孫 浩,李素梅,張寶收
(1.中國石油大學(xué) 油氣資源與探測國家重點(diǎn)實(shí)驗(yàn)室,北京 102249; 2.中國石油大學(xué) 地球科學(xué)學(xué)院,北京 102249;
3.中國石油 塔里木油田分公司 勘探開發(fā)研究院,新疆 庫爾勒 841000)
?
塔里木盆地北部哈拉哈塘凹陷海相油氣特征與成因
孫浩1,2,李素梅1, 2,張寶收3
(1.中國石油大學(xué) 油氣資源與探測國家重點(diǎn)實(shí)驗(yàn)室,北京102249; 2.中國石油大學(xué) 地球科學(xué)學(xué)院,北京102249;
3.中國石油 塔里木油田分公司 勘探開發(fā)研究院,新疆 庫爾勒841000)
摘要:哈拉哈塘凹陷作為塔北隆起西部的重要油氣單元,其奧陶系碳酸鹽巖儲層中油氣資源豐富,但呈現(xiàn)多相態(tài)分布,油氣性質(zhì)變化成因尚不明確。通過詳細(xì)的地球化學(xué)分析揭示了該區(qū)油氣特征與成因。油—油、油—巖對比表明,原油與中—上奧陶統(tǒng)烴源巖特征更為相近,指示具有成因聯(lián)系;正構(gòu)烷烴單體烴碳同位素對比顯示,可能有寒武系烴源巖的成烴貢獻(xiàn)。哈拉哈塘原油具有相對較高的硫芴含量,C29和C35藿烷相對含量也較高,暗示有碳酸鹽巖烴源巖的成烴貢獻(xiàn)。傅里葉變換離子回旋共振質(zhì)譜(FT-ICR MS)分析表明,哈拉哈塘地區(qū)原油中低熱穩(wěn)定性硫化物含量不高,表明當(dāng)前沒有明顯的TSR改造跡象。綜合分析認(rèn)為,源巖成熟度是控制深部高氣油比原油形成的重要因素,而生物降解等次生作用是控制相對淺層重質(zhì)油和H2S形成的重要因素。
關(guān)鍵詞:生物標(biāo)志物;單體烴碳同位素;高分辨率質(zhì)譜;油源對比;油氣成因;哈拉哈塘凹陷;塔里木盆地
哈拉哈塘凹陷于2006年在哈6井石炭系獲得低產(chǎn),在奧陶系和志留系有良好的油氣顯示[1];自2008年以來,以奧陶系碳酸鹽巖儲層作為勘探目標(biāo),在一間房組獲得高產(chǎn)油氣流[2]。據(jù)塔里木油田2013年統(tǒng)計(jì),哈拉哈塘、新墾、熱瓦普、金躍區(qū)塊合計(jì)探明儲量超過億噸,是繼輪南、塔河、哈得遜后的超億噸級大型油田。
哈拉哈塘地區(qū)油氣的形成及其演化機(jī)理對于解析塔北乃至整個盆地海相油氣藏的形成機(jī)理具有重要意義。以往研究認(rèn)為,哈拉哈塘油氣來自中—上奧陶統(tǒng)烴源巖[3-4];塔北斜坡奧陶系風(fēng)化殼是油氣長距離側(cè)向運(yùn)移的通道[5];油氣主要在晚海西期充注成藏[6]。然而,不少學(xué)者對此持有異議,下奧陶統(tǒng)—寒武系烴源巖同樣是塔北的重要油氣源[7-9],哈拉哈塘—英買力地區(qū)具有多期成藏特征[10],通過儲層瀝青等分析,寒武系油氣同樣充注到哈拉哈塘凹陷[4, 10],塔北多相態(tài)油氣與多期排烴和復(fù)雜的構(gòu)造運(yùn)動有關(guān)[11]。因此哈拉哈塘地區(qū)油氣成因與成藏機(jī)理仍有待深入研究。本文以哈拉哈塘凹陷目前發(fā)現(xiàn)的連續(xù)相態(tài)油氣[12](重質(zhì)油、正常油、輕質(zhì)油、揮發(fā)油)為研究對象,揭示多相態(tài)油氣特征及其成因機(jī)制,為該區(qū)油氣成藏機(jī)理研究提供依據(jù)。
1地質(zhì)背景
哈拉哈塘凹陷位于塔北隆起,東鄰輪南低凸起,西鄰英買力低凸起,南鄰北部坳陷,北鄰輪臺凸起(圖1)。研究區(qū)古生界—新生界發(fā)育齊全,其中奧陶系可分為上統(tǒng)桑塔木組、良里塔格組、吐木休克組,中統(tǒng)一間房組、中—下統(tǒng)鷹山組,上奧陶統(tǒng)地層由南向北剝蝕尖滅,在北部志留系柯坪塔格組直接覆蓋于奧陶系一間房組之上。哈拉哈塘地區(qū)主要受三期構(gòu)造運(yùn)動影響:晚加里東期,輪南、哈拉哈塘及英買力地區(qū)為一整體大型南傾斜坡;在早海西期受北西—南東向擠壓構(gòu)造運(yùn)動的影響,英買力、輪南2個北東向隆起發(fā)育,哈拉哈塘轉(zhuǎn)化為向斜構(gòu)造,形成凹陷的初步原始形態(tài);燕山—喜馬拉雅期受庫車坳陷整體沉降的影響,塔北西部南傾加劇,形成了現(xiàn)今的哈拉哈塘凹陷[1, 13-14]。哈拉哈塘地區(qū)自北向南可進(jìn)一步劃分為北部潛山區(qū)、中部斜坡過渡區(qū)和南部深埋區(qū)[6]。中—下奧陶統(tǒng)一間房組和鷹山組碳酸鹽巖受多期巖溶改造作用,形成了大規(guī)模的巖溶縫洞型儲層,為主要目的層;上奧陶統(tǒng)吐木休克組泥灰?guī)r分布廣泛,厚度穩(wěn)定,與鷹山組和一間房組形成了優(yōu)質(zhì)的儲蓋組合[15]。
2樣品與實(shí)驗(yàn)
重點(diǎn)采集并分析了哈拉哈塘地區(qū)奧陶系、石炭系原油樣品21個,鄰近的東河塘油田石炭系和侏羅系6個原油樣品(圖1),并選取了英買力、塔中及塔東地區(qū)7個原油和部分烴源巖樣品用于對比研究。
