国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

磁控濺射法制備ZnO:Ga薄膜的結(jié)晶質(zhì)量及其應(yīng)力研究

2015-12-31 01:18:59鐘志有,蘭椿,龍路
關(guān)鍵詞:磁控濺射

磁控濺射法制備ZnO:Ga薄膜的結(jié)晶質(zhì)量及其應(yīng)力研究

鐘志有1,2,蘭椿1,龍路1,陸軸1

(1 中南民族大學(xué) 電子信息工程學(xué)院,武漢 430074; 2 中南民族大學(xué) 智能無線通信湖北省重點(diǎn)實(shí)驗(yàn)室, 武漢 430074)

摘要以氧化鋅(ZnO)摻雜氧化鎵(Ga2O3)的陶瓷靶作為濺射靶材,采用射頻磁控濺射技術(shù)在玻璃襯底上制備了透明導(dǎo)電的摻鎵氧化鋅(ZnO:Ga)薄膜.通過X射線衍射儀測(cè)試研究了襯底溫度對(duì)薄膜結(jié)晶性能及其殘余應(yīng)力的影響.研究結(jié)果表明:所有ZnO:Ga薄膜均為六角纖鋅礦型的多晶結(jié)構(gòu)并具有(002)方向的擇優(yōu)取向特性,其結(jié)晶性能和殘余應(yīng)力與襯底溫度密切相關(guān).隨著襯底溫度的升高,薄膜的(002)擇優(yōu)取向程度和晶粒尺寸呈現(xiàn)出先增大后減小的變化趨勢(shì),而薄膜的殘余壓應(yīng)力則單調(diào)減小.當(dāng)襯底溫度為400℃時(shí),ZnO:Ga薄膜具有最大的晶粒尺寸(75.1 nm)、最大的織構(gòu)系數(shù)TC(002)(2.995)、較小的壓應(yīng)力(-0.185 GPa)和最好的結(jié)晶性能.

關(guān)鍵詞磁控濺射;氧化鋅薄膜;摻雜;結(jié)晶質(zhì)量

收稿日期2014-12-26

作者簡(jiǎn)介鐘志有(1965-), 男, 博士, 教授, 研究方向: 光電子材料及其器件, E-mail: zhongzhiyou@163.com

基金項(xiàng)目湖北省自然科學(xué)基金資助項(xiàng)目(2011CDB418); 中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金資助項(xiàng)目(CZW14019)

中圖分類號(hào)TM914文獻(xiàn)標(biāo)識(shí)碼A

The Crystal Quality and Residual Stress of ZnO:Ga Thin

Films Prepared by Magnetron Sputtering Method

ZhongZhiyou1,2,LanChun1,LongLu1,LuZhou1

(1 College of Electronic Information Engineering, South-Central University for Nationalities, Wuhan 430074, China;

2 Hubei Key Laboratory of Intelligent Wireless Communications,South-Central University for Nationalities,Wuhan 430074,China)

AbstractThe gallium-doped zinc oxide (ZnO:Ga) thin films were prepared on glass substrates by magnetron sputtering method using the ceramic target fabricated by sintering the mixture of ZnO and Ga2O3 nanometer powder. The substrate temperature was varied from 200 ℃ to 500 ℃ during the magnetron sputtering process. The crystal quality and residual stress of the deposited films were investigated by X-ray diffractometer. The results indicated that the crystal quality and residual stress of the samples are closely related to the substrate temperature. As the substrate temperature increasing, the degree of preferred orientation, average grain size and residual stress of the samples change nonmonotonically. The thin film deposited at the substrate temperature of 400 ℃ has the largest grain size (75.1 nm), the maximum texture coefficient TC(002) (2.995), the lower compressive stress (-0.185 GPa) and the best crystal quality.

