国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

特發(fā)全面性癲基底節(jié)丘腦皮質(zhì)環(huán)路的多模態(tài)MRI研究進(jìn)展

2016-03-09 23:51:35呂貴文范國光
關(guān)鍵詞:尾狀核丘腦額葉

呂貴文 范國光*

呂貴文范國光*

特發(fā)性全面性癲日是一組非局灶性發(fā)病且沒有明確病因的癲日綜合征。其發(fā)病原因至今不明,之前有研究推測丘腦皮質(zhì)環(huán)路起著重要作用,目前通過MRI新技術(shù)的研究,發(fā)現(xiàn)了基底節(jié)-丘腦-皮質(zhì)環(huán)路可能影響癲日發(fā)作的產(chǎn)生和傳播。常規(guī)MRI未能發(fā)現(xiàn)異常改變,而擴(kuò)散張量成像、基于體素的形態(tài)測量學(xué)分析及靜息態(tài)功能MRI的多模態(tài)MR新技術(shù)可從結(jié)構(gòu)、體積及功能三方面發(fā)現(xiàn)該環(huán)路的異常改變,就其最新研究進(jìn)展予以綜述。

特發(fā)性全面性癲日;擴(kuò)散張量成像;基于體素的形態(tài)測量學(xué);靜息態(tài)功能磁共振成像

Int J Med Radiol,2016,39(5):505-508

1 基底節(jié)-丘腦-皮質(zhì)環(huán)路

前輻射冠、上輻射冠與內(nèi)囊前肢、內(nèi)囊后肢分別組成了丘腦前輻射以及丘腦上輻射,這些丘腦輻射連接丘腦與大腦皮質(zhì)(主要是額葉皮質(zhì)),丘腦輻射與大腦白質(zhì)纖維束之間的連接稱為丘腦-皮質(zhì)環(huán)路[7-8]。Alexander等[9]提出從基底節(jié)經(jīng)過丘腦將信息投射到額葉的特定區(qū)域,從而組成5條平行的又相互獨(dú)立的閉合的基底節(jié)-丘腦-皮質(zhì)環(huán)路。

丘腦是皮質(zhì)和皮質(zhì)下投射系統(tǒng)的主要中繼站,丘腦的神經(jīng)傳入來源包括初級(jí)感覺、基底節(jié)、小腦和大腦的邊緣系統(tǒng),這些不同的傳入神經(jīng)到達(dá)整合和處理信息的特定的丘腦中繼核團(tuán),然后將信息傳遞到大腦皮質(zhì)[10]。所以,丘腦是皮質(zhì)和皮質(zhì)下結(jié)構(gòu)、邊緣和皮質(zhì)之間的信息傳遞的關(guān)鍵所在,丘腦核團(tuán)能夠調(diào)節(jié)癲發(fā)作的易感性并且影響癲發(fā)作的傳播。

基底節(jié)傳入有2個(gè)主要輸入核團(tuán):紋狀體和底丘腦,它們接收從大腦皮質(zhì)、邊緣結(jié)構(gòu)及丘腦的直接傳入,然后通過直接或間接通路到達(dá)主要輸出核——內(nèi)側(cè)蒼白球和黑質(zhì)網(wǎng)狀部,輸出核直接投射到丘腦、中腦和延髓,間接經(jīng)過丘腦投射到達(dá)特定皮質(zhì)及邊緣系統(tǒng)[11-12]。Rektor等[13]研究基底節(jié)-丘腦-額葉皮質(zhì)環(huán)路的認(rèn)知功能(如注意力、運(yùn)動(dòng)準(zhǔn)備及感覺處理等方面),發(fā)現(xiàn)基底節(jié)可能在認(rèn)知信息處理方面起到綜合性作用。最近da Silva Braga等[14]記錄到GSW波放電額葉占70%,基底節(jié)占12%,表明這兩個(gè)區(qū)域之間的連接為癲樣活動(dòng)的起始或傳播起到至關(guān)重要的作用。