原油經(jīng)族組分分離后,對飽和烴、芳烴進(jìn)行色譜—質(zhì)譜分析;對其中9個原油進(jìn)行了正構(gòu)烷烴單體烴碳同位素分析、7個原油進(jìn)行了甲基衍化后的正離子模式的高分辨率質(zhì)譜分析。色譜—質(zhì)譜分析采用HP6890氣相色譜儀與HP5973質(zhì)譜儀,分析測試條件同文獻(xiàn)[16];單體烴碳同位素分析采用HP6890氣相色譜儀與Micromass IsoPrime穩(wěn)定同位素質(zhì)譜儀,分析測試條件同文獻(xiàn)[16]。高分辨率質(zhì)譜分析采用9.4 T磁場強(qiáng)度的傅立葉變換離子回旋共振質(zhì)譜儀(FT-ICR MS),分析測試條件同文獻(xiàn)[17]。
3油氣物理—化學(xué)特征
3.1油氣物性與組分特征
哈拉哈塘北部潛山區(qū)多為高密度的重質(zhì)油,斜坡區(qū)分布正常油—揮發(fā)油,南部深埋區(qū)則主要為輕質(zhì)油。原油物性具有構(gòu)造低位好、高位差的特征。斜坡區(qū)和深埋區(qū)(熱瓦普和金躍井區(qū))原油密度低至0.79 g/cm3、黏度低至1.14 mPa·s;潛山區(qū)(哈拉哈塘井區(qū))原油密度達(dá)到0.90 g/cm3以上,黏度達(dá)20 mPa·s以上(圖1,表1)。原油中含硫量、“非烴+瀝青質(zhì)”與密度、黏度變化相一致,具有隨埋深增加而降低的趨勢;除個別重質(zhì)油外,原油總體以飽和烴(33.3%~86.7%)、芳烴(9.5%~25.4%)為主(表1),反映油氣保存條件及成熟度的差異。根據(jù)開發(fā)資料,哈拉哈塘井區(qū)重質(zhì)原油還伴生H2S,如H7井中H2S含量達(dá)到5.9%。RP3、JY6和JY7井區(qū)具有高氣油比特征(約500 m3/m3),但繼續(xù)向南埋深更深處氣油比降低到200 m3/m3左右。
圖1 塔里木盆地哈拉哈塘凹陷區(qū)域構(gòu)造及樣品分布
構(gòu)造單元井號深度/m層位原油性質(zhì)密度/(g·cm-3)黏度/(mPa·s)含蠟量/%含硫量/%飽和烴/%芳烴/%非烴/%瀝青質(zhì)/%潛山區(qū)斜坡區(qū)深埋區(qū)H6C6646.46~6830O高H2S重質(zhì)油0.9011.805.60.6178.512.84.74.0H76622.41~6645.24O高H2S重質(zhì)油0.91132.006.81.135.44.23.487.0H65953~5954O高H2S正常油0.868.956.10.2776.011.36.46.4H9-76653.63~6719.08O高H2S正常油0.865.276.567.525.44.72.5XK16655.6~6666O重質(zhì)油—正常油3.31.7133.318.211.836.7XK66831.29~6920O正常油0.867.136.00.9665.719.17.37.9XK76757~7011.6O正常油0.877.927.767.522.86.82.9XK56910~6920O正常油—輕質(zhì)油0.833.3811.678.016.34.01.7XK9C6880~6980O輕質(zhì)油0.811.676.90.3783.512.13.21.3PR46918.42~7026.12O3l正常油0.8721.887.868.218.47.65.8RP1C6632.5~6988.64O3l低氣油比輕質(zhì)油0.801.848.20.2875.116.65.13.2RP116806~6955.26O高氣油比輕質(zhì)油0.832.428.30.2777.514.92.84.8RP36977.2~7040O高氣油比揮發(fā)油0.791.146.50.1386.79.52.41.4JY27035~7103O低氣油比輕質(zhì)油0.811.59JY66906.62~6942O2y高氣油比揮發(fā)油0.822.439.20.26JY77036~7159.50O1-2y高氣油比揮發(fā)油0.801.799.60.11
3.2原油鏈烷烴分布特征
飽和烴總離子流圖顯示(圖2),原油富集低碳數(shù)的正構(gòu)烷烴,主峰碳一般為nC11-nC16,輕重比(∑nC21-/∑nC22+)均大于1;CPI值為0.88~1.19(表2),不具有奇偶優(yōu)勢。以上特征反映原油較高的成熟度。Pr/Ph值為0.78~1.17(均值0.97),反映母源巖還原性沉積環(huán)境。如圖2所示潛山區(qū)原油顯示有未分辨復(fù)雜混合物(UCM)鼓包,以低豐度正構(gòu)烷烴(表2)、較差的原油物性為特征(表1),反映原油曾經(jīng)遭受次生改造作用。南部深埋區(qū)如熱瓦普、金躍井區(qū)則沒有“UCM”鼓包特征,且正構(gòu)烷烴濃度達(dá)41.6~99.4 mg/g(油)(表2),具有高氣油比、低密度特征。
3.3原油甾萜類生物標(biāo)志物組成與分布特征