Keywordsmagnetron sputtering; zinc oxide thin films; doping; crystal quality

透明導(dǎo)電氧化物(TCO)薄膜由于具有良好的可見光透過率和較低的電阻率,因而在平板顯示[1-6]、傳感器[7-9]、太陽(yáng)能電池[10-15]、發(fā)光二極管[16-19]和聲表面波器件[20,21]等領(lǐng)域有著廣闊的應(yīng)用前景.眾所周知,摻錫氧化銦(In2O3:Sn)作為TCO薄膜家族中的重要成員,因其具有優(yōu)越的光電性能而被人們深入研究并得到了廣泛應(yīng)用,但是由于該TCO薄膜中的銦為稀有金屬、自然儲(chǔ)量有限、價(jià)格昂貴且有毒性,從而限制了In2O3:Sn薄膜的使用范圍,所以尋找其替代產(chǎn)品已經(jīng)成為當(dāng)前TCO薄膜領(lǐng)域的一個(gè)重要研究課題.與當(dāng)前主流產(chǎn)品In2O3:Sn相比,摻鎵氧化鋅(ZnO:Ga)薄膜作為一種直接躍遷的寬帶隙TCO半導(dǎo)體材料,具有資源豐富、價(jià)格低廉、性能穩(wěn)定、沒有毒性等特點(diǎn),因此近年來深受各國(guó)研究者的青睞,被普遍認(rèn)為它是值得研發(fā)的新一代TCO材料之一.當(dāng)前,ZnO:Ga薄膜的主要制備技術(shù)有水熱法[22]、噴霧熱分解[23,24]、脈沖激光沉積[25,26]、磁控濺射[27-33]、溶膠-凝膠[34,35]和原子層沉積[36,37]等,其中磁控濺射工藝具有沉積速度快、制備薄膜致密度高、附著性能好和易于實(shí)現(xiàn)大面積成膜等特點(diǎn)[38,39],因此它是目前制備ZnO:Ga薄膜的最常用沉積技術(shù)之一.此前廣大研究者圍繞ZnO:Ga薄膜的生長(zhǎng)技術(shù)、制備工藝、微觀結(jié)構(gòu)和光電性能等方面開展了大量的研究工作,結(jié)果表明,襯底溫度是影響ZnO:Ga薄膜結(jié)構(gòu)和光電性能的重要工藝參數(shù)之一,從現(xiàn)有文獻(xiàn)報(bào)道來看,人們的研究重點(diǎn)主要集中在襯底溫度對(duì)ZnO:Ga薄膜的微觀結(jié)構(gòu)和光電性能的影響,而對(duì)ZnO:Ga薄膜應(yīng)力的研究卻報(bào)道較少.事實(shí)上,薄膜應(yīng)力的存在會(huì)導(dǎo)致薄膜的破裂、脫落或者使襯底發(fā)生形變,從而直接影響薄膜器件的光學(xué)、電學(xué)、磁學(xué)、力學(xué)和使用壽命等性能[40,41],薄膜應(yīng)力是一個(gè)必須考慮而且需要最終控制的參量,因此了解和控制薄膜應(yīng)力的影響對(duì)于器件設(shè)計(jì)和使用是非常重要的.本文以普通玻璃作為襯底材料,采用磁控濺射工藝制備了ZnO:Ga半導(dǎo)體薄膜,重點(diǎn)研究了襯底溫度對(duì)ZnO:Ga薄膜結(jié)晶質(zhì)量及其應(yīng)力的影響.

1實(shí)驗(yàn)部分

1.1襯底處理

選用普通玻璃作為襯底材料,首先采用丙酮擦拭玻璃襯底表面,然后用清水沖洗干凈,再依次使用丙酮、無水乙醇和去離子水各超聲清洗約15 min,最后在無水乙醇中煮沸,吹干待用.