2 基底節(jié)-丘腦-皮質(zhì)環(huán)路纖維束研究

擴(kuò)散張量成像(diffusion tensor imaging,DTI)是一種無創(chuàng)性檢測水分子擴(kuò)散的大小和方向的神經(jīng)成像技術(shù),通過定量分析各向異性分?jǐn)?shù)(fractional anisotropy,FA)及平均擴(kuò)散率(mean diffusivity,MD)來探究纖維束的完整性。擴(kuò)散峰度成像(diffusion kurtosis imaging,DKI)是DTI技術(shù)的延伸,可以檢測水分子非高斯方向運(yùn)動(dòng),更好地反映組織的微結(jié)構(gòu)改變[15]。

Deppe等[4]首次報(bào)道了JME病人內(nèi)囊前肢的FA值減低,隨后,O’Muircheartaigh等[16]發(fā)現(xiàn)JME病人胼胝體(膝部及體部)的完整性被破壞。Focke等[17]報(bào)道了IGE病人胼胝體、皮質(zhì)脊髓束、上下縱束以及輔助運(yùn)動(dòng)區(qū)(supplementary motor area,SMA)廣泛FA減低;Lee等[18]通過DKI技術(shù)發(fā)現(xiàn)了IGE病人更廣泛的白質(zhì)纖維束的破壞,包括上下輻射冠、內(nèi)囊前后肢、胼胝體(全部)、上縱束以及丘腦輻射。丘腦前輻射是丘腦和內(nèi)囊前肢與前額葉皮質(zhì)之間神經(jīng)纖維束,其完整性的破壞,反映丘腦與雙側(cè)額葉間解剖連接的障礙,而胼胝體膝和體部主要連接雙側(cè)前額葉、前運(yùn)動(dòng)區(qū)以及SMA[7]。這些纖維束的破壞可以推測丘腦-皮質(zhì)環(huán)路的障礙。然而,最近有研究[19]報(bào)道通過胼胝體切開術(shù)發(fā)現(xiàn)僅能減輕IGE的癥狀,但不能完全改善其癥狀,推測可能正是由于存在皮質(zhì)下其他環(huán)路所致。

一些研究發(fā)現(xiàn)基底節(jié)參與丘腦-皮質(zhì)環(huán)路,Keller等[20]報(bào)道了JME病人額葉白質(zhì)纖維束以及殼核的FA值減低,Luo等[21]發(fā)現(xiàn)CAE病人雙側(cè)丘腦、殼核及左側(cè)尾狀核的MD值增加,雙側(cè)尾狀核的FA值減低。這些研究的不一致性可能是由于IGE的亞型不同所致。由于不同亞型間存在互相重疊的臨床表現(xiàn)以及缺乏特異性EEG表現(xiàn),故臨床區(qū)分非常困難。目前已有研究[22]利用DTI區(qū)分JME與GTCS白質(zhì)纖維束破壞的差異,這提示DTI技術(shù)可能鑒別IGE的不同亞型。大多數(shù)研究沒有發(fā)現(xiàn)DTI參數(shù)值與癲持續(xù)時(shí)間、藥物治療間的相關(guān)性,僅Kim等[23]發(fā)現(xiàn)發(fā)作頻率與FA、MD呈正相關(guān),這提示FA、MD可能作為潛在的生物學(xué)指標(biāo)反映IGE的病理進(jìn)程。基底節(jié)的研究目前相對(duì)較少,有待于以后更多大樣本的研究。

3 基底節(jié)-丘腦-皮質(zhì)環(huán)路體積的研究

基于體素的形態(tài)測量學(xué)(voxel based morphometry, VBM)是一種完全自動(dòng)化的、公正、全面的比較腦組織結(jié)構(gòu)區(qū)域差異的技術(shù),是一種以體素為單位的形態(tài)測量學(xué)方法,可分析腦灰質(zhì)體積成分的差異[24]。