m/z217質(zhì)量色譜圖顯示哈拉哈塘原油中低分子量甾烷豐度相對較高(圖3),孕甾烷/規(guī)則甾烷值范圍為0.12~0.28(表2)。ααα20R-C27、C28、C29甾烷呈“V”字型分布(圖3),原油中重排甾烷豐度相對較高,C27重排甾烷/C27規(guī)則甾烷值為0.29~0.44(表2)。甾烷還具有較高的異構(gòu)化程度,C29甾烷ααα20S/(S+R)和C29甾烷ββ/(ββ+αα)值分別為0.51~0.57和0.55~0.69,均隨埋深增加而增加,在深部達(dá)到平衡終點(diǎn)值[16](圖4c,d)。m/z191質(zhì)量色譜圖顯示,原油富集輕質(zhì)組分三環(huán)萜烷(圖3),三環(huán)萜烷/五環(huán)萜烷值范圍為0.14~1.26(圖4a),隨埋深增加而增大,反映原油較高的成熟度特征。原油中三環(huán)萜烷以C23為主峰,五環(huán)萜烷以C30藿烷為主峰。原油Ts/(Ts+Tm)值分布范圍為0.29~0.66,總體隨深度增加而增大,明顯受成熟度控制(圖4e)。甾烷/藿烷值集中在0.5~1.0,反映了母質(zhì)來源較一致,同時在深部受成熟度控制(圖4b)。
圖2 塔北哈拉哈塘凹陷原油飽和烴總離子流
構(gòu)造單元井號深度/m層位正構(gòu)烷烴/(mg·g-1)Pr/Ph∑nC21-/∑nC22+CPIC28/%C21-22/C27-29dia/regH29/H30H30*/H30G/H30H35/H34潛山區(qū)斜坡區(qū)深埋區(qū)H65953~5954C57.50.973.941.0220.00.230.310.840.120.191.03H6C6646.46~6830O12.20.912.530.9419.90.220.301.090.330.311.06H76622.41~6645.24O4.30.943.610.8817.30.280.320.910.170.220.98H9-766415~6730O21.10.973.661.1920.30.190.350.900.190.111.10H9-76653.63~6719.08O26.20.983.511.1220.70.180.350.920.190.081.27XK16655.6~6666O23.90.992.791.0123.70.240.290.860.200.140.91XK56910~6920O68.31.003.691.0820.50.170.340.850.100.101.14XK66831.29~6920O52.41.083.111.0819.60.160.320.860.110.151.00XK76757~7011.6O28.80.891.731.0519.20.140.340.900.070.111.12XK9C6880~6980O67.71.042.791.0318.90.180.340.850.130.121.02RP1C6632.5~6988.64O3l41.61.002.711.0517.20.270.410.820.140.091.30RP116806~6955.26O99.41.173.900.9819.80.170.360.860.100.110.97RP136853~6980O59.60.993.161.1019.60.150.360.810.080.120.90PR46918.42~7026.12O3l69.10.801.781.0419.70.120.430.750.110.161.45RP36977.2~7040O51.61.032.211.0017.50.220.440.730.120.081.05JY27035~7103O54.20.952.401.0020.10.180.400.780.150.101.34JY5H7149.0O52.81.161.201.0220.40.150.350.840.180.121.14JY66906.62~6942O2y49.31.151.321.0219.40.160.370.820.140.101.00JY77036~7159.50O1-2y40.11.141.221.0114.90.280.541.100.570.64YUEM17220.54~7289O2y65.30.972.861.0213.30.360.551.000.47YUEM27153~7203O2y64.20.952.791.0120.70.160.320.900.210.131.37YUEM37141~7231O63.10.952.821.0315.70.290.500.840.320.250.32
注:C28為ααα20R-C28/(C27+C28+C29)甾烷;C21-22/C27-29為C21-22甾烷/C27-29甾烷;dia/reg為C27重排甾烷/C27規(guī)則藿烷;H29/H30為
C29藿烷/C30藿烷;H30*/H30為C30重排藿烷/C30藿烷;G/H30為伽馬蠟烷/C30藿烷;H35/H34為C35藿烷/C34藿烷。
圖3 塔北哈拉哈塘凹陷原油飽和烴質(zhì)量色譜
在構(gòu)造高部位(哈拉哈塘、新墾部分井區(qū)及鄉(xiāng)3井)原油中C30重排藿烷/C30藿烷和伽馬蠟烷/C30藿烷值均較其他樣品高(表2)。同時還檢測到完整的25-降藿烷系列化合物(圖3),這與原油物性特征、飽和烴總離子流圖中的UCM鼓包特征較為吻合,反映構(gòu)造高部位原油曾遭受過生物降解等次生蝕變作用。
圖4 塔北哈拉哈塘凹陷原油甾萜類生標(biāo)參數(shù)與埋深關(guān)系
3.4原油芳烴組成與分布特征
4原油來源分析
4.1油源層位分析
