周代兵 許國雄復旦大學附屬金山醫(yī)院中心實驗室,上海201508
分子探針在磁共振成像靶向檢測腫瘤中的應用進展
周代兵許國雄
復旦大學附屬金山醫(yī)院中心實驗室,上海201508
分子影像學利用腫瘤微環(huán)境中特異性生物靶點的分子探針,借助磁共振分子成像超高空間分辨率、靶向性強等優(yōu)點,能夠較好地獲取腫瘤三維解剖結構及生理、病理等信息,可為腫瘤早期、精準診斷和治療提供重要的參考依據。
磁共振成像;腫瘤微環(huán)境;生物靶點;分子探針;早期診斷
1999年Weissleder等[1]提出分子影像學的概念,基本原理是以攜載配體的分子探針和體內靶分子(核酸或蛋白質[2])特異性結合,通過磁共振圖像準確地顯示細胞或分子水平的病理生理過程。腫瘤微環(huán)境中的代謝、免疫和內分泌改變影響著腫瘤的發(fā)生發(fā)展。針對微環(huán)境中新生血管內皮細胞和腫瘤細胞上高表達的特異性受體,合成靶向性分子探針,輸注并與體內受體特異性結合,從微觀分子層面上解讀腫瘤的發(fā)生發(fā)展及其結構特征[3]。本文就分子探針在磁共振靶向檢測腫瘤方面的應用進展予以綜述。
腫瘤靶向性分子探針由靶向性配體、轉運體和對比劑三部分組成[4],為實現(xiàn)機體內目標靶點的特異性顯影,這就要求分子探針在體內具有放大效應、較強的穿透能力、較長的半衰期以及較快的排出能力,而靶分子具有高分泌或者高表達、高親和力等特點,并且能很好地代表靶點生物特性。
常用的分子探針按成像材料可分為兩大類:一類是以釓(gadolinium,Gd)和錳(manganese,Mn)元素為基礎的順磁性對比劑,在T1彌散加權成像(T1WI)上表現(xiàn)為高信號;另一類是含有或包裹氧化鐵的超順磁性對比劑,在T2WI上表現(xiàn)為低信號[5]。
1.1釓類分子探針
釓類對比劑是一種順磁性物質,具有7個不成對電子。不成對電子在磁場作用下產生較大的磁場波動,使得組織縱向(T1)與橫向(T2)弛豫時間縮短,從而改變組織的磁共振信號。釓濃度在臨床劑量內(約0.1 mmol/kg),以影響T1弛豫時間為主,用于T1WI[6]。當釓對比劑使用超過臨床劑量時,T2的增強作用超過T1增強作用,在部分組織中T1WI顯示為低信號,稱之為陰性造影[7]。但有研究發(fā)現(xiàn),對于腎功能不全患者(除急性腎損傷外),特別是腎小球濾過率小于30mL/(min·1.73m2)的患者,釓對比劑劑量加大會加重腎功能損害[8]。目前臨床上應用的釓螯合物對比劑Gd-DTPA(MagnevistR)及Gd-DOTA(DotaremR)等為離子型非特異性細胞外液對比劑,因具有非特異性分布、化學毒性、檢查劑量高、滯留時間長等不足,限制了其在臨床上的廣泛應用。
自Ehrlich提出藥物靶向治療的設想[9],其理念便被迅速運用到磁共振靶向檢測領域,且在腫瘤領域廣泛應用。根據腫瘤組織器官特點,磁共振靶向可分為被動和主動兩種方式。被動靶向是根據腫瘤所在組織器官的病理生理特性,設計粒子直徑大小合適、特異性高的釓螯合物對比劑,使分子探針在特定細胞內凝聚并識別靶點,其中就包括針對Kupffer細胞的釓類對比劑,主要應用在肝臟系統(tǒng),能鑒別肝細胞來源腫瘤和正常肝組織[10]。腫瘤高通透性和滯留效應亦是腫瘤被動靶向成像的因素之一。Betancourt等[11]根據這一原理設計含釓類高分子化合物的納米顆粒對比劑,發(fā)現(xiàn)其可以在乳腺癌部位高度聚集,從而區(qū)分乳腺癌組織和正常組織。
腫瘤主動方式主要是借助機體內配體和受體特異性結合原理[12]。靶點可為腫瘤細胞、腫瘤血管或間質細胞。Zhang等[13]將羥基化納米中孔二氧化硅(hydroxylated mesoporous nano-silica,HMNS)涂覆聚乙烯亞胺再加釓和葉酸,可以顯著增強磁共振對比效果;加上葉酸能特異地與乳腺癌細胞表面上的葉酸受體結合,使得整個系統(tǒng)具有很高的靶向性能。
將熒光探針與釓劑整合于同一分子探針中,也可用于腫瘤遷移、侵襲功能成像的基礎研究;特異性干擾基因或藥物與釓劑構建于同一體系內,使其具備診斷和治療一體化。當前,有學者將釓類分子探針應用于腫瘤靶向藥物的療效評估[14],引起了許多研究者的注意。
1.2錳類分子探針
錳也是一種順磁性金屬,二價錳具有比較好的T1弛豫增強效果。相比其他對比劑,錳對比劑種類多樣化,錳離子螯合物在生物學上是鈣離子的類似物,它本身就具有分子探針的特性[15]。