大部分研究發(fā)現(xiàn)各個(gè)亞型IGE病人丘腦體積的減小,Kim等[25]報(bào)道的JME病人以及Huang等[26]報(bào)道的GTCS病人,其丘腦體積均有不同程度的萎縮。但丘腦的亞區(qū)域不同,Wang等[27]發(fā)現(xiàn)背內(nèi)側(cè)核及丘腦枕的體積減少,右側(cè)前內(nèi)側(cè)丘腦[28]以及雙側(cè)前內(nèi)側(cè)丘腦[29]也有報(bào)道。然而也有研究[30-31]未發(fā)現(xiàn)JME病人以及混合-IGE病人丘腦體積的改變。雖然有研究[32]報(bào)道顳葉上中下回體積的減小,但皮質(zhì)體積減小主要集中在額葉。Tae等[33]發(fā)現(xiàn)前額葉皮質(zhì)灰質(zhì)濃度下降,Kim等[25]發(fā)現(xiàn)內(nèi)側(cè)額葉皮質(zhì)灰質(zhì)體積下降,還有研究[27-28]發(fā)現(xiàn)額葉眶回以及額中央?yún)^(qū)域的萎縮。這些發(fā)現(xiàn)的不一致性可能由于VBM取決于局部灰質(zhì)的平均分割,沒有考慮到皮質(zhì)的折疊,另外IGE的亞型不同也可能造成差異。

一些研究發(fā)現(xiàn)了基底節(jié)區(qū)灰質(zhì)體積的減小。Ciumas等[34]發(fā)現(xiàn)丘腦、腦干、尾狀核以及殼核體積的減小。Du等[5]發(fā)現(xiàn)左側(cè)丘腦、左側(cè)殼核、雙側(cè)蒼白球體積減小,最近Luo等[21]發(fā)現(xiàn)雙側(cè)丘腦、殼核以及蒼白球體積減小。這些研究結(jié)果均支持基底節(jié)-丘腦-皮質(zhì)環(huán)路參與癲發(fā)作的調(diào)控。

4 基底節(jié)-丘腦-皮質(zhì)環(huán)路功能的異常

靜息態(tài)功能MRI(resting-state functional MRI,rs-fMRI)是在靜息狀態(tài)下,通過測量大腦自發(fā)低頻(0.01~0.08 Hz)的血氧水平依賴(blood oxygenation level dependent,BOLD)波動(dòng)的時(shí)間相干性來反映大腦自發(fā)神經(jīng)活動(dòng)。EEG-fMRI結(jié)合了EEG高時(shí)間分辨率和fMRI高空間分辨率的優(yōu)點(diǎn),在研究腦癲上有很大優(yōu)勢。

在IGE病人的EEG-fMRI研究中,BOLD信號(hào)改變與癲放電活動(dòng)有關(guān),BOLD信號(hào)增高反映癲的易化區(qū),主要集中在丘腦、尾狀核以及丘腦[35-37];BOLD信號(hào)減低結(jié)果較一致,主要集中在默認(rèn)網(wǎng)絡(luò)(default mode network,DMN)區(qū)域[38-39]。Wang等[40]用低頻振幅(amplitude of low-frequency fluctuation,ALFF)技術(shù)發(fā)現(xiàn)前額葉皮質(zhì)在0.010~0.027 Hz頻帶有差異,而丘腦則在0.027~0.073 Hz頻帶有差異,這兩個(gè)區(qū)域共同在0.198~0.250 Hz波段有差異。除了大腦自發(fā)活動(dòng)功能的異常外,腦的功能和結(jié)構(gòu)也是密不可分的,Wang等[27]利用功能連接(functional connectivity,F(xiàn)C)技術(shù),將種子點(diǎn)選在IGE病人丘腦背內(nèi)側(cè)核,發(fā)現(xiàn)雙側(cè)眶額葉皮質(zhì)、尾狀核、殼核和杏仁核中功能連接顯著下降。Kim等[28]最近亦使用FC技術(shù),發(fā)現(xiàn)IGE病人丘腦前內(nèi)側(cè)與雙側(cè)內(nèi)側(cè)前額葉和楔前葉/后扣帶回功能連接下降。Luo等[6]提出基底節(jié)網(wǎng)絡(luò)概念,并且發(fā)現(xiàn)IGE病人在非放電期間,雙側(cè)尾狀核、殼核功能連接增強(qiáng),而在放電期間功能連接更強(qiáng),且增強(qiáng)的連接性與放電的數(shù)目正相關(guān),因此推測基底節(jié)網(wǎng)絡(luò)在IGE疾病中可能作為一個(gè)癲的調(diào)節(jié)器角色。

