孫 青,梁曉春
中國醫(yī)學(xué)科學(xué)院 北京協(xié)和醫(yī)學(xué)院 北京協(xié)和醫(yī)院中醫(yī)科,北京 100730
?
·綜 述·
脂肪細(xì)胞因子與2型糖尿病β細(xì)胞衰竭關(guān)系的研究進(jìn)展
孫 青,梁曉春
中國醫(yī)學(xué)科學(xué)院 北京協(xié)和醫(yī)學(xué)院 北京協(xié)和醫(yī)院中醫(yī)科,北京 100730
β細(xì)胞衰竭和胰島素抵抗在2型糖尿病發(fā)病過程中發(fā)揮重要作用。循環(huán)中脂肪細(xì)胞因子的改變,可使肥胖、β細(xì)胞衰竭和胰島素抵抗之間建立緊密聯(lián)系。一部分脂肪細(xì)胞因子起有益作用,另一部分則是有害的,它們對于β細(xì)胞衰竭的貢獻(xiàn)主要依賴于脂肪細(xì)胞因子間的相互作用。本文總結(jié)了瘦素、脂聯(lián)素、抵抗素、內(nèi)臟脂肪素等脂肪細(xì)胞因子在β細(xì)胞功能、增殖、死亡和衰竭中的作用,以期幫助今后對脂肪細(xì)胞因子與β細(xì)胞聯(lián)合效應(yīng)的深入研究,為2型糖尿病的治療提供新的方向。
脂肪細(xì)胞因子;2型糖尿??;β細(xì)胞衰竭
ActaAcadMedSin,2016,38(5):601-606
胰島β細(xì)胞衰竭和胰島素抵抗被認(rèn)為是2型糖尿病發(fā)生發(fā)展的重要因素[1]。在疾病早期階段,胰島β細(xì)胞可通過增加其數(shù)量和功能來中和胰島素抵抗,使糖尿病診斷推遲數(shù)年[2],但最終β細(xì)胞經(jīng)由糖毒性、脂毒性、內(nèi)質(zhì)網(wǎng)應(yīng)激等多種途徑導(dǎo)致胰島素抵抗和高血糖[3]。因此,機體維持胰島β細(xì)胞數(shù)量和功能的能力是預(yù)防2型糖尿病發(fā)病的關(guān)鍵。
過去認(rèn)為胰島和脂肪組織的關(guān)系像單行道,首先高血糖刺激胰島分泌胰島素,進(jìn)而脂肪細(xì)胞通過與胰島素受體結(jié)合和信號轉(zhuǎn)導(dǎo)引起糖攝取增加,最終導(dǎo)致三酰甘油貯存增多;其次脂肪組織的胰島素抵抗可引起β細(xì)胞衰竭[4]。近年研究發(fā)現(xiàn),脂肪組織不僅是多余能量的貯存庫,而且是活躍的內(nèi)分泌器官[5]。脂肪組織釋放的分子被稱為脂肪因子或脂肪細(xì)胞因子,新發(fā)現(xiàn)的和現(xiàn)有的分子不斷被證實是由脂肪組織分泌的,因此脂肪細(xì)胞因子的數(shù)量逐年增加。由于肥胖與2型糖尿病之間存在潛在的病理生理學(xué)聯(lián)系[6],肥胖狀態(tài)下肥大的脂肪細(xì)胞可引起脂肪細(xì)胞因子分泌失調(diào),進(jìn)而參與胰島和脂肪組織間的相互作用,可能導(dǎo)致胰島β細(xì)胞衰竭和2型糖尿病。
1994年,繼肥胖基因被發(fā)現(xiàn)后,人們又發(fā)現(xiàn)了瘦素[7]。瘦素最初被認(rèn)為是脂肪來源的激素類分子,后來發(fā)現(xiàn)是脂肪細(xì)胞因子。早期臨床研究結(jié)果顯示,循環(huán)中的瘦素水平可能與胰島功能有關(guān)[8]。此后研究證實,瘦素能夠顯著抑制胰島β細(xì)胞中葡萄糖刺激的胰島素分泌(glucosestimulated insulin secretion,GSIS),降低前胰島素原的基因表達(dá)[9]。Brown等[10- 11]研究發(fā)現(xiàn),低濃度瘦素可抑制人胰島模型的GSIS,高濃度瘦素則起刺激作用,成U型曲線,這與瘦素受體的細(xì)胞因子受體樣性質(zhì)和信號級聯(lián)反應(yīng)相符;此外瘦素可降低人胰島中解耦聯(lián)蛋白2(uncoupling protein 2,UCP2)的表達(dá),上調(diào)β細(xì)胞系中B細(xì)胞淋巴瘤2(B-cell lymphoma 2,BCL2)/Bcl2相關(guān)X蛋白(Bcl2-associated X,BAX)的表達(dá)比例,從而減少細(xì)胞凋亡。