錳福地匹三鈉(mangafodipir trisodium,Mn-DPDP)由Mn2+和2個磷酸吡哆醛基對稱性螯合而成,被肝臟攝取后,與胞內功能蛋白分子相互作用,結構異構化,使其T1明顯縮短,從而使肝組織特異性顯影,能夠有效鑒別診斷肝臟病變[16-17]。
將順磁性錳離子與納米粒子結合起來制備探針具有穩(wěn)定性好、易于化學修飾、生物兼容性好、可藥物靶向傳遞等特點。Chen等[18]制備包裹有多柔比星的二氧化硅涂層的中孔空心氧化錳納米粒子對比劑,在小鼠肝臟中T1像增強效果明顯,此種復合錳對比劑在體內還具有藥物傳遞的優(yōu)點。
1.3超氧化鐵類分子探針
含鐵金屬納米顆粒粒徑小,易觀察,且可塑性大,弛豫率高。近年來,高溫熱分解法制備磁性納米晶體較為常用,高溫下合成的納米粒子具有良好的生物特性、磁反應性和兼容性,副作用輕。目前常用的磁性氧化鐵納米顆粒探針主要分為粒徑大小在50 nm以上的超順磁氧化鐵納米粒子(super-small particle of iron oxide nanparticles,SPIONs)和粒徑在50 nm以下的超微順磁氧化鐵納米粒子(ultrasmall particle of iron oxide nanoparticles,USPIONs)[19]。SPIONs對比劑縮短T2時間遠遠超過其縮短T1時間的效應,主要用于T2WI增強掃描;USPIONs對比劑縮短T1時間效應比SPIONs顯著,故常用于T1WI增強掃描[20]。
新型的超順磁性納米探針,多在原SPIONs基礎上通過納米顆粒表面靶向性結合配體,如蛋白質[21]、多肽[22]、小分子物質(如葉酸[23]、糖類[24])等,與體內組織細胞受體特異性結合,在微觀水平上輔助腫瘤診斷。Ma等[25]將葉酸修飾到SPIONs表面制備成葉酸-SPIONs靶向探針,顯著提高腫瘤對葉酸-SPIONs的攝取,從而提高MRI對腫瘤的檢出率。在一項研究中[26],SPIONs涂覆葡聚糖(DSPIONs)并與鈴蟾肽(BBN)結合形成靶向對比劑,結果顯示,DSPION-BBN結合T47D乳腺癌細胞,能夠檢測出過度胃泌素釋放肽受體的靶向能力。
針對表皮生長因子[27]、αvβ3整合素、ERK和AKT信號通路等信號受體,制備攜帶有超氧化鐵的分子探針,在腫瘤早期診斷與鑒別方面有著巨大優(yōu)勢[28-29]。Melemenidis等[30]利用環(huán)狀精氨酸-甘氨酸-天冬氨酸(RGD)與USPION偶聯(lián),檢測表達于腫瘤活化血管內皮細胞表面的αvβ3整合素。RGD-USPIONs可直觀顯示腫瘤血管內皮αvβ3整合素活化型的表達情況。
磁共振分子探針技術可以在細胞未出現(xiàn)結構改變的超早期從分子層面探測到疾病的變化,從而使活體內微環(huán)境改變導致疾病發(fā)生發(fā)展的動態(tài)過程研究成為可能。
釓類對比劑在體內長期滯留有可能造成腎源性系統(tǒng)性纖維化(nephrogenic systemic fibrosis,NSF)[31],錳螯合物對比劑在高濃度使用時會引起大腦基底節(jié)、黑質等神經系統(tǒng)不可逆損害以及以鐵離子為基礎的磁共振分子探針表面修飾復雜、顆粒形狀不規(guī)則、制備參數難控等不足,影響著三類對比劑在臨床的廣泛使用。因此,還需進一步優(yōu)化對比劑的制備參數和生物特性,以減輕臨床毒副作用。
新型的超氧化鐵類納米探針更加注重特定的生物親和力及靶向性,減少對非靶點部位的影響。新型納米鐵探針也正快速向包括貴金屬納米顆粒、納米碳管、富勒烯等領域拓展。
目前各類納米探針表面化學性質、偶聯(lián)配體生物活性、顯像效果、生物安全性等諸多因素影響著臨床進一步的應用。動物研究成果轉向臨床還需要深入研究,而多模態(tài)成像聯(lián)合核素顯像、光學成像、等分子影像技術相互取長補短,對實現(xiàn)不同模式下的多重顯像具有重要的現(xiàn)實意義,而分子探針在這一領域有著巨大的發(fā)展?jié)摿Α?/p>
[1]Weissleder R,Tung CH,Mahmood U,et al.In vivo imaging of tumors with protease-activated near-infrared fluorescent probes[J].Nat Biotechnol,1999,17(4):375-378.