5 基底節(jié)-丘腦-皮質(zhì)環(huán)路與認(rèn)知障礙的關(guān)系

這些神經(jīng)認(rèn)知研究結(jié)果與基底節(jié)-丘腦-額葉皮質(zhì)環(huán)路的功能成像結(jié)果相一致[23]。由于DTI等技術(shù)發(fā)現(xiàn)腦白質(zhì)纖維束損傷的證據(jù)越來越多,使得臨床認(rèn)知區(qū)域白質(zhì)受損得到越來越多的認(rèn)可。但是,尚未有研究發(fā)現(xiàn)認(rèn)知功能評(píng)分與DTI參數(shù)之間的相關(guān)性,這可能需要當(dāng)認(rèn)知水平下降更嚴(yán)重時(shí),以及縱向研究來發(fā)現(xiàn)認(rèn)知變化與DTI之間的因果關(guān)系,從而有利于病人的治療及預(yù)后。

6 局限性與前景

[1]Sillanp?? M,Anttinen A,Rinne JO,et al.Childhood-onset epilepsy five decades later.A prospective population-based cohort study[J]. Epilepsia,2015,56:1774-1783.

[2]Panayiotopoulos CP.Idiopathic generalized epilepsies:a review and modern approach[J].Epilepsia,2005,46 Suppl 9:1-6.

[3]Penfield W,Jasper H.Epilepsy and the functional anatomy of the human brain[J].1954,119:645-646.

[4]Deppe M,Kellinghaus C,Duning T,et al.Nerve fiber impairment of anterior thalamocortical circuitry in juvenile myoclonic epilepsy[J]. Neurology,2008,71:1981-1985.

[5]Du H,Zhang Y,Xie B,et al.Regional atrophy of the basal ganglia and thalamus in idiopathic generalized epilepsy[J].J Magn Reson Imaging,2011,33:817-821.

[6]Luo C,Li Q,Xia Y,et al.Resting state basal ganglia network in idiopathic generalized epilepsy[J].Hum Brain Mapping,2012,33: 1279-1294.

[7]Mori S,Oishi K,Jiang H,et al.Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template[J].NeuroImage, 2008,40:570-582.

[8]Bertram EH.Neuronal circuits in epilepsy:do they matter[J].Exp Neurol,2013,244:67-74.

[9]Alexander GE,DeLong MR,Strick PL.Parallel organization of functionally segregated circuits linking basal ganglia and cortex[J].Annu Rev Neurosci,1986,9:357-381.

[10]Verghese J,Rapin I.Subcortical epilepsy[J].Neurology,2014,82: 373.

[11]Laxpati NG,Kasoff WS,Gross RE.Deep brain stimulation for the treatment of epilepsy:circuits,targets,and trials[J].Neurotherapeutics,2014,11:508-526.

[12]Middleton FA,Strick PL.Basal ganglia and cerebellar loops:motor and cognitive circuits[J].Brain Res Brain Res Rev,2000,31:236-250.

[13]Rektor I,Bares M,Kanovsky P,et al.Cognitive potentials in the basal ganglia-frontocortical circuits.An intracerebral recording study[J].Exp Brain Res,2004,158:289-301.

[14]da Silva Braga AM,Fujisao EK,Betting LE.Analysis of generalized interictal discharges using quantitative EEG[J].Epilepsy Res,2014, 108:1740-1747.

[15]Fukunaga I,Hori M,Masutani Y,et al.Effects of diffusional kurtosis imaging parameters on diffusion quantification[J].Radiol Phys Technol,2013,6:343-348.

[16]O’Muircheartaigh J,Vollmar C,Barker GJ,et al.Focal structural changes and cognitive dysfunction in juvenile myoclonic epilepsy [J].Neurology,2011,76:34-40.