1.2薄膜制備

利用射頻磁控濺射技術(shù)在玻璃襯底上沉積ZnO:Ga薄膜樣品,所用實(shí)驗(yàn)設(shè)備為國(guó)產(chǎn)KDJ-567型高真空復(fù)合鍍膜系統(tǒng),所用濺射靶材的直徑為5.0 cm、厚度為0.4 cm,它由ZnO(98 wt.%)和Ga2O3(3 wt.%)混合燒結(jié)而成,ZnO和Ga2O3的純度均為99.99%.濺射氣體為高純氬氣(純度:99.99 %),在ZnO:Ga 薄膜沉積之前,先將玻璃襯底放置于鍍膜系統(tǒng)的真空室中,待氣壓抽至大約5.0×10-4Pa后通入氬氣,并先采用氬等離子體對(duì)襯底表面處理5 min,然后再對(duì)靶材表面預(yù)濺射10 min以去除其表面的雜質(zhì)和污染物.本實(shí)驗(yàn)中,制備ZnO:Ga半導(dǎo)體薄膜的工藝參數(shù)如下:靶材表面與襯底之間的距離為0.7 cm,射頻功率為170 W,工作壓強(qiáng)為0.5 Pa,氬氣流量為15 sccm,沉積時(shí)間為25 min.為了研究襯底溫度對(duì)ZnO:Ga薄膜性能的影響,實(shí)驗(yàn)過程中調(diào)節(jié)襯底溫度分別為200 ℃、300 ℃、400 ℃和500 ℃制備薄膜樣品,并將它們標(biāo)記為S1、S2、S3和S4.

1.3表征技術(shù)

在室溫(約25 ℃)和大氣條件下,通過德國(guó)Bruker公司生產(chǎn)的D8-ADVANCE型X射線衍射儀表征薄膜樣品的晶體結(jié)構(gòu),測(cè)試時(shí)所用輻射源為CuKα(λ=0.1541 nm),采用θ-2θ連續(xù)掃描方式,掃描角度為20~60°,掃描間隔為0.0167°,掃描速度為10 °/min,工作電壓為40 kV,工作電流為40 mA.

2結(jié)果與討論

圖1為不同襯底溫度時(shí)所制備ZnO:Ga薄膜樣品的XRD圖譜,由圖1可見,在20~60°的掃描范圍內(nèi),所有樣品都存在3個(gè)較強(qiáng)的衍射峰,其2θ位于31.5°、34.4°和56.2°附近,它們分別對(duì)應(yīng)于ZnO的(100)、(002)和(110)特征譜線,該結(jié)果與標(biāo)準(zhǔn)ZnO(JCPDS No. 36-1451)峰位數(shù)據(jù)相吻合[42,43],另外在圖1中沒有觀察到金屬Ga、Zn及其化合物的特征衍射峰,這些結(jié)果表明:Ga替代了Zn的位置,或者存在于六角晶格之中,或者分布在晶粒間界的區(qū)域,在XRD檢測(cè)范圍內(nèi)沒有生成其它新的物相,所有薄膜樣品均為單相的六角纖鋅礦型ZnO多晶結(jié)構(gòu).觀察圖1中ZnO:Ga樣品的衍射峰強(qiáng)度可以看出,所有薄膜的(002)衍射峰強(qiáng)度均遠(yuǎn)遠(yuǎn)大于其它衍射峰的強(qiáng)度,結(jié)果說明所制備的ZnO:Ga樣品沿(002)方向均具有明顯的結(jié)晶擇優(yōu)取向性.

表1總結(jié)了不同襯底溫度下所制備ZnO:Ga薄膜樣品的衍射峰強(qiáng)度,可以看出,襯底溫度升高時(shí),(100)和(110)衍射峰的強(qiáng)度變化不明顯,而(002)衍射峰的強(qiáng)度(I(002))變化卻很顯著,由表1可見,當(dāng)襯底溫度從200 ℃升高到400 ℃時(shí),(002)峰的衍射強(qiáng)度(I(002))大幅度增加,但是當(dāng)襯底溫度進(jìn)一步從400 ℃升高至500 ℃時(shí),(002)峰的衍射強(qiáng)度I(002)反而減小.當(dāng)襯底溫度為400 ℃時(shí),ZnO:Ga薄膜具有最大的(002)衍射峰強(qiáng),高達(dá)28303 cps.(002)晶面的衍射強(qiáng)度I(002)與薄膜沿c軸垂直于襯底的生長(zhǎng)取向密切相關(guān),這種結(jié)晶取向有利于電荷的遷移.