然而近期研究顯示,瘦素能增加活性氧介導(dǎo)的β細(xì)胞增殖,抑制GSIS,但對細(xì)胞凋亡沒有影響[12]。此外,瘦素可活化蛋白和脂質(zhì)磷酸酶:同源性磷酸酶-張力蛋白(phosphatase and tensin homolog,PTEN)及其下游通路,從而激活A(yù)TP依賴鉀通道,使β細(xì)胞膜超極化,最終抑制GSIS,而在瘦素缺陷的2型糖尿病ob/ob小鼠中,PTEN基因的缺失可預(yù)防β細(xì)胞數(shù)量和功能缺陷[13- 14]。
脂聯(lián)素是早期發(fā)現(xiàn)的脂肪細(xì)胞因子之一[15- 16],能夠改善胰島素敏感性和血管功能,具有抗糖尿病[17]和抗動脈粥樣硬化的作用[18]。脂聯(lián)素受體(adiponectin receptor,AdipoRs)表達(dá)廣泛,AdipoR1和AdipoR2具有67%同源性,球狀的脂聯(lián)素(globular adiponectin,gADN)對AdipoR1有較高的親和力,脂聯(lián)素和AdipoRs間的相互作用可通過AMP依賴的蛋白激酶(AMP-activated protein kinase,AMPK)、過氧化物酶增殖體激活受體(peroxisome proliferator-activated receptor,PPAR)α和p38絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)等介導(dǎo)[19]。
脂聯(lián)素對β細(xì)胞的存活和功能均有影響。原代培養(yǎng)[20]和克隆的β細(xì)胞[21- 22]上均表達(dá)AdipoRs,其中AdipoR1通常較高水平表達(dá)。飽和脂肪酸棕櫚酸孵育NIT- 1大鼠β細(xì)胞系可下調(diào)AdipoR2表達(dá),增加細(xì)胞凋亡;PPARα興奮劑安妥明能延遲棕櫚酸介導(dǎo)的AdipoR表達(dá)損傷;脂聯(lián)素能夠增加AMPK磷酸化,安妥明可進(jìn)一步增加AMPK磷酸化,并部分逆轉(zhuǎn)棕櫚酸抑制GSIS的作用[23]。微流體芯片研究結(jié)果顯示,間歇性高血糖較持續(xù)性高血糖更能導(dǎo)致INS- 1大鼠β細(xì)胞系凋亡和壞死、抑制GSIS、降低胰島素水平和胰十二指腸同源異型盒基因(pancreatic and duodenal homeobox 1,PDX1)mRNA的表達(dá),這些損害均可部分被脂聯(lián)素逆轉(zhuǎn)[24]。gADN和脂聯(lián)素片段15- 36均能增加β細(xì)胞活性,上調(diào)細(xì)胞外信號調(diào)節(jié)激酶(extracellular signal-regulated kinase,ERK)1/2磷酸化水平,其中脂聯(lián)素片段15- 36的作用能被瘦素逆轉(zhuǎn);gADN可顯著升高脂蛋白脂肪酶表達(dá),輕微降低PDX1表達(dá),脂聯(lián)素片段15- 36無此作用;這兩種片段均不影響胰島素水平,不能抑制血清饑餓誘導(dǎo)的細(xì)胞凋亡[21]。Wijesekara等[22]研究結(jié)果顯示,脂聯(lián)素可增加MIN6細(xì)胞和小鼠胰島組織ERK磷酸化,降低活化的半胱天冬酶(cysteinyl aspartate specific proteinase,caspase)- 3水平,提示其可抑制血清饑餓誘導(dǎo)的細(xì)胞凋亡。有學(xué)者發(fā)現(xiàn),脂聯(lián)素是通過與AdipoR1/R2結(jié)合活化神經(jīng)酰胺酶,導(dǎo)致1- 磷酸鞘氨醇(sphingosine- 1-phosphate,S1P)的產(chǎn)生,AMPK是唯一的下游通路[15]。脂聯(lián)素和瘦素可促進(jìn)RIN和MIN6克隆β細(xì)胞系的增殖,但不影響細(xì)胞凋亡,這可能與抑制抗氧化酶如超氧化物歧化酶的表達(dá)、促進(jìn)活性氧(active oxygen species,ROS)產(chǎn)生有關(guān),與高濃度ROS相比,低濃度ROS在調(diào)節(jié)β細(xì)胞數(shù)量方面發(fā)揮生理作用;脂聯(lián)素對胰島素分泌則沒有影響[12]。