[17]Focke NK,Diederich C,Helms G,et al.Idiopathic-generalized epilepsy shows profound white matter diffusion-tensor imaging alterations[J].Hum Brain Mapp,2014,35:3332-3342.

[18]Lee CY,Tabesh A,Spampinato MV,et al.Diffusional kurtosis imaging reveals a distinctive pattern of microstructural alternations in idiopathic generalized epilepsy[J].Acta Neurol Scand,2014,130:148-155.

[19]Unterberger I,Bauer R,Walser G,et al.Corpus callosum and epilepsies[J].Seizure,2016,37:55-60.

[20]Keller SS,Ahrens T,Mohammadi S,et al.Microstructural and volumetric abnormalities of the putamen in juvenile myoclonic epilepsy [J].Epilepsia,2011,52:1715-1724.

[21]Luo C,Xia Y,Li Q,et al.Diffusion and volumetry abnormalities in subcortical nuclei of patients with absence seizures[J].Epilepsia, 2011,52:1092-1099.

[22]Liu M,Concha L,Beaulieu C,et al.Distinct white matter abnormalities in different idiopathic generalized epilepsy syndromes[J]. Epilepsia,2011,52:2267-2275.

[23]Kim JH,Suh SI,Park SY,et al.Microstructural white matter abnormality and frontal cognitive dysfunctions in juvenile myoclonic epilepsy[J].Epilepsia,2012,53:1371-1378.

[24]Bernhardt BC,Rozen DA,Worsley KJ,et al.Thalamo-cortical network pathology in idiopathic generalized epilepsy:insights from MRI-based morphometric correlation analysis[J].Neuroimage,2009, 46:373-381.

[25]Kim JH,Lee JK,Koh SB,et al.Regional grey matter abnormalities in juvenile myoclonic epilepsy:a voxel-based morphometry study [J].NeuroImage,2007,37:1132-1137.

[26]Huang W,Lu G,Zhang Z,et al.Gray-matter volume reduction in the thalamus and frontal lobe in epileptic patients with generalized tonic-clonic seizures[J].J Neuroradiol,2011,38:298-303.

[27]Wang Z,Zhang Z,Jiao Q,et al.Impairments of thalamic nuclei in idiopathic generalized epilepsy revealed by a study combining morphological and functional connectivity MRI[J].PLoS One,2012,7: e39701-e39701.

[28]Kim JB,Suh SI,Seo WK,et al.Altered thalamocortical functional connectivity in idiopathic generalized epilepsy[J].Epilepsia,2014, 55:592-600.

[29]Kim JH,Kim JB,Seo WK,et al.Volumetric and shape analysis of thalamus in idiopathic generalized epilepsy[J].J Neurol,2013,260: 1846-1854.

[30]Betting LE,Mory SB,Li LM,et al.Voxel-based morphometry in patients with idiopathic generalized epilepsies[J].NeuroImage,2006, 32:498-502.

[31]Seeck M,Dreifuss S,Lantz G,et al.Subcortical nuclei volumetry in idiopathic generalized epilepsy[J].Epilepsia,2005,46:1642-1645. [32]Tae WS,Kim SH,Joo EY,et al.Cortical thickness abnormality in juvenile myoclonic epilepsy[J].J Neurol,2008,255:561-566.

[33]Tae WS,Hong SB,Joo EY,et al.Structural brain abnormalities in juvenile myoclonic epilepsy patients:volumetry and voxel-based morphometry[J].Korean J Radiol,2006,7:162-172.

[34]Ciumas C,Savic I.Structural changes in patients with primary generalized tonic and clonic seizures[J].Neurology,2006,67:683-686. [35]Hamandi K,Salek-Haddadi A,Laufs H,et al.EEG-fMRI of idiopathic and secondarily generalized epilepsies[J].Neuroimage,2006, 31:1700-1710.

[36]Moeller F,Siebner HR,Wolff S,et al.Simultaneous EEG-fMRI in drug-naive children with newly diagnosed absence epilepsy[J]. Epilepsia,2008,49:1510-1519.

[37]Carney PW,Masterton RA,Harvey AS,et al.The core network in absence epilepsy.Differences in cortical and thalamic BOLD response[J].Neurology,2010,75:904-911.