[2]Liu CH,Ren JQ,Yang J,et al.DNA-based MRI probes for specific detection of chronic exposure to amphetamine in living brains[J].JNeurosci,2009,29(34):10663-10670.
[3]Jun HY,Yin HH,Kim SH,et al.Visualization of tumor angiogenesis using MR imaging contrast agent Gd-DTPA-anti-VEGF receptor 2 antibody conjugate in amouse tumormodel[J].Korean JRadiol,2010,11(4):449-456.
[4]Tan M,Burden-Gulley SM,Li W,et al.MR molecular imaging of prostate cancer with a peptide-targeted contrast agent in amouse orthotopic prostate cancermodel[J]. Pharm Res,2012,29(4):953-960.
[5]Liu W,Dahnke H,Rahmer J,et al.Ultrashort T2*relaxometry for quantitation of highly concentrated superparamagnetic iron oxide(SPIO)nanoparticle labeled cells[J].Magn Reson Med,2009,61(4):761-766.
[6]Cao L,Li B,Yi P,et al.The interplay of T1-and T2-relaxation on T1-weighted MRI of hMSCs induced by Gd-DOTA-peptides[J].Biomaterials,2014,35(13):4168-4174.
[7]Chan JH,Tsui EY,Yuen MK,et al.Gadopentetate dimeglumine as an oral negative gastrointestinal contrast agent for MRCP[J].Abdom Imaging,2000,25(4):405-408.
[8]Kitajima K,Maeda T,Watanabe S,et al.Recent topics related to nephrogenic systemic fibrosis associated with gadolinium-based contrastagents[J].Int JUrol,2012,19(9):806-811.
[9]Silverstein AM.The collected papers of Paul Ehrlich:why was volume 4 never published?[J].Bull HistMed,2002,76(2):335-339.
[10]Ni Y,Chen F,Wang H,et al.Proper definitions of MRI contrast enhancement in liver tumors[J].JGastroenterol,2010,45(3):349-352.
[11]Betancourt T,Shah K,Brannon-Peppas L.Rhodamineloaded poly(lactic-co-glycolic acid)nanoparticles for investigation of in vitro interactions with breast cancer cells[J].JMater SciMater Med,2009,20(1):387-395.
[12]Caravan P.Protein-targeted gadolinium-based magnetic resonance imaging(MRI)contrastagents:design andmechanism ofaction[J].Acc Chem Res,2009,42(7):851-862.
[13]Zhang G,Gao J,Qian J,et al.Hydroxylated mesoporous nanosilica coated by polyethylenimine coupled with gadolinium and folic acid:a tumor-targeted T1 magnetic resonance contrast agent and drug delivery system[J]. ACSAppl Mater Interfaces,2015,7(26):14192-14200.
[14]Gupta A,de Campo L,Rehmanjan B,et al.Evaluation of Gd-DTPA-monophytanyl and phytantriol nanoassemblies aspotentialMRIcontrastagents[J].Langmuir,2015,31(4):1556-1563.
[15]Tan W,Barnett JV,Hehn GM,et al.Effect ofmanganese(Ⅱ)bis(glycinate)dichloride on Ca2+channel function in cultured chick atrialcells[J].Toxicology,1991,68(1):63-73.
[16]van Beers BE,Daire JL,Garteiser P.New imaging techniques for liver diseases[J].JHepatol,2015,62(3):690-700.
[17]Rockall AG,Planche K,Power N,et al.Detection of neuroendocrine liver metastases with MnDPDP-enhanced MRI[J].Neuroendocrinology,2009,89(3):288-295.