無論是抑制β細(xì)胞凋亡還是促進(jìn)增殖,高濃度脂聯(lián)素的整體效應(yīng)是維持β細(xì)胞數(shù)量,而低濃度脂聯(lián)素對肥胖和2型糖尿病有貢獻(xiàn)。脂聯(lián)素與瘦素或其他脂肪細(xì)胞因子的比值將是整體評價肥胖時β細(xì)胞功能的重要因素。
腫瘤壞死因子(tumour necrosis factor α,TNFα)是一種促炎細(xì)胞因子,其在1型糖尿病免疫系統(tǒng)介導(dǎo)的β細(xì)胞死亡中的作用已得到確認(rèn);TNFα同時是一種脂肪細(xì)胞因子,在肥胖和胰島素抵抗患者循環(huán)中高表達(dá)[25]。雖然有研究認(rèn)為肥胖人群和動物中的TNFα升高尚未達(dá)到影響β細(xì)胞存活或功能的程度[26],但大多數(shù)觀點則主張其在2型糖尿病發(fā)病中有更大貢獻(xiàn),與1型糖尿病類似,TNFα可通過激活核因子(nuclear factor,NF)-κB通路誘導(dǎo)β細(xì)胞凋亡[27- 28]。大量報道證實TNFα有直接抑制胰島素分泌的作用[29],同時TNFα可誘導(dǎo)β細(xì)胞中胰淀素的產(chǎn)生,導(dǎo)致胰淀素與胰島素的比值升高,胰淀素分泌相對增加[30]。因為胰淀素累積形成的淀粉樣蛋白是2型糖尿病中β細(xì)胞損害的潛在因素[31],循環(huán)中胰淀素/胰島素比值升高導(dǎo)致胰島素抵抗,這預(yù)示著TNFα連接肥胖和2型糖尿病的另一可能機制,有待進(jìn)一步研究。
抵抗素是在誘導(dǎo)脂肪細(xì)胞基因差別顯示的過程中被發(fā)現(xiàn)的,能夠顯著誘導(dǎo)嚙齒類動物的胰島素抵抗,可被胰島素敏感性PPARγ激動劑噻唑烷二酮類藥物所抑制,是“糖尿病基因”的強有力候選者[32]。然而,在嚙齒動物中觀察到的結(jié)果目前尚未在人群中發(fā)現(xiàn)[33]。有研究發(fā)現(xiàn),抵抗素能夠下調(diào)β細(xì)胞系中胰島素受體的表達(dá),從而降低細(xì)胞活力;此外抵抗素可誘導(dǎo)胰島中的胰島素抵抗,抑制GSIS減少[11,34]。這些研究所用的胰島和β細(xì)胞均是小鼠來源的,尚未在人類胰島中得到復(fù)制,目前僅證實抵抗素在人類胰島中有表達(dá),且在2型糖尿病患者中表達(dá)上調(diào)[35- 36]。因此,雖然抵抗素是一種重要的細(xì)胞內(nèi)蛋白,但其作為脂肪細(xì)胞因子調(diào)節(jié)人類胰島β細(xì)胞數(shù)量和功能的具體機制仍需進(jìn)一步研究。
內(nèi)臟脂肪素(visfatin),即前B細(xì)胞集落增強因子(pre-B cell colony-enhancing factor,PBEF),是新近發(fā)現(xiàn)的一種脂肪細(xì)胞因子,實際上是一種由脂肪組織經(jīng)由非經(jīng)典途徑分泌的磷酸核糖轉(zhuǎn)移酶——尼克酰胺磷酸核糖轉(zhuǎn)移酶(nicotinamide phosphoribosyltransferase,NAMPT)。最初研究發(fā)現(xiàn),visfatin具有胰島素模擬作用[37],隨后證實其可通過脂肪細(xì)胞因子樣通路促進(jìn)胰島素分泌[38- 39]。Visfatin不僅可直接促進(jìn)β TC6細(xì)胞的胰島素分泌,而且能夠活化β細(xì)胞的胰島素受體,上調(diào)其磷酸化表達(dá)[39]。