圖1 所有ZnO:Ga樣品的XRD圖譜 Fig.1 XRD patterns of all the ZnO:Ga samples

樣品I(100)/cpsI(002)/cpsI(110)/cpsS14122298S238271011S353283039S432907110

根據(jù)Mueller修正的Harris方法,可以采用(hkl)晶面的織構(gòu)系數(shù)(TC(hkl))來衡量晶體的擇優(yōu)取向程度,TC(hkl)的數(shù)值越大,則說明(hkl)晶面的擇優(yōu)取向程度就越高.根據(jù)文獻(xiàn)[44],TC(hkl)的計(jì)算公式定義如下:

(1)

(1)式中,h、k、l為衍射晶面指數(shù),TC(hkl)為(hkl)晶面的織構(gòu)系數(shù),I(hkl)和I0(hkl)分別為薄膜樣品與標(biāo)準(zhǔn)ZnO樣品(JCPDS No. 36-1451)在(hkl)晶面的衍射峰強(qiáng)度,N為計(jì)算時(shí)所取的衍射峰數(shù)目.根據(jù)XRD測(cè)試數(shù)據(jù)可以計(jì)算ZnO:Ga薄膜樣品各個(gè)晶面(hkl)的織構(gòu)系數(shù)TC(hkl)數(shù)據(jù).圖2給出了所有ZnO:Ga樣品三個(gè)晶面(100)、(002)和(110)的織構(gòu)系數(shù)TC(100)、TC(002)和TC(110),由圖2可知,對(duì)于這些樣品,其TC(100)小于0.03、TC(110)小于0.02,而TC(002)則大于2.95,即TC(002)的數(shù)值遠(yuǎn)遠(yuǎn)大于TC(100)和TC(110),說明了本實(shí)驗(yàn)所制備的ZnO:Ga薄膜都具有明顯的(002)晶面擇優(yōu)取向生長(zhǎng)特性.從圖2還可看出,襯底溫度的變化對(duì)TC(002)數(shù)值也具有明顯的影響,當(dāng)襯底溫度從200 ℃升高至500 ℃時(shí),織構(gòu)系數(shù)TC(002)的值呈現(xiàn)出“先增加、后減小”的變化趨勢(shì),當(dāng)襯底溫度為400 ℃時(shí),ZnO:Ga薄膜具有最大的TC(002)值(2.995),其(002)晶面的擇優(yōu)取向程度最高.

圖2 所有ZnO:Ga樣品的TC (100), TC (002)和TC (110)數(shù)值 Fig.2 The values of TC (100), TC (002) and TC (110) of all the ZnO:Ga samples

圖3 所有ZnO:Ga樣品的2θ, B和D數(shù)值 Fig.3 The values of 2θ, B and D of all the ZnO:Ga samples

圖3(a)和(b)分別給出了薄膜樣品(002)峰位2θ和對(duì)應(yīng)的半高寬(B)數(shù)據(jù),隨著襯底溫度的升高,2θ值逐漸增大,當(dāng)溫度高于400 ℃時(shí)其變化不明顯;而B值則是先迅速減小而后略有增大.結(jié)果表明:襯底溫度為400 ℃時(shí),ZnO:Ga樣品具有合適的(002)峰位2θ值和最小的(002)峰半高寬B,所對(duì)應(yīng)薄膜的結(jié)晶質(zhì)量最佳.薄膜樣品的平均晶粒尺寸(D)可以根據(jù)Debye-Scherrer公式[45,46]計(jì)算獲得:

(2)