[18]Chen Y,Chen H,Zhang S,et al.Structure-property relationships in manganese oxide--mesoporous silica nanoparticles used for T1-weighted MRI and simultaneous anti-cancer drug delivery[J].Biomaterials,2012,33(7):2388-2398.
[19]Hoffman D,Sun M,Yang L,et al.Intrinsically radiolabelled[(59)Fe]-SPIONs for dual MRI/radionuclide detection[J].Am JNuclMed Mol Imaging,2014,4(6):548-560.
[20]Matuszewski L,Tombach B,Heindel W,et al.Molecular and parametric imagingwith ironoxides[J].Radiologe,2007,47(1):34-42.
[21]Sakulkhu U,Mahmoudi M,Maurizi L,et al.Significance of surface charge and shellmaterial of superparamagnetic iron oxide nanoparticle(SPION)based core/shell nanoparticles on the composition of the protein corona[J].Biomater Sci,2015,3(2):265-278.
[22]Muthiah M,Park IK,Cho CS.Surface modification of iron oxide nanoparticles by biocompatible polymers for tissue imagingand targeting[J].Biotechnol Adv,2013,31(8):1224-1236.
[23]Tang Q,An Y,Liu D,et al.Folate/NIR 797-conjugated albumin magnetic nanospheres:synthesis,characterisation,and in vitro and in vivo targeting evaluation[J].PLoS One,2014,9(9):e106483.
[24]Zhang W,Chen Y,Guo DJ,et al.The synthesis of a D-glucosamine contrast agent,Gd-DTPA-DG,and its application in cancermolecular imaging with MRI[J].Eur J Radiol,2011,79(3):369-374.
[25]Ma X,Gong A,Chen B,et al.Exploring a new SPION-based MRI contrast agent with excellent water-dispersibility,high specificity to cancer cells and strong MR imaging efficacy[J].Colloids Surf B Biointerfaces,2015,126:44-49.
[26]Jafari A,Salouti M,Shayesteh SF,et al.Synthesis and characterization of Bombesin-superparamagnetic iron oxide nanoparticles as a targeted contrast agent for imaging of breast cancer using MRI[J].Nanotechnology,2015,26(7):75101.
[27]Bharde AA,Palankar R,F(xiàn)ritsch C,et al.Magnetic nanoparticles as mediators of ligand-free activation of EGFR signaling[J].PLoSOne,2013,8(7):e68879.
[28]Huang X,Yi C,F(xiàn)an Y,et al.Magnetic Fe(3)O(4) nanoparticles grafted with single-chain antibody(scFv)and docetaxel loaded beta-cyclodextrin potential for ovarian cancer dual-targeting therapy[J].Mater SciEng C Mater Biol Appl,2014,42:325-332.
[29]Shahbazi-Gahrouei D,Abdolahi M.Detection of MUC1-expressing ovarian cancer by C595 monoclonal antibodyconjugated SPIONs using MR imaging[J].ScientificWorld Journal,2013,2013:609151.
[30]Melemenidis S,Jefferson A,Ruparelia N,et al.Molecular magnetic resonance imaging of angiogenesis in vivo using polyvalent cyclic RGD-iron oxide microparticle conjugates[J].Theranostics,2015,5(5):515-529.
[31]Haylor J,Schroeder J,Wagner B,et al.Skin gadolinium following use of MR contrast agents in a rat model of nephrogenic systemic fibrosis[J].Radiology,2012,263(1):107-116.
App lication progress of molecular probes in magnetic resonance im aging targeting detection for the tumor
ZHOU Daibing XU Guoxiong
Central Laboratory,Jinshan Hospital of Fudan University,Shanghai 201508,China
Molecular imaging utilizes themolecular probes designed to bind to the targets in the tumor environment along with the magnetic resonance imaging,enabling the visualization of three-dimensional anatomical pictures,pathophysiological features,and other important information of the tumor.Therefore,it can be used as a vital tool for the early and precise diagnosis and treatment of cancer.
Magnetic resonance imaging;Tumor microenvironment;Biological target;Molecular probe;Early detection
R445.5;R73
A
1673-7210(2016)06(c)-0046-04
周代兵(1989.4-),男,復旦大學上海醫(yī)學院2014級腫瘤學專業(yè)在讀碩士研究生;研究方向:腫瘤細胞分子生物學。
許國雄(1960.7-),男,研究員,博士生導師,復旦大學附屬金山醫(yī)院中心實驗室主任;研究方向:腫瘤細胞分子生物學。
(2016-02-03本文編輯:張瑜杰)