此外,visfatin可增加MIN6 β細(xì)胞系的增殖,并通過ERK1/2和磷脂酰肌醇3-羥激酶(phosphatidyl inositol 3-kinase,PI3K)/蛋白激酶B(protein kinase B,PKB)途徑抑制棕櫚酸誘導(dǎo)的β細(xì)胞凋亡,提示visfatin對維持β細(xì)胞數(shù)量可能具有積極作用,具體作用機制尚未完全闡明,但可能涉及了尼克酰胺單核苷酸的產(chǎn)生,從而調(diào)節(jié)PDX1的表達(dá),促進(jìn)胰島素轉(zhuǎn)錄[40- 41]。然而,visfatin對β細(xì)胞的整體效應(yīng)是有益的還是有害尚需進(jìn)一步確認(rèn),因為有證據(jù)顯示較低濃度的生理水平visfatin對β細(xì)胞有益,而較高濃度的病理水平則可能有害[39]。
腸促胰島素胰高血糖素樣肽(glucagon-like peptide- 1,GLP- 1)不僅能刺激2/3的餐后胰島素分泌,是β細(xì)胞功能的重要調(diào)控者;而且可促進(jìn)胰島β細(xì)胞增殖,正向調(diào)控β細(xì)胞數(shù)量[42- 43]。二肽激肽酶Ⅳ(dipeptidyl peptidase Ⅳ,DPP-Ⅳ)是一種能降解GLP- 1使其半衰期減至數(shù)分鐘的肽酶,最近發(fā)現(xiàn)DPP-Ⅳ可由成熟的人原代脂肪細(xì)胞分泌[44],是一種新發(fā)現(xiàn)的脂肪細(xì)胞因子。臨床研究證實,肥胖和胰島素抵抗患者的內(nèi)臟脂肪組織中可釋放較多DPP-Ⅳ,推測其可作為內(nèi)臟肥胖、胰島素抵抗和代謝綜合征的新靶標(biāo)[45]。
Apelin也是一種新近發(fā)現(xiàn)的脂肪細(xì)胞因子,它在脂肪組織中廣泛表達(dá),對攝食行為和葡萄糖利用均有影響。Apelin受體—APJ受體在胰島中表達(dá),Apelin及其受體的活化可抑制高血糖刺激的β細(xì)胞胰島素分泌,該作用是通過激活PI3K-磷酸二脂酶3B途徑來實現(xiàn)的[46- 47];敲除高脂飲食小鼠胰島中APJ受體基因可使胰島大小、密度和細(xì)胞數(shù)量減少,導(dǎo)致胰島素抵抗[48];而利用Apelin- 13治療10周可顯著增加糖尿病小鼠的胰島細(xì)胞數(shù)量和胰島素含量[49]。近年研究顯示,Apelin自身也在胰島中表達(dá),特別是β和α細(xì)胞,推測其可能具有自分泌/旁分泌作用[50]。
多種脂肪細(xì)胞因子對β細(xì)胞的存活和功能均有影響,然而大部分研究局限于單獨孤立的脂肪細(xì)胞因子,僅少數(shù)研究例外,如Brown等[21]報道了脂聯(lián)素片段增加β細(xì)胞活性、激活ERK1/2通路的作用可被瘦素逆轉(zhuǎn)。在肥胖個體中,β細(xì)胞暴露于多種不同濃度的脂肪細(xì)胞因子中,因此其作用的信號通路是相互交叉的,涉及了PI3K、AMPK、MAPK/ERK1/2和胰島素受體等。代謝性疾病患者循環(huán)中脂肪細(xì)胞因子的濃度十分復(fù)雜、眾說紛紜,有待進(jìn)一步闡明,今后的研究應(yīng)著眼于不同組合脂肪細(xì)胞因子對β細(xì)胞作用的比較,這更加符合生理(較瘦的個體)和病理(肥胖、糖尿病和/或血管疾病)狀態(tài)。
綜上,越來越多的激素和其他活性循環(huán)因子被證實由脂肪組織分泌,具有維持或破壞胰島β細(xì)胞數(shù)量和功能的作用?,F(xiàn)有證據(jù)證實,脂肪細(xì)胞因子可能是β細(xì)胞功能衰竭的重要因素,這些因子是否是糖尿病發(fā)生的誘因,是否通過影響糖尿病前期和2型糖尿病時為了代償胰島素抵抗導(dǎo)致β細(xì)胞功能減退的速度從而加速糖尿病進(jìn)展等問題尚需進(jìn)一步研究,有利于尋找2型糖尿病治療的新靶點。
[1]Leahy JL,Hirsch IB,Peterson KA,et al. Targeting beta-cell function early in the course of therapy for type 2 diabetes mellitus[J]. J Clin Endocrinol Metab,2010,95(9):4206- 4216.