(2)式中,λ為X射線波長(zhǎng)(λ=0.1541 nm),θ為最大衍射峰(002)晶面的Bragg角,B為對(duì)應(yīng)的半高寬,θ和B的單位為度(°).基于(002)晶面的XRD數(shù)據(jù),可得所有樣品的平均晶粒尺寸D如圖3(c)所示,由圖可見,晶粒尺寸D與襯底溫度密切相關(guān),當(dāng)襯底溫度從300 ℃升高至400 ℃時(shí),薄膜的晶粒尺寸D迅速增大(75.1 nm),但當(dāng)襯底溫度繼續(xù)升高時(shí),其晶粒尺寸D卻明顯減小,其原因在于:適當(dāng)提高襯底溫度能夠使濺射出來的原子/原子團(tuán)更容易形成小島,或更進(jìn)一步產(chǎn)生小島并聯(lián),從而導(dǎo)致晶粒增大.上述結(jié)果表明:選擇合適的襯底溫度對(duì)于ZnO:Ga薄膜的制備是非常重要的.

薄膜樣品的(002)峰的晶面間距(d)可由Bragg公式[47]計(jì)算:

(3)

由于ZnO為六角纖鋅礦結(jié)構(gòu),(hkl)晶面的晶格常數(shù)(c)可以根據(jù)方程(4)確定[47]:

(4)

對(duì)于ZnO的(002)晶面,其晶格常數(shù)c=2d.圖4給出了所有薄膜樣品(002)峰所對(duì)應(yīng)的晶面間距d和晶格常數(shù)c,可以看到,薄膜樣品的d和c均大于標(biāo)準(zhǔn)ZnO(JCPDS No. 36-1451)的數(shù)值(d0=0.2603 nm,c0=0.5206 nm)[42],并且它們隨著襯底溫度的升高而減小并逐漸接近于標(biāo)準(zhǔn)ZnO的數(shù)值.這是因?yàn)椋阂r底溫度升高時(shí),沉積粒子的能量增大,從而導(dǎo)致成膜時(shí)粒子更容易達(dá)到平衡位置,因此使得晶粒內(nèi)部應(yīng)力能夠更好地被釋放掉.根據(jù)Double-axis Stress模型[48],薄膜的殘余應(yīng)力(σf)可利用如下公式計(jì)算:

(5)

(6)

在(5)、(6)式中,Cij為標(biāo)準(zhǔn)ZnO樣品的彈性模量值[48],其中C11=208.8 GPa,C12=119.7 GPa,C13=104.2 GPa,C33=213.8 GPa,ε為薄膜樣品(002)方向的相對(duì)應(yīng)變,c0和c分別表示標(biāo)準(zhǔn)樣品與薄膜樣品的晶格常數(shù).由(5)式和(6)式可得,殘余應(yīng)力σf可以表示為:

σf=-232.8ε(GPa),

(7)

實(shí)際上,薄膜的殘余應(yīng)力σf是各種因素所引起應(yīng)力分量的總和,這些應(yīng)力分量包括起源于薄膜生長(zhǎng)過程中的結(jié)構(gòu)不完整性(如雜質(zhì)、空位、晶粒邊界、位錯(cuò)和層錯(cuò)等)、表面能態(tài)的存在和薄膜與襯底界面之間的晶格錯(cuò)配等諸多因素所決定的內(nèi)應(yīng)力(σin),以及薄膜與襯底的熱膨脹系數(shù)不同所引起的熱應(yīng)力(σth),即有:

σf=σin+σth,

(8)

(8)式中,熱應(yīng)力σth由下式確定[49]:

(9)