以往研究表明[22-23],塔里木盆地有寒武系—下奧陶統(tǒng)(簡稱寒武系)和中—上奧陶統(tǒng)(簡稱奧陶系)2套海相烴源巖。寒武系成因原油以高豐度C28規(guī)則甾烷、伽馬蠟烷和低豐度重排甾烷、以及特有的甲藻甾烷、三芳甲藻甾烷為特征[16, 22-24],而奧陶系成因原油具有相反的特征[22-23, 25-26]。哈拉哈塘原油規(guī)則甾烷總體呈“V”字型分布(圖3),ααα20R-C28甾烷相對含量均小于20%(表2),與奧陶系成因原油特征一致[16];伽馬蠟烷/C30藿烷值大多在0.1左右,C27重排甾烷與C27規(guī)則甾烷比值基本在0.3以上(表2),這些特征與東部深水陸棚相強(qiáng)還原環(huán)境下沉積的寒武系烴源巖特征相反[22]。油—巖對比表明(圖6,7),哈拉哈塘原油中不含甲藻甾烷和三芳甲藻甾烷,與以往研究認(rèn)識[16, 23]的奧陶系烴源巖具有更好的相關(guān)性。
單體烴碳同位素在塔里木盆地混源油識別中具有較好的效果[16, 24,27]。哈拉哈塘原油正構(gòu)烷烴單體烴碳同位素值大多在-34‰~-35‰范圍內(nèi),重于英買力地區(qū)YG2、YG2-1C井奧陶系成因原油,輕于TD2(-C-O1)和TZ62(S)井寒武系成因原油[24](圖8),指示哈拉哈塘地區(qū)可能不同程度地混有寒武系成因原油?,F(xiàn)有研究認(rèn)為,在塔北桑塔木斷壘帶東側(cè)和輪東斷裂周圍有高比例寒武系混源油[26, 28],與斷層垂向輸導(dǎo)密切相關(guān),距離斷裂越近,寒武系原油比例越高[26],如塔河油田T904井[25]。最新地質(zhì)研究表明,哈拉哈塘地區(qū)發(fā)育2組密集分布的北東和北西向深大走滑斷層,切穿奧陶系并進(jìn)入寒武系。
圖5 塔北哈拉哈塘凹陷原油成熟度參數(shù)與深度關(guān)系
圖6 塔北哈拉哈塘原油中甲基甾烷和甲基三芳甾烷分布
3β. 3β-甲基-24-乙基甾烷和3β-甲基-24-乙基三芳甾
烷; 4α. 4α-甲基-24-乙基三芳甾烷
Fig.6Distribution of methyl steranes and methyl triaromatic
steranes in oil samples from the Halahatang Sag, the Tarim Basin
圖7 塔北地區(qū)寒武系烴源巖生物標(biāo)志物特征
圖8 塔里木盆地原油正構(gòu)烷烴單體烴碳同位素分布
有學(xué)者認(rèn)為,寒武系烴源巖對塔河等塔北地區(qū)油氣有較多的貢獻(xiàn)[29],目前在塔北新發(fā)現(xiàn)XH1井寒武系烴源巖為陸棚邊緣相[30],與TD2井深水陸棚相寒武系烴源巖沉積相不同,即可能存在2種不同類型的寒武系原油,然而尚未有文獻(xiàn)報(bào)道。從英買力地區(qū)英探1井、柯坪地區(qū)露頭寒武系烴源巖的生物標(biāo)志物來看(圖7),其與滿加爾凹陷寒武系烴源巖的差異并不明顯。目前的資料尚不能支持塔北哈拉哈塘地區(qū)原油主要是另一套性質(zhì)有異(相變等所致)的寒武系成因的觀點(diǎn)。
4.2油源巖性分析
以往研究認(rèn)為碳酸鹽巖不太可能為塔里木盆地主力烴源巖[31-32]。本次研究從地球化學(xué)角度,將哈拉哈塘原油與威利斯頓盆地碳酸鹽巖成因原油進(jìn)行了對比。威利斯頓盆地蒸發(fā)巖蓋層下Madi-son群油氣保存條件良好,Lodgepole組碳酸鹽巖TOC值在2%~10%,氫指數(shù)達(dá)600 mg/g以上,處于成熟階段[33];對比于塔里木盆地?zé)N源巖有多個生烴期,油氣藏調(diào)整改造及油氣混源現(xiàn)象[16, 24],威利斯頓盆地碳酸鹽巖成因原油更具有代表性。哈拉哈塘原油與Lodgepole組烴源巖及相關(guān)原油(Madison群原油)[33-34]分子化合物上具有一些相似性,如在圖9a中,哈拉哈塘原油Pr/Ph值低于Bakken組頁巖成因原油。哈拉哈塘原油C29/C30藿烷值為0.69~1.09,C35/C34藿烷值為0.90~1.45(表2),如圖9b中其分布與Bakken組原油有明顯區(qū)分,接近Madison群原油特征,又有所區(qū)別。這反映了哈拉哈塘原油可能有多種巖性烴源巖的成烴貢獻(xiàn)。
碳酸鹽巖較泥頁巖烴源巖生成原油中富集硫化物[35-36]。較高的硫芴含量可能是塔里木盆地碳酸鹽烴源巖相關(guān)原油的重要特征[36-37]。三芴系列三角圖顯示(圖10),哈拉哈塘原油具有較高的硫芴含量,與塔里木盆地泥頁巖烴源巖有明顯的區(qū)別,與碳酸鹽巖烴源巖有較好的相關(guān)性。隨著勘探程度深入,塔里木盆地也發(fā)現(xiàn)了具有生烴潛力的碳酸鹽巖[7-9],推測后者對哈拉哈塘原油具有成烴貢獻(xiàn),但其相對貢獻(xiàn)量有待進(jìn)一步研究。
5多相態(tài)油氣成因分析
5.1生物降解作用
圖9 塔北哈拉哈塘原油與碳酸鹽巖烴源巖及相關(guān)原油對比
圖10 哈拉哈塘原油及塔里木盆地?zé)N源巖三芴系列三角圖