[2]Chang-Chen KJ,Mullur R,Bernal-Mizrachi E,et al. Beta-cell failure as a complication of diabetes[J]. Rev Endocr Metab Disord,2008,9(4):329- 343.
[3]Jonas JC,Bensellam M,Duprez J,et al. Glucose regulation of islet stress responses and beta-cell failure in type 2 diabetes[J]. Diabetes Obes Metab,2009,11(Suppl 4):65- 81.
[4]Weir GC,Laybutt DR,Kaneto H,et al. Beta-cell adaptation and decompensation during the progression of diabetes[J]. Diabetes,2001,50(Suppl 1):S154-S159.
[5]Deng Y,Scherer PE. Adipokines as novel biomarkers and regulators of the metabolic syndrome[J]. Ann N Y Acad Sci,2010,1212:E1-E19.
[6]Wellen KE,Hotamisligil GS. Inflammation,stress,and diabetes[J]. J Clin Invest,2005,115(5):1111- 1119.
[7]Zhang Y,Proenca R,Maffei M,et al. Positional cloning of the mouse obese gene and its human homologue[J].Nature,1994,372(6505):425- 432.
[8]Ahrénn B,Larsson H. Leptin-a regulator of islet function: its plasma levels correlate with glucagon and insulin secretion in healthy women[J]. Metabolism,1997,46(12):1477- 1481.
[9]Laubner K,Kieffer TJ,Lam NT,et al. Inhibition of preproinsulin gene expression by leptin induction of suppressor of cytokine signaling 3 in pancreatic beta-cells[J]. Diabetes,2005,54(12):3410- 3417.
[10]Brown JE,Thomas S,Digby JE,et al. Glucose induces and leptin decreases expression of uncoupling protein- 2 mRNA in human islets[J]. FEBS Lett,2002,513(2- 3):189- 192.
[11]Brown JE,Onyango DJ,Dunmore SJ. Resistin down-regulates insulin receptor expression,and modulates cell viability in rodent pancreatic beta-cells[J]. FEBS Lett,2007,581(17):3273- 3276.
[12]Chetboun M,Abitbol G,Rozenberg K,et al. Maintenance of redox state and pancreatic beta-cell function: role of leptin and adiponectin[J]. J Cell Biochem,2012,113(6):1966- 1976.
[13]Ning K,Miller LC,Laidlaw HA,et al. A novel leptin signalling pathway via PTEN inhibition in hypothalamic cell lines and pancreatic beta-cells[J]. EMBO J,2006,25(11):2377- 2387.
[14]Wang L,Liu Y,Yan Lu S,et al. Deletion of Pten in pancreatic β-cells protects against deficient β-cell mass and function in mouse models of type 2 diabetes[J].Diabetes,2010,59(12):3117- 3126.
[15]Scherer PE,Williams S,F(xiàn)ogliano M,et al. A novel serum protein similar to C1q,produced exclusively in adipocytes[J]. J Biol Chem,1995,270(45): 26746- 26749.
[16]Arita Y,Kihara S,Ouchi N,et al. Paradoxical decrease of an adipose-specific protein,adiponectin,in obesity[J]. Biochem Biophys Res Commun,1999,257(1):79- 83.
[17]Pajvani UB,Du X,Combs TP,et al. Structure-function studies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications for metabolic regulation and bioactivity[J].J Biol Chem,2003,278(11):9073- 9085.
