含液飽和多孔彈性梁隨機(jī)振動
周鳳璽1,2,馬強(qiáng)1,米海珍1
(1.蘭州理工大學(xué)土木工程學(xué)院,蘭州730050; 2. 蘭州理工大學(xué)西部土木工程防災(zāi)減災(zāi)教育部工程研究中心,蘭州730050)
摘要:據(jù)不可壓多孔彈性介質(zhì)理論及隨機(jī)振動理論,建立孔隙流體沿軸向擴(kuò)散情形下含液飽和多孔彈性梁在集中荷載作用下橫向彎曲隨機(jī)振動方程。分析梁位移響應(yīng)及截面固相彎矩響應(yīng),獲得輸入集中荷載為平穩(wěn)隨機(jī)過程時簡支梁位移、彎矩響應(yīng)的功率譜密度函數(shù)及方差等數(shù)字特征。作為數(shù)值算例,考慮理想白噪聲平穩(wěn)隨機(jī)集中荷載作用下的簡支飽和多孔梁,分析其位移響應(yīng)及界面固相彎矩功率譜密度函數(shù),討論流-固耦合項(xiàng)對梁位移及彎矩的減振效果。結(jié)果表明,通過控制孔隙中流體的滲透系數(shù)可達(dá)到控制梁的隨機(jī)振動目的。
關(guān)鍵詞:多孔介質(zhì)理論;隨機(jī)振動;功率譜密度函數(shù);簡支梁
中圖分類號:O324文獻(xiàn)標(biāo)志碼:A
基金項(xiàng)目:國家自然科學(xué)基金(51174013)
收稿日期:2015-03-21修改稿收到日期:2015-05-24
Random vibration of fluid-saturated porous elastic beam
ZHOUFeng-xi1,2,MAQiang1,MIHai-zhen1(1. School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China;2. Western Engineering Research Center of Disaster Mitigation in Civil Engineering of Ministry of Education, Lanzhou University of Technology, Lanzhou 730050, China)
Abstract:According to the theory of incompressible porous elastic medium and the random vibration, theory of continum, a random equation for the transverse bending vibration of fluid-saturated porous elastic beam was established with a concentrated load under the condition of diffusion of pore fluid along the axial direction. Through the analysis on the responses of the displacement of beam as well as the solid phase bending moment at cross section of beam, the power spectral density function and its variance and other digital features of the displacement and bending moment responses of a simply supported beam were obtained when the concentrated load is a stationary random process. As a numerical example, considering the saturated porous simply supported beam under the concentrated load of an ideal white noise stationary random process, the power spectral density functions of the displacement response and the interface solid phase bending moment response were analyzed and the damping effects of the flow-solid coupling term on the beam displacement and bending moment were also discussed. The results show that random vibration of the beam could be controlled by changing the coefficient of permeability of the pore fluid.