[38]Raichle ME,Macleod AM,Snyder AZ,et al.A default mode of brain function[J].Proc Natl Acad Sci U S A,2001,98:676-682.

[39]Raichle ME,Mintun MA.Brain work and brain imaging[J].Annu Rev Neurosci,2006,29:449-476.

[40]Wang Z,Zhang Z,Liao W,et al.Frequency-dependent amplitude alterations of resting-state spontaneous fluctuations in idiopathic generalized epilepsy[J].Epilepsy Res,2014,108:853-860.

[41]Loughman A,Bowden SC,D’Souza W.Cognitive functioning in idiopathic generalised epilepsies:a systematic review and meta-analysis [J].Neurosci Biobehav Rev,2014,43:20-34.

[42]Wolf P,Avanzini G,Sander T,et al.Juvenile myoclonic epilepsy:a system disorder of the brain[J].Epilepsy Res,2015,114:2-12.

[43]Philp DJ,Korgaonkar MS,Grieve SM.Thalamic volume and thalamo-cortical white matter tracts correlate with motor and verbal memory performance[J].Neuroimage,2014,91:77-83.

(收稿2015-08-20)

Study progress of multimodal MRI in basalganglia-thalamocortical circuit of idiopathic generalized epilepsy

LüGuiwen,FAN Guoguang.Department of Radiology,First Affiliated Hospital of China Medical University,Shenyang 110001,China

Idiopathic generalized epilepsy is a group of epileptic disorders without structural brain abnormalities and clear pathogeny of epilepsy syndrome.The etiology is still unknown.Previous studies have speculated that thalamocortical circuit plays an important role.Currently through the research of new MR technologies,the basalganglia-thalamocortical circuit is considered to be responsible for the generation and propagation of seizures.Conventional MRI can’t detect abnormalities,but multimodal new MRI technologies of diffusion tensor imaging,voxel based morphometry and resting-state functional MRI can find abnormal changes in this circuit from structure,volume and function.In this paper,we reviewed the recent progress of those MRI technologies.

Idiopathic generalized epilepsy;Diffusion tensor imaging;Voxel based morphometry;Resting-state functional MRI

10.19300/j.2016.Z3698

R741.02;R445.2

A

中國醫(yī)科大學(xué)附屬第一醫(yī)院放射科,沈陽110001

范國光,E-mail:cjr.fanguoguang@vip.163.com

*審校者

猜你喜歡
尾狀核丘腦額葉
肝豆?fàn)詈俗冃园檎J(rèn)知損害的尾狀核靜息態(tài)功能連接改變的fMRI研究
纖維母細(xì)胞生長因子3對(duì)前丘腦γ-氨基丁酸能抑制性軸突的排斥作用
孤獨(dú)癥譜系障礙兒童尾狀核頭的彌散峰度成像研究
磁共振成像(2022年4期)2022-05-30 04:10:12
英語詞塊研究的進(jìn)展
額葉皮層退行性萎縮的高分辨率磁共振研究
人丘腦斷面解剖及磁共振圖像三維重建
電針“百會(huì)”“足三里”穴對(duì)IBS 模型大鼠行為及丘腦中CGRP mRNA 表達(dá)的影響
丘腦前核與記憶障礙的研究進(jìn)展
大腦的巔峰時(shí)刻
讀者(2016年18期)2016-08-23 21:40:05
比過目不忘更重要的大腦力
镇平县| 大渡口区| 临安市| 紫金县| 大冶市| 金门县| 堆龙德庆县| 石屏县| 手机| 江永县| 灵寿县| 广水市| 湾仔区| 巴彦县| 广州市| 武川县| 扎兰屯市| 民县| 鄢陵县| 平远县| 湘乡市| 威信县| 年辖:市辖区| 砀山县| 长子县| 姚安县| 商城县| 策勒县| 高密市| 交口县| 上蔡县| 大城县| 班玛县| 清丰县| 永宁县| 大洼县| 上饶市| 鹤峰县| 宿迁市| 赤壁市| 什邡市|