[18]Ouchi N,Kihara S,Arita Y,et al. Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin[J]. Circulation,1999,100(25):2473- 2476.
[19]Kadowaki T,Yamauchi T. Adiponectin and adiponectin receptors[J]. Endocr Rev,2005,26(3):439- 451.
[20]Kharroubi I,Rasschaert J,Eizirik DL,et al. Expression of adiponectin receptors in pancreatic beta cells[J]. Biochem Biophys Res Commun,2003,312(4): 1118- 1122.
[21]Brown JE,Conner AC,Digby JE,et al. Regulation of beta-cell viability and gene expression by distinct agonist fragments of adiponectin[J]. Peptides,2010,31(5):944- 949.
[22]Wijesekara N,Krishnamurthy M,Bhattacharjee A,et al. Adiponectin-induced ERK and Akt phosphorylation protects against pancreatic beta cell apoptosis and increases insulin gene expression and secretion[J]. J Biol Chem,2010,285(44): 33623- 33631.
[23]Jung TW,Lee MW,Lee YJ,et al. Regulation of adiponectin receptor 2 expression via PPAR-alpha in NIT- 1 cells[J]. Endocr J,2009,56(3):377- 382.
[24]Lin P,Chen L,Li D,et al. Adiponectin reduces glucotoxicity-induced apoptosis of INS- 1 rat insulin-secreting cells on a microfluidic chip[J]. Tohoku J Exp Med,2009,217(1):59- 65.
[25]Hotamisligil GS. Mechanisms of TNF-alpha-induced insulin resistance[J]. Exp Clin Endocrinol Diabetes,1999,107(2):119- 125.
[26]Zhao YF,F(xiàn)eng DD,Chen C. Contribution of adipocyte-derived factors to beta-cell dysfunction in diabetes[J]. Int J Biochem Cell Biol,2006,38(5- 6): 804- 819.
[27]Ortis F,Pirot P,Naamane N,et al. Induction of nuclear factor-kappaBand its downstream genes by TNF-alpha and IL- 1beta has a pro-apoptotic role in pancreatic beta cells[J]. Diabetologia,2008,51(7):1213- 1225.
[28]Ortis F,Miani M,Colli ML,et al. Differential usage of NF-κB activating signals by IL- 1β and TNF-α in pancreatic beta cells[J]. FEBS Lett,2012,586(7): 984- 989.
[29]Kim HE,Choi SE,Lee SJ,et al. Tumour necrosis factor-alpha-induced glucose-stimulated insulin secretion inhibition in INS- 1 cells is ascribed to a reduction of the glucose-stimulated Ca2+influx[J]. J Endocrinol,2008,198(3): 549- 560.
[30]Cai K,Qi D,Wang O,et al. TNF-alpha acutely upregulates amylin expression in murine pancreatic beta cells[J]. Diabetologia,2011,54(3):617- 626.
[31]Westermark P,Andersson A,Westermark GT. Islet amyloid polypeptide,islet amyloid,and diabetes mellitus[J]. Physiol Rev,2011,91(3):795- 826.
[32]Steppan CM,Bailey ST,Bhat S,et al. The hormone resistin links obesity to diabetes[J]. Nature,2001,409(6818): 307- 312.
[33]Nagaev I,Smith U. Insulin resistance and type 2 diabetes are not related to resistin expression in human fat cells or skeletal muscle[J]. Biochem Biophys Res Commun,2001,285(2):561- 564.
[34]Nakata M,Okada T,Ozawa K,et al. Resistin induces insulin resistance in pancreatic islets to impair glucose-induced insulin release[J]. Biochem Biophys Res Commun,2007,353(4):1046- 1051.
[35]Minn AH,Patterson NB,Pack S,et al. Resistin is expressed in pancreatic islets[J]. Biochem Biophys Res Commun,2003,310(2):641- 645.
[36]Al-Salam S,Rashed H,Adeghate E. Diabetes mellitus is associated with an increased expression of resistin in human pancreatic islet cells[J]. Islets,2011,3(5):246- 249.
[37]Fukuhara A,Matsuda M,Nishizawa M,et al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin[J]. Science,2005,307(5708): 426- 430.
[38]Revollo JR,K?rner A,Mills KF,et al. Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme[J]. Cell Metab,2007,6(5):363- 375.