潛山區(qū)原油(H7、XK1、X3井等)檢測出完整的25-降藿烷系列化合物(圖3),說明原油歷經(jīng)了嚴(yán)重的生物降解作用,而鏈烷烴濃度較低,僅為4.3~26.2 mg/g(油)(表2,圖2),反映后期原油充注量低或也存在次生改造現(xiàn)象,因而仍表現(xiàn)出生物降解油高密度、高黏度的物性特征[38]。構(gòu)造高部位原油中伴生的H2S,目前最新研究認(rèn)為是微生物作用的產(chǎn)物[39],同時高分辨率質(zhì)譜分析也說明沒有TSR作用跡象(見5.4節(jié)),進(jìn)一步說明H2S系生物降解產(chǎn)物。而晚海西期構(gòu)造運(yùn)動使北部地層抬升剝蝕,是導(dǎo)致相關(guān)油藏遭受生物降解等破壞的地質(zhì)條件[6]。
5.2多期充注作用
塔北輪古東地區(qū)受后期天然氣充注影響,油藏轉(zhuǎn)變?yōu)槟鰵獠豙11]。哈拉哈塘部分井區(qū)(RP11、JY6)為低密度、低黏度、高氣油比的揮發(fā)油,可能為高成熟凝析油氣沿?cái)嗔严蛏线\(yùn)移與奧陶系儲層中正常油混合對相態(tài)的改造。尤其是RP11井鏈烷烴濃度高達(dá)99.4 mg/g,相比其他50 mg/g左右的濃度,也暗示了多期充注作用。然而與輪古東凝析氣藏原油成熟度參數(shù)急劇增大相比,哈拉哈塘原油地球化學(xué)參數(shù)隨埋深有一定增加(圖4,5),但增幅有限,且氣油比也較凝析氣藏低[12],可能是后期充注量不大,僅向揮發(fā)性油藏轉(zhuǎn)變。
5.3熱蝕變作用
早期研究認(rèn)為原油在地層溫度達(dá)到160 ℃后開始裂解[40],但隨鉆探技術(shù)提升,目前在越來越多的超深高溫儲層中發(fā)現(xiàn)了液態(tài)烴[41]。塔北哈拉哈塘地區(qū)地溫梯度為2.42 ℃/hm,實(shí)測溫度也表明RP3井溫度146.1 ℃,RP1C井溫度164.4 ℃,H7井溫度158.7 ℃[6],說明原油仍可以液態(tài)烴形式保存。雖然深層金躍、熱瓦普井區(qū)C27-29甾烷相對孕甾烷含量低,部分升藿烷系列化合物難以檢測到(圖2),與塔中裂解原油特征相似[16, 24],且熱成熟度參數(shù)與埋深關(guān)系具有正相關(guān)性(圖5),但高氣油比特征原油分布較為集中,并非南部深埋區(qū)均為高氣油比,如同樣是埋深7 000 m以下的JY2和JY7井,分別為低氣油比和高氣油比特征,說明熱蝕變并非導(dǎo)致天然氣含量增加的主因。
5.4TSR作用
TSR作用是在熱動力條件下烴類與硫酸鹽巖之間發(fā)生的化學(xué)反應(yīng)。TSR作用降低了原油熱穩(wěn)定性,促進(jìn)原油裂解生氣[42-43]。相比原油純熱裂解,TSR作用在較低溫度下即可以改變油氣相態(tài)。
不穩(wěn)定硫化物(噻吩、硫醇等)通常為TSR作用伴生產(chǎn)物[44]。通過高分辨率質(zhì)譜檢測原油中硫化物發(fā)現(xiàn),H9-7井原油中高等效雙鍵數(shù)(DBE值)和低碳數(shù)的S1類化合物豐度高(圖11a),與塔中TSR相關(guān)原油中高豐度的低DBE值和高碳數(shù)的S1類化合物特征明顯不同(圖11b);不同DBE值S1化合物的相對豐度分布上(圖11c),哈拉哈塘原油中含中DBE值小于6的化合物(代表低熱穩(wěn)定性硫化物,通常為硫醚、環(huán)硫醚、噻吩等)豐度低于5%,DBE值等于9的二苯并噻吩系列(高熱穩(wěn)定性硫化物)為主要化合物,與之相比,塔中地區(qū)與TSR相關(guān)的高H2S伴生氣原油具有相對高豐度的低熱穩(wěn)定性硫化物(圖11d)[17]。地質(zhì)角度上,哈拉哈塘地區(qū)沒有像塔中地區(qū)有大范圍的膏鹽巖層,不太具備發(fā)生TSR的條件。因此哈拉哈塘油氣相態(tài)不受TSR作用影響。
6結(jié)論
圖11 塔北哈拉哈塘、塔中原油S1類化合物分布特征
(1)哈拉哈塘地區(qū)發(fā)育多相態(tài)油氣,原油物性、烴類組成差異明顯,但成因一致。分子化合物對比表明,哈拉哈塘原油主要來自中—上奧陶統(tǒng)烴源巖,可能有少量寒武系烴源巖成烴貢獻(xiàn),但原油成熟度有差異。
(2)哈拉哈塘原油具有硫芴含量相對較高、低Pr/Ph值、高C29和C35藿烷含量的特征,但與威利斯頓盆地典型的碳酸鹽巖烴源巖成因原油仍有區(qū)別,推測哈拉哈塘地區(qū)有不同巖性烴源巖的成烴貢獻(xiàn),其相對貢獻(xiàn)量有待進(jìn)一步確認(rèn)。
(3)地質(zhì)地球化學(xué)分析表明,哈拉哈塘地區(qū)多相態(tài)油氣受原生、次生兩方面作用控制。構(gòu)造高位早期油藏遭微生物降解破壞,生成H2S氣體;構(gòu)造低位揮發(fā)性油藏與高成熟度油氣充注有關(guān),沒有明顯的裂解或TSR作用特征。
參考文獻(xiàn):
[1]崔海峰,鄭多明,滕團(tuán)余.塔北隆起哈拉哈塘凹陷石油地質(zhì)特征與油氣勘探方向[J].巖性油氣藏,2009,21(2):54-58.
Cui Haifeng,Zheng Duoming,Teng Tuanyu.Petroleum geologic chara-cteristics and exploration orientation in Halahatang Depression of Tabei uplift[J].Lithologic Reservoirs,2009,21(2):54-58.
[2]張麗娟,范秋海,朱永峰,等.塔北哈6區(qū)塊奧陶系油藏地質(zhì)與成藏特征[J].中國石油勘探,2013,18(2):7-12.