Key words:porous media theory; random vibration; power spectral density function; simply supported beam
含液飽和多孔介質(zhì)在巖土、生物及傳熱傳質(zhì)等眾多工程領(lǐng)域中均有重要用途。由于骨架與液體相互作用及兩者不同運(yùn)動特性,含液飽和介質(zhì)的力學(xué)行為與單相介質(zhì)截然不同,特性獨(dú)特。自Biot[1-2]提出描述飽和多孔介質(zhì)動力特性的基本方程以來,均從不同角度對該問題進(jìn)行研究,但因該理論基礎(chǔ)缺乏充分的熱力學(xué)依據(jù),而使基于連續(xù)介質(zhì)混合物公理及體積分?jǐn)?shù)概念的多孔介質(zhì)理論與數(shù)值方法研究取得長足進(jìn)展,并廣泛用于不同工程領(lǐng)域[3]。
Li等[4-5]通過研究飽和多孔彈性梁、桿的振動與擬靜態(tài)響應(yīng),認(rèn)為Mandel-Cryer現(xiàn)象亦存在于多孔彈性梁、桿的變形響應(yīng)中。楊驍?shù)萚6-9]利用不可壓飽和多孔介質(zhì)模型研究飽和多孔彈性梁、板結(jié)構(gòu)的線性及非線性動力響應(yīng)。Shanker等[10]基于兩相多孔介質(zhì)理論,研究兩種不同飽和多孔材料組成的復(fù)合中空圓柱殼的徑向振動。Rani等[11]研究任意厚度飽和多孔材料平板應(yīng)力與質(zhì)量耦合參數(shù)、彈性常數(shù)等關(guān)系。
本質(zhì)上,結(jié)構(gòu)所受外界激勵均為隨機(jī)的,有關(guān)結(jié)構(gòu)或構(gòu)件的隨機(jī)振動研究已取得諸多研究成果[12-13],但關(guān)于含液飽和多孔材料結(jié)構(gòu)的隨機(jī)振動分析未見報道。本文據(jù)不可壓飽和多孔介質(zhì)模型與連續(xù)體隨機(jī)振動理論,以簡支梁為例,研究不可壓含液飽和彈性梁在隨機(jī)集中荷載作用下的振動,分析梁的撓度及界面固相彎矩響應(yīng),獲得功率譜密度函數(shù)、方差等數(shù)字特征,重點(diǎn)分析流-固耦合項(xiàng)對梁減振效果影響規(guī)律。
1含液飽和多孔梁隨機(jī)反應(yīng)
(1)
圖1 彈性地基飽和多孔梁 Fig.1 A saturated poroelastic beam on elastic foundation
將含液飽和多孔梁撓度w(x,t)按梁固有振型φn(x)展開,即
(2)
不同邊界條件下梁的固有振型φn(x)見文獻(xiàn)[14]。此處考慮兩端簡支,滿足邊界條件的振型函數(shù)為
(3)
第n階簡支梁固有頻率[15]為
(4)
將式(2)、(3)代入式(1),用第m個振型函數(shù)φm(x)同乘等式兩邊,并沿梁長積分,利用固有振型正交條件得
(5)
式中:ξn為含液飽和多孔梁內(nèi)阻尼率,且有
(6)
由式(5)可得主坐標(biāo)yn(t)對應(yīng)輸入集中荷載時頻響函數(shù),即
(7)
據(jù)疊加原理,可得含液飽和多孔梁頻響函數(shù)為
(8)
由式(8)可獲得梁的脈響函數(shù)及動力響應(yīng)。
2隨機(jī)反應(yīng)統(tǒng)計(jì)值
2.1撓度功率譜密度及均方值
考慮不可壓飽和梁集中荷載P(t)的均值為零、譜密度為SP(ω)的平穩(wěn)隨機(jī)過程,則第n階主振動wn(x,t)的譜密度為
(9)
上式表明,飽和多孔梁阻尼系數(shù)ξn不大、SP(ω)為白噪聲時,在固有頻率ωn附近有共振峰;當(dāng)SP(ω)為白噪聲時,Swn與固有頻率ωn四次方成反比。因此高階撓度分量功率譜密度較??;沿梁長度各點(diǎn)撓度分量功率譜密度不同,但節(jié)點(diǎn)處始終為零。
由于每階固有振型頻譜均含一種頻率成份,實(shí)際情況下固有頻率相離較遠(yuǎn),頻譜之間重疊較少,且相位關(guān)系亦隨機(jī)。故各階固有振型間相關(guān)性較小,wn(x,t)(n=1,2,…)可視為不相關(guān),撓度w(x,t)功率譜Sw(x,ω)為各撓度分量功率譜密度Swn(x,ω)之和,即
(10)
輸入P(t)為理想白噪聲即SP(ω)為常數(shù)SP時,由留數(shù)積分可求得第n階主振動wn(x,t)方差為
(11)