(9)式中,Ef和νf為薄膜樣品楊式模量和泊松比,T0和Ts分別為樣品測(cè)量時(shí)的環(huán)境溫度和制備薄膜時(shí)的溫度,αs和αf分別為襯底和薄膜樣品的熱膨脹系數(shù).圖5給出了所有薄膜樣品的殘余應(yīng)力σf和熱應(yīng)力σth數(shù)據(jù),可以看出,這些樣品的σf和σth均為負(fù)值,說明了薄膜的殘余應(yīng)力和熱應(yīng)力都為壓應(yīng)力.隨著襯底溫度的升高,σf值和σth值的變化趨勢(shì)相反,即σf值減小而σth值增大.例如:當(dāng)襯底溫度從200 ℃升高到400 ℃時(shí),σf值由2.653 GPa減小為0.185 GPa、σth值由0.117 GPa增大為0.250 GPa,可見,當(dāng)襯底溫度較低時(shí),σf值比σth值大得多,這表明殘余應(yīng)力σf主要決定于薄膜的內(nèi)應(yīng)力、而熱應(yīng)力σth的作用可以忽略;但是當(dāng)襯底溫度較高時(shí),熱應(yīng)力σth對(duì)殘余應(yīng)力σf的貢獻(xiàn)大大增加,其影響卻不能忽略.襯底溫度較低時(shí),沉積的ZnO:Ga薄膜中存在較多的間隙鋅原子和氧空位,從而導(dǎo)致薄膜沿c軸方向存在較大的壓應(yīng)力,而隨著襯底溫度的升高,吸附于襯底表面的原子遷移能力增強(qiáng),沉積原子更容易遷移到晶格中的平衡位置并改善薄膜的結(jié)晶質(zhì)量,進(jìn)而減少了薄膜中的鋅間隙,因此使薄膜中的壓應(yīng)力得以釋放.

圖4 所有ZnO:Ga樣品的d和c數(shù)值 Fig.4 The values of d and c of all the ZnO:Ga samples

圖5 所有ZnO:Ga樣品的σ f和σ th數(shù)值 Fig.5 The values of σ f and σ th of all the ZnO:Ga samples

3結(jié)語

采用高密度ZnO摻雜Ga2O3的陶瓷靶作為濺射源材料,利用射頻磁控濺射方法在普通玻璃襯底上沉積了ZnO:Ga半導(dǎo)體薄膜,研究了襯底溫度對(duì)薄膜樣品的結(jié)晶質(zhì)量和殘余應(yīng)力的影響.實(shí)驗(yàn)結(jié)果顯示:所有薄膜樣品都為六角纖鋅礦型的多晶結(jié)構(gòu),并具有(002)方向的擇優(yōu)取向生長(zhǎng)特性.襯底溫度對(duì)薄膜的結(jié)晶性能和殘余應(yīng)力具有顯著性的影響,隨著襯底溫度的升高,ZnO:Ga薄膜的(002)擇優(yōu)取向程度和平均晶粒尺寸都呈現(xiàn)“先增后減”的變化趨勢(shì),而薄膜的殘余壓應(yīng)力數(shù)值則單調(diào)減小.當(dāng)襯底溫度為400 ℃時(shí)薄膜具有較小的壓應(yīng)力、最大的織構(gòu)系數(shù)TC(002)和最好的結(jié)晶性能.這些結(jié)果表明選擇合適的襯底溫度對(duì)于沉積ZnO:Ga半導(dǎo)體薄膜是至關(guān)重要的.

參考文獻(xiàn)

[1]Burroughes J H, Bradley D D C, Brown A R, et al. Light-emitting diodes based on conjugated polymers [J]. Nature, 1990, 347 (6293): 539-541.

[2]Tang C W, VanSlyke S A. Organic electroluminescent diodes [J]. Appl Phys Lett, 1987, 51 (12): 913-915.

[3]Zhong Z Y, Jiang Y D. Surface treatments of indium-tin oxide substrates for polymer electroluminescent devices [J]. Phys Status Solidi A, 2006, 203 (15): 3882-3892.

[4]陳首部, 韋世良, 何翔, 等. 改性方法對(duì)氧化銦錫襯底表面形貌和化學(xué)組分的影響 [J]. 中南民族大學(xué)學(xué)報(bào): 自然科學(xué)版, 2009, 28 (4): 43-46.

[5]You Z Z,Hua G J,Lou S F.Optoelectrical characteristics of organic light-emitting devices fabricated with different cathodes [J]. Int J Electron, 2011, 98 (1): 129-135.