Zhang Lijuan,Fan Qiuhai,Zhu Yongfeng,et al.Geological and accumulations characteristics of Ordovician oil reservoir in Ha 6 block of Tabei[J].China Petroleum Exploration,2013,18(2):7-12.
[3]Chang X C,Wang T G,Li Q M,et al.Geochemistry and possible origin of petroleum in Palaeozoic reservoirs from Halahatang Depression[J].Journal of Asian Earth Sciences,2013,74:129-141.
[4]盧玉紅,肖中堯,顧喬元,等.塔里木盆地環(huán)哈拉哈塘海相油氣地球化學(xué)特征與成藏[J].中國科學(xué):D輯:地球科學(xué),2007,37(S2):167-176.
Lu Yuhong,Xiao Zhongyao,Gu Qiaoyuan,et al.Geochemical characteristics and accumulation of marine oil and gas around Halahatang depression,Tarim Basin,China[J].Science in China Series D:Earth Sciences,2008,51(S1):195-206.
[5]朱光有,楊海軍,張斌,等.油氣超長運(yùn)移距離[J].巖石學(xué)報(bào),2013,29(9):3192-3212
Zhu Guangyou,Yang Haijun,Zhang Bin,et al.Ultra-long distance migration of hydrocarbon[J].Acta Petrologica Sinica,2013,29(9):3192-3212.
[6]朱光有,劉星旺,朱永峰,等.塔里木盆地哈拉哈塘地區(qū)復(fù)雜油氣藏特征及其成藏機(jī)制[J].礦物巖石地球化學(xué)通報(bào),2013,32(2):231-242.
Zhu Guangyou,Liu Xingwang,Zhu Yongfeng,et al.The Characteristics and the accumulation mechanism of complex reservoirs in the Hanilcatam area,Tarim Basin[J].Bulletin of Mineralogy,Petrology and Geochemistry,2013,32(2):231-242.
[7]趙靖舟.塔里木盆地北部寒武—奧陶系海相烴源巖重新認(rèn)識[J].沉積學(xué)報(bào),2001,19(1):117-124.
Zhao Jingzhou.Evolution on the Cambrian-Ordovician marine source rocks from the north Tarim Basin[J].Acta Sedimentologica Sinica,2001,19(1):117-124.
[8]趙孟軍,王招明,潘文慶,等.塔里木盆地滿加爾凹陷下古生界烴源巖的再認(rèn)識[J].石油勘探與開發(fā),2008,35(4):417-423.
Zhao Mengjun,Wang Zhaoming,Pan Wenqing,et al.Lower Palaeo-zoic source rocks in Manjiaer Sag,Tarim Basin[J].Petroleum Exploration and Development,2008,35(4):417-423.
[9]張朝軍,周新源,王招明,等.哈拉哈塘地區(qū)下奧陶統(tǒng)烴源巖發(fā)現(xiàn)的地質(zhì)意義[J].新疆石油地質(zhì),2008,29(5):588-590.
Zhang Chaojun,Zhou Xinyuan,Wang Zhaoming,et al.The geological significance for discovery of Lower Ordovician source rocks in Halahatang area,Tarim Basin[J].Xinjiang Petroleum Geology,2008,29(5):588-590.
[10]張鼐,王招明,鞠鳳萍,等.塔北地區(qū)奧陶系碳酸鹽巖中的儲層瀝青[J].石油學(xué)報(bào),2013,34(2):225-231.
Zhang Nai,Wang Zhaoming,Ju Fengping,et al.Diagenetic bitumen in Ordovician carbonate reservoirs of the northern Tarim Basin[J].Acta Petrolei Sinica,2013,34(2):225-231.
[11]張水昌,朱光有,楊海軍,等.塔里木盆地北部奧陶系油氣相態(tài)及其成因分析[J].巖石學(xué)報(bào),2011,27(8):2447-2460.
Zhang Shuichang,Zhu Guangyou,Yang Haijun,et al.The phases of Ordovician hydrocarbon and their origin in the Tabei uplift,Tarim Basin[J].Acta Petrologica Sinica,2011,27(8):2447-2460.
[12]Zhu G Y,Zhang S C,Su J,et al.Alteration and multi-stage accumulation of oil and gas in the Ordovician of the Tabei Uplift,Tarim Basin,NW China:implications for genetic origin of the diverse hydrocarbons[J].Marine and Petroleum Geology,2013,46:234-250.
[13]安海亭,李海銀,王建忠,等.塔北地區(qū)構(gòu)造和演化特征及其對油氣成藏的控制[J].大地構(gòu)造與成礦學(xué),2009,33(1):142-147.
An Haiting,Li Haiyin,Wang Jianzhong,et al.Tectonic evolution and its controlling on oil and gas accumulation in the northern Tarim Basin[J].Geotectonica et Metallogenia,2009,33(1):142-147.
[14]李曰俊,楊海軍,張光亞,等.重新劃分塔里木盆地塔北隆起的次級構(gòu)造單元[J].巖石學(xué)報(bào),2012,28(8):2466-2478.
Li Yuejun,Yang Haijun,Zhang Guangya,et al.Redivision of the tectonic units of Tabei Rise in Tarim Basin,NW China[J].Acta Petrologica Sinica,2012,28(8):2466-2478.
[15]朱光有,楊海軍,朱永峰,等.塔里木盆地哈拉哈塘地區(qū)碳酸鹽巖油氣地質(zhì)特征與富集成藏研究[J].巖石學(xué)報(bào),2011,27(3):827-844.
Zhu Guangyou,Yang Haiyun,Zhu Yongfeng,et al.Study on petroleum geological characteristics and accumulation of carbonate reservoirs in Hanilcatam area,Tarim basin[J].Acta Petrologica Sinica,2011,27(3):827-844.
[16]Li S M,Pang X Q,Jin Z J,et al.Petroleum source in the Tazhong Uplift,Tarim Basin:New insights from geochemical and fluid inclusion data[J].Organic Geochemistry,2010,41(6):531-553.