由式(6)、(11)知,減小飽和多孔梁的滲透系數(shù)kf可減小撓度分量方差;該方差與固有頻率ωn的三次方成反比,故高階撓度分量方差值較?。挥捎陲柡投嗫琢褐杏闪?固耦合引起的內(nèi)阻尼與固有振型階數(shù)無關(guān),因此對減小各階撓度分量的方差值具有相同效果,使含液飽和結(jié)構(gòu)尤其適用減小多頻或?qū)拵щS機(jī)激勵下振動;沿多孔梁長度各點(diǎn)撓度分量方差值不同,在固有振型節(jié)點(diǎn)處方差值始終為零。撓度w(x,t)的方差為
(12)
(13)
由式(6)、(13)可知,含液飽和梁中由于流-固耦合所致減振效果主要取決于流體在空隙中的滲透系數(shù),而與流體體積分?jǐn)?shù)nf及孔隙率無關(guān)。
2.2固相彎矩功率譜密度及方差
由式(2)知不可壓含液飽和梁固相彎矩M(x,t)為
(14)
與梁撓度功率譜密度相似,當(dāng)輸入P(t)是均值為零、譜密度為SP(ω)的平穩(wěn)隨機(jī)過程,固相彎矩M(x,t)的功率譜密度為
(15)
集中荷載P(t)為理想白噪聲時,固相彎矩M(x,t)的方差為
上式表明,減小飽和多孔梁的滲透系數(shù)kf同樣可降低飽和多孔梁的彎矩方差。
同樣,設(shè)單相彈性固體梁截面彎矩M0(x,t)的方差為DM0(x),并記單相彈性梁與不可壓飽和梁的截面彎矩方差比為βM=DM(x)/DM0(x),可得
(17)
3數(shù)值算例
考慮不可壓飽和多孔簡支梁,梁長l=1 m,橫截面0.03 m×0.04 m,飽和多孔材料物理力學(xué)參數(shù)為E=8.375×106N/m2,ν=0.3,C=0.02 s,nf=0.33,ρs=2 000 N/m3,ρf=330 N/m3,γRf=1.0×104N/m3,kf=1×10-2~5×10-5m/s??紤]集中荷載為平穩(wěn)隨機(jī)過程,且為理想白噪聲,其功率譜密度為常數(shù)SP。隨機(jī)集中荷載作用于xp=l/2時,梁中點(diǎn)位移及截面彎矩功率譜密度函數(shù)Sw/SP在不同滲透系數(shù)下隨頻率變化曲線見圖2、圖3。功率譜密度函數(shù)圖形從頻域上描述出振動統(tǒng)計(jì)特性及振動能量對頻率的分布規(guī)律。由兩圖看出,由于飽和多孔梁中流-固耦合項(xiàng)使位移、彎矩響應(yīng)功率譜形狀發(fā)生較大變化。隨孔隙中流體滲透系數(shù)逐漸減小,功率譜形狀與單相連續(xù)彈性梁有顯著不同??衫么诵再|(zhì)通過改變流體的滲透系數(shù)改變振動能量對頻率的分布規(guī)律。
圖2 梁中點(diǎn)位移響應(yīng)功率譜密度函數(shù) Fig.2 Power spectral density function of the beam midpoint displacement response
圖3 梁中截面彎矩響應(yīng)功率譜密度函數(shù) Fig.3 Power spectral density function of the beam bending moment response
分析含液飽和梁中流-固耦合所致阻尼對梁的減振效果,βw及βM隨滲透系數(shù)變化曲線見圖4、圖5。由兩圖看出,當(dāng)滲透系數(shù)kf較小時βw及βM曲線變化較快, 說明減小kf對減振較有效;當(dāng)kf增大到一定程度時曲線平緩, 說明再增大kf對減振作用不大。利用此性質(zhì)可對結(jié)構(gòu)減振降噪發(fā)揮重要作用。
圖4 β w與k f關(guān)系曲線 Fig.4 Relationship curve of β w and k f
圖5 β M與k f關(guān)系曲線 Fig.5 Relationship curve of β M and k f
4結(jié)論
基于不可壓飽和多孔介質(zhì)模型和隨機(jī)振動理論,研究不可壓含液飽和彈性簡支梁在隨機(jī)集中荷載作用下的振動。結(jié)論如下:
(1)由于飽和多孔梁中流-固耦合項(xiàng)使位移響應(yīng)功率譜形狀發(fā)生較大變化,通過改變孔隙中流體的滲透系數(shù)改變振動能量對頻率的分布規(guī)律。
(2)減小孔隙中流體的滲透系數(shù)可增大含液飽和梁的阻尼系數(shù)。滲透系數(shù)較小時減振效果顯著,而當(dāng)其增大到一定程度后減振效果不顯著。
(3)流-固耦合項(xiàng)對各階固有振型都均有相同減振效果,流-固耦合阻尼減振尤其適用彈性梁在多頻或?qū)拵щS帶激勵情況。
參考文獻(xiàn)
[1]Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid I: Low-frequency range[J]. The Journal of the Acoustical Society of America,1956,28:168-178.