[6]馬濤, 黃毅, 馬健, 等. 溶膠-凝膠法制備CuAlO2多晶的結(jié)構(gòu)性能研究 [J]. 西南民族大學(xué)學(xué)報(bào): 自然科學(xué)版, 2012, 38 (5): 819-821.

[7]Patel N G, Patel P D, Vaishnav V S. Indium tin oxide (ITO) thin film gas sensor for detection of methanol at room temperature [J]. Sensor Actuat B-Chem, 2003, 96 (1-2): 180-189.

[8]Yi I-J, Kim J-H, Choi Y J, et al. A disposable biosensor with Prussian blue deposited electrode [J]. Microelectron Eng, 2006, 83 (4-9): 1594-1597.

[9]Mitsubayashi K, Wakabayashi Y, Tanimoto S, et al. Optical-transparent and flexible glucose sensor with ITO electrode [J]. Biosens Bioelectron, 2003, 19 (1): 67-71.

[10]劉霄, 曾廣根, 張靜全, 等. 反應(yīng)磁控濺射制備CdTe太陽(yáng)電池前電極ITO薄膜的性質(zhì)研究 [J]. 西南民族大學(xué)學(xué)報(bào): 自然科學(xué)版, 2014, 40 (2): 265-270.

[11]Tang C W. Two-layer organic photovoltaic cell [J]. Appl Phys Lett, 1986, 48 (2): 183-185.

[12]Kim J Y, Lee K, Coates N E, et al. Tandem polymer solar cells fabricated by all-solution processing [J]. Science, 2007, 317 (5835): 222-225.

[13]李襄宏, 唐定國(guó). 基于1,10-鄰菲羅啉衍生物的兩親性釕配合物的合成及其光電轉(zhuǎn)化性質(zhì) [J]. 中南民族大學(xué)學(xué)報(bào): 自然科學(xué)版, 2009, 28 (3): 9-13.

[14]Sio A D, Chakanga K, Sergeev O, et al. ITO-free inverted polymer solar cells with ZnO:Al cathodes and stable top anodes [J]. Sol Energy Mater Sol Cells, 2012, 98 (1): 52-56.

[15]顧錦華,鐘志有,何翔,等.真空退火處理對(duì)光敏薄膜及聚合物太陽(yáng)電池性能的影響[J].中南民族大學(xué)學(xué)報(bào):自然科學(xué)版,2009,28(3):30-33.

[16]Kim H, Horwitz J S, Kim W H, et al. Doped ZnO thin films as anode materials for organic light-emitting diodes [J]. Thin Solid Films, 2002, 420-421: 539-543.

[17]Cao H T, Sun C, Pei Z L, et al. Properties of transparent conducting ZnO:Al oxide thin films and their application for molecular organic light-emitting diodes [J]. J Mater Sci: Mater Electron, 2004, 14 (1): 169-174.

[18]Kim H, Piqué A, Horwitz J S, et al. Effect of aluminum doping on zinc oxide thin films grown by pulsed laser deposition for organic light-emitting devices [J]. Thin Solid Films, 2000, 377-378 (1): 798-802.

[19]孫奉?yuàn)? 惠述偉. 襯底溫度對(duì)射頻濺射沉積ZAO透明導(dǎo)電薄膜性能的影響 [J]. 中南民族大學(xué)學(xué)報(bào): 自然科學(xué)版, 2009, 28 (2): 10-13.

[20]Shih W-C,Wang T-L,Pen Y-K.Enhancement of characteristics of ZnO thin film surface acoustic wave device on glass substrate by introducing an alumina film interlayer [J]. App Surf Sci, 2012, 258 (9): 5424-5428.

[21]Phan D-T, Chung G-S. Fabrication and characteristics of a surface acoustic wave UV sensor based on ZnO thin films grown on a polycrystalline 3C-SiC buffer layer [J]. Curr Appl Phys, 2012, 12 (3): 521-524.

[22]Guo J, Zheng J, Song X, et al. Synthesis and conductive properties of Ga-doped ZnO nanosheets by