[17]Li S M,Shi Q,Pang X Q,et al.Origin of the unusually high dibenzothiophene oils in Tazhong-4 Oilfield of Tarim Basin and its implication in deep petroleum exploration[J].Organic Geochemistry,2012,48:56-80.
[18]Chakhmakhchev A,Suzuki M,Takayama K.Distribution of alkylated dibenzothiophenes in petroleum as a tool for maturity assessments[J].Organic Geochemistry,1997,26(7-8):483-489.
[19]Santamaria-Orozco D,Horsfield B,di Primio R,et al.Influence of maturity on distributions of benzo- and dibenzothiophenes in Tithonian source rocks and crude oils,Sonda de Campeche,Mexico[J].Organic Geochemistry,1998,28(7-8):423-439.
[20]Kvalheim O M,Christy A A,Telns N,et al.Maturity determination of organic matter in coals using the methylphenanthrene distribution[J].Geochimica et Cosmochimica Acta,1987,51(7):1883-1888.
[21]England W A,Mackenzie A S,Mann D M,et al.The movement and entrapment of petroleum fluids in the subsurface[J].Journal of the Geological Society,1987,144(2):327-347.
[22]馬安來,金之鈞,張水昌,等.塔里木盆地寒武—奧陶系烴源巖的分子地球化學(xué)特征[J].地球化學(xué),2006,35(6):593-601.
Ma Anlai,Jin Zhijun,Zhang Shuichang,et al.Molecular geochemical characteristics of Cambrian-Ordovician source rocks in Tarim Basin,NW China[J].Geochimica,2006,35(6):593-601.
[23]Zhang S C,Hanson A D,Moldowan J M,et al.Paleozoic oil-source rock correlations in the Tarim basin,NW China[J].Organic Geochemistry,2000,31(4):273-286.
[24]Li S M,Amrani A,Pang X Q,et al.Origin and quantitative source assessment of deep oils in the Tazhong Uplift,Tarim Basin[J].Organic Geochemistry,2015,78:1-22.
[25]Li M J,Wang T G,Lillis P G,et al.The significance of 24-norcholestanes,triaromatic steroids and dinosteroids in oils and Cambrian-Ordovician source rocks from the cratonic region of the Tarim Basin,NW China[J].Applied Geochemistry,2012,27(8):1643-1654.
[26]朱光有,崔潔,楊海軍,等.塔里木盆地塔北地區(qū)具有寒武系特征原油的分布及其成因[J].巖石學(xué)報(bào),2011,27(8):2435-2446.
Zhu Guangyou,Cui Jie,Yang Haijun,et al.The distribution and origin of Cambrian crude oil in North Tarim Basin[J].Acta Petrologica Sinica,2011,27(8):2435-2446.
[27]Li S M,Pang X Q,Jin Z J,et al.Molecular and isotopic evidence for mixed-source oils in subtle petroleum traps of the Dongying South Slope,Bohai Bay Basin[J].Marine and Petroleum Geology,2010,27(7):1411-1423.
[28]Gong S,George S C,Volk H,et al.Petroleum charge history in the Lunnan Low Uplift,Tarim Basin,China:Evidence from oil-bearing fluid inclusions[J].Organic Geochemistry,2007,38(8):1341-1355.
[29]Sun Y G,Xu S P,Lu H,et al.Source facies of the Paleozoic petroleum systems in the Tabei uplift,Tarim Basin,NW China:implications from aryl isoprenoids in crude oils[J].Organic Geochemistry,2003,34(4):629-634.
[30]朱傳玲,閆華,云露,等.塔里木盆地沙雅隆起星火1井寒武系烴源巖特征[J].石油實(shí)驗(yàn)地質(zhì),2014,36(5):626-632.
Zhu Chuangling,Yan Hua,Yun Lu,et al.Characteristics of Cambrian source rocks in well XH1,Shaya Uplift,Tarim Basin[J].Petroleum Geology & Experiment,2014,36(5):626-632.
[31]張水昌,梁狄剛,張大江.關(guān)于古生界烴源巖有機(jī)質(zhì)豐度的評價標(biāo)準(zhǔn)[J].石油勘探與開發(fā),2002,29(2):8-12.
Zhang Shuichang,Liang Digang,Zhang Dajiang.Evaluation criteria for Paleozoic effective hydrocarbon source rocks[J].Petroleum Exploration and Development,2002,29(2):8-12.
[32]彭平安,劉大永,秦艷,等.海相碳酸鹽巖烴源巖評價的有機(jī)碳下限問題[J].地球化學(xué),2008,37(4):415-422.
Peng Pingan,Liu Dayong,Qin Yan,et al.Low limits of organic carbon content in carbonate as oil and gas source rocks[J].Geochimica,2008,37(4):415-422.
[33]Jiang C Q,Li M W,Osadetz K G,et al.Bakken/Madison petroleum systems in the Canadian Williston Basin.Part 2:molecular markers diagnostic of Bakken and Lodgepole source rocks[J].Organic Geochemistry,2001,32(9):1037-1054.
[34]Jiang C Q,Li M W.Bakken/Madison petroleum systems in the Canadian Williston Basin.Part 3:geochemical evidence for significant Bakken-derived oils in Madison Group reservoirs[J].Organic Geochemistry,2002,33(7):761-787.
[35]Chakhmakhchev A,Suzuki N.Saturate biomarkers and aromatic sulfur compounds in oils and condensates from different source rock lithologies of Kazakhstan,Japan and Russia[J].Organic Geochemistry,1995,23(4):289-299.
[36]Li M J,Wang T G,Zhong N N,et al.Ternary diagram of fluorenes,dibenzothiophenes and dibenzofurans:indicating depositional environment of crude oil source rocks[J].Energy,Exploration & Exploitation,2013,31(4):569-588.