[39]Brown JE,Onyango DJ,Ramanjaneya M,et al. Visfatin regulates insulin secretion,insulin receptor signalling and mRNA expression of diabetes-related genes in mouse pancreatic beta-cells[J]. J Mol Endocrinol,2010,44(3):171- 178.
[40]Cheng Q,Dong W,Qian L,et al. Visfatin inhibits apoptosis of pancreatic β-cell line,MIN6,via the mitogen-activated protein kinase/phosphoinositide 3-kinase pathway[J]. J Mol Endocrinol,2011,47(1):13- 21.
[41]盛飛鳳,任賢,戴幸平,等.煙酰胺單核苷酸對RIN-m5f細(xì)胞中胰島素分泌及PDX- 1和FoxO1基因表達(dá)的影響[J].中南大學(xué)學(xué)報:醫(yī)學(xué)版,2011,36(10):958- 963.
[42]Kazafeos K. Incretin effect: GLP- 1,GIP,DPP4[J]. Diabetes Res Clin Pract,2011,93 (Suppl 1):S32-S36.
[43]Buteau J. GLP- 1 receptor signaling: effects on pancreatic beta-cell proliferation and survival[J]. Diabetes Metab,2008,34 (Suppl 2):S73-S77.
[44]Lamers D,F(xiàn)amulla S,Wronkowitz N,et al. Dipeptidyl peptidase 4 is a novel adipokine potentially linking obesity to the metabolic syndrome[J]. Diabetes,2011,60(7):1917- 1925.
[45]Sell H,Blüher M,Kl?ting N,et al. Adipose dipeptidyl peptidase- 4 and obesity: correlation with insulin resistance and depot-specific release from adipose tissueinvivoandinvitro[J]. Diabetes Care,2013,36(12):4083- 4090.
[46]S?rhede Winzell M,Magnusson C,Ahrén B. The apj receptor is expressed in pancreatic islets and its ligand,apelin,inhibits insulin secretion in mice[J]. Regul Pept,2005,131(1- 3):12- 17.
[47]Guo L,Li Q,Wang W,et al. Apelin inhibits insulin secretion in pancreatic beta-cells by activation of PI3-kinase-phosphodiesterase 3B[J]. Endocr Res,2009,34(4):142- 154.
[48]Han S,Englander EW,Gomez GA,et al. Pancreatic islet APJ deletion reduces islet density and glucose tolerance in mice[J]. Endocrinology,2015,156(7): 2451- 2460.
[49]Chen H,Zheng C,Zhang X,et al. Apelin alleviates diabetes-associated endoplasmic reticulum stress in the pancreas of Akita mice[J].Peptides,2011,32(8):1634- 1639.
[50]Ringstr?m C,Nitert MD,Bennet H,et al. Apelin is a novel islet peptide[J]. Regul Pept,2010,162(1- 3):44- 51.
Advances in the Relationship between Adipokines and β-cell Failure in Type 2 Diabetes Mellitus
SUN Qing,LIANG Xiao-chun
Department of Traditional Chinese Medicine,PUMC Hospital,CAMS and PUMC,Beijing 100730,China
LIANG Xiao-chun Tel: 010- 69155331,E-mail: xcliang@vip.sina.com
β-cell failure coupled with insulin resistance plays a key role in the development of type 2 diabetes mellitus (T2DM). Changed adipokines in circulating level form a remarkable link between obesity and both β-cell failure and insulin resistance. Some adipokines have beneficial effects,whereas others have detrimental properties. The overall contribution of adipokines to β-cell failure mainly depends on the interactions among adipokines. This article reviews the role of individual adipokines such as leptin,adiponectin,and resistin in the function,proliferation,death,and failure of β-cells. Future studies focusing on the combined effects of adipokines on β-cells failure may provide new insights in the treatment of T2DM.
adipokines; type 2 diabetes mellitus; β-cell failure
北京協(xié)和醫(yī)院中青年科研基金(pumch- 2013- 140)Supported by the Youth Science Foundation of Peking Union Medical College Hospital(pumch- 2013- 140)
梁曉春 電話:010- 69155331,電子郵件:xcliang@vip.sina.com
R587.1
A
1000- 503X(2016)05- 0601- 06
10.3881/j.issn.1000- 503X.2016.05.020
2015- 09- 06)