[2]Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid II: Higher frequncy range[J].The Journal of the Acoustical Society of America,1956,28:179-191.
[3]de Boer R. Highlights in the historical development of the porous media theory-toward a consistent macroscopic theory [J] . Applied Mechanics Reviews, 1996, 49:201-262.
[4]Li L P. Cederbaum G, Sehulgasser K.Vibration of poroelastic beams with axial diffusion[J]. European Journal of Mechanics, A Solids, 1996, 15: 1077-1094.
[5]Li L P, Cederbaum G, Schulgasser K. Interesting behavior patterns of poroelastic beams and columns[J]. International Journal of Solids and Structures, 1998, 35: 4931-4943.
[6]張燕,楊驍,李惠.不可壓飽和多孔彈性簡支梁的動力響應(yīng)[J].力學(xué)季刊,2006,27(3):427-433.
ZHANG Yan, YANG Xiao, LI Hui. Dynamical response of an incompressible saturated poroelastic beam with simply supported ends[J].Chinese Quarterly of mechanics,2006,27(3):427-433.
[7]楊驍,李麗.軸向擴(kuò)散下簡支飽和多孔彈性梁的大撓度分析[J].固體力學(xué)學(xué)報,2007,28(3):313-317.
YANG Xiao, LI Li. Large deflection analysis of simply supported saturated poroelastic beam[J]. Chinese Journal of Solid Mechanics,2007,28(3):313-317.
[8]何錄武,楊驍. 飽和不可壓多孔彈性板在面內(nèi)擴(kuò)散下的動力 彎曲理論[J].固體力學(xué)學(xué)報. 2008,29(2):121-128.
HE Lu-wu, YANG Xiao. A dynamic bending model of incompressible saturated[J]. Chinese Journal of Solid Mechanics,2008, 29(2): 121-128.
[9]Wen P H. The analytical solutions of incompressible saturated poroelastic circular mindlin’s plate[J]. J. Appl. Mech.,2012, 79(5):1-7.
[10]Shanker B, Kumar J M, Shah S A, et al. Radial vibrations of an infinitely long poroelastic composite hollow circular cylinder[J]. International Journal of Engineering, Science and Technology, 2012, 4(2): 17-33.
[11]Rani B S, Ramesh T, Reddy P M. Effect of normal stress under an excitation in poroelastic flat slabs[J].International Journal of Engineering,Science and Technology,2011,3(2):96-103.
[12]歐進(jìn)萍,王光遠(yuǎn).結(jié)構(gòu)隨機(jī)振動[M].北京:高等教育出版社,1998:137-154.
[13]Liu D, Xu W, Xu Y. Stochastic response of an axially moving viscoelastic beam with fractional order constitutive relation and random excitations[J]. Acta Mechanica Sinica, 2013, 29(3): 443-451.
[14]Weaver Jr W, Timoshenko S P, Young D H. Vibration problems in engineering[M]. John Wiley & Sons, 1990.
[15]周鳳璽,米海珍. 彈性地基上不可壓飽和多孔彈性梁的自由振動[J]. 蘭州理工大學(xué)學(xué)報,2014,40(2):118-122.
ZHOU Feng-xi, MI Hai-zhen. The free vibration of incompressible saturated poroelastic beam on elastic foundation[J]. Journal of Lanzhou University of Technology, 2014,40(2):118-122.
第一作者李季陽男,博士生,1987年生
通信作者譚卓英男,教授,博士生導(dǎo)師,1965年生