fā)酵條件優(yōu)化
“海馬”自述
N-月桂酰基谷氨酸鹽性能的pH依賴性
問:如何鑒定谷氨酸能神經(jīng)元
脂蛋白相關(guān)性磷脂酶A2對(duì)冠心病患者的診斷價(jià)值
氧自由基和谷氨酸在致熱原性發(fā)熱機(jī)制中的作用與退熱展望
海馬
四平市| 丰台区| 高唐县| 开江县| 临颍县| 绥化市| 阜平县| 临泉县| 马龙县| 桦南县| 仙桃市| 隆德县| 邢台市| 庆安县| 闸北区| 甘南县| 宁远县| 武胜县| 蓬溪县| 麻城市| 福安市| 兴国县| 喀喇沁旗| 绥化市| 酒泉市| 长武县| 正阳县| 基隆市| 云南省| 讷河市| 田东县| 五大连池市| 吉首市| 白水县| 大化| 玉环县| 三亚市| 大理市| 木里| 紫云| 静宁县|