[37]孫敏卓,龍國徽,孟仟祥,等.塔里木盆地海相碳酸鹽巖瀝青“A”的地球化學(xué)特征[J].巖礦測試,2011,30(5):623-630.
Sun Minzhuo,Long Guohui,Meng Qianxiang,et al.Geochemical Characteristics of Bitumen "A" in Marine Carbonate Rock from the Tarim Basin[J].Rock and Mineral Analysis,2011,30(5):623-630.
[38]王鐵冠,王春江,何發(fā)岐,等.塔河油田奧陶系油藏兩期成藏原油充注比率測算方法[J].石油實(shí)驗(yàn)地質(zhì),2004,26(1):74-79.
Wang Tieguan,Wang Chunjiang,He Faqi,et al.Determination of double filling ratio of mixed crude oils in the Ordovician oil re-servoir,Tahe Oilfield[J].Petroleum Geology & Experiment,2004,26(1):74-79.
[39]張寶收, 龐雄奇, 陳踐發(fā).塔里木臺盆區(qū)復(fù)雜碳酸鹽巖油氣藏成因機(jī)制和分布預(yù)測[R].庫爾勒:塔里木油田分公司,2014.
Zhang Baoshou,Pang Xiongqi,Chen Jianfa.Origin mechanism and distribution prediction of complicated carbonate reservoirs in the Tarim Basin[R].Korla:Tarim Oilfield Company,2014.
[40]Hill R J,Tang Y C,Kaplan I R.Insights into oil cracking based on laboratory experiments[J].Organic Geochemistry,2003,34(12):1651-1672.
[41]朱光有,張水昌.中國深層油氣成藏條件與勘探潛力[J].石油學(xué)報(bào),2009,30(6):793-802.
Zhu Guangyou,Zhang Shuichang.Hydrocarbon accumulation conditions and exploration potential of deep reservoirs in China[J].Acta Petrolei Sinica,2009,30(6):793-802.
[42]羅厚勇,王萬春,劉文匯.TSR模擬實(shí)驗(yàn)研究與地質(zhì)實(shí)際的異同及可能原因分析[J].石油實(shí)驗(yàn)地質(zhì),2012,34(2):186-192.
Luo Houyong,Wang Wanchun,Liu Wenhui.Similarities and diffe-rences between simulation experiments on TSR and geological observations and possible causes[J].Petroleum Geology & Experiment,2012,34(2):186-192.
[43]張水昌,帥燕華,朱光有.TSR促進(jìn)原油裂解成氣:模擬實(shí)驗(yàn)證據(jù)[J].中國科學(xué):D輯:地球科學(xué),2008,38(3):307-311.
Zhang Shuichang,Shuai Yanhua,Zhu Guangyou.TSR promotes the formation of oil-cracking gases:evidence from simulation experiments[J].Science in China Series D:Earth Sciences,2008,51(3):451-455.
[44]Cai C F,Worden R H,Bottrell S H,et al.Thermochemical sulphate reduction and the generation of hydrogen sulphide and thiols (mercaptans) in Triassic carbonate reservoirs from the Sichuan Basin,China[J].Chemical Geology,2003,202(1/2):39-57.
(編輯徐文明)
Characteristics and genesis of marine hydrocarbons in
the Halahatang Sag in the northern Tarim Basin
Sun Hao1,2, Li Sumei1,2, Zhang Baoshou3
(1.StateKeyLaboratoryofPetroleumResourcesandProspecting,ChinaUniversityofPetroleum,Beijing102249,China,
2.CollegeofGeosciences,ChinaUniversityofPetroleum,Beijing102249,China; 3.ResearchInstituteofExploration
andDevelopment,PetroChinaTarimOilfieldCompany,Korla,Xinjiang841000,China)
Abstract:The Halahatang Sag is an important oil and gas unit in the western part of the Northern Tarim Uplift. The Ordovician carbonate reservoir contains abundant petroleum resources with multiple phases, but the variable characteristics and genetic mechanism of the oil and gas are still unclear. Oil-oil and oil-rock correlations indicate that the crude oil has a close genetic relationship with the middle and upper Ordovician source rocks. The comparison of carbon isotopes for individual n-alkanes shows that the Cambrian source rocks might also contribute. Halahatang oils are rich in dibenzothiophenes, and also contain relatively abundant C29- and C30-hopane, which implies a contribution from carbonate source rocks. Based on the Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS) analysis, sulfides with low thermal stability have low concentrations, suggesting that TSR alteration is not significant. Source rock maturity is the major factor controlling the genesis of oils with high gas/oil ratios, while biodegradation is the major factor for heavy oil and H2S formation in the relatively shallow reservoir.
Key words:biomarkers; individual n-alkanes carbon isotope; high resolution mass spectrometry; oil and source correlation; hydrocarbon origin; Halahatang Sag; Tarim Basin
基金項(xiàng)目:國家自然科學(xué)基金(40973031,41473047)、國家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(973計(jì)劃)項(xiàng)目(2011CB201102)、教育部高等學(xué)校博士點(diǎn)專項(xiàng)基金(20120007110002)和油氣資源與探測國家重點(diǎn)實(shí)驗(yàn)室基金(PRP/indep-1-1101,PRP2009-02)資助。
通訊作者:李素梅(1968—),女,教授,研究方向?yàn)橛蜌獾刭|(zhì)地球化學(xué)。E-mail: smli@cup.edu.cn。
作者簡介:孫浩(1987—),男,博士研究生,研究方向?yàn)橛袡C(jī)地球化學(xué)。E-mail: mousesun8@hotmail.com。
收稿日期:2015-01-26;
修訂日期:2015-10-19。
中圖分類號:TE122.1
文獻(xiàn)標(biāo)志碼:A
文章編號:1001-6112(2015)06-0704-09doi:10.11781/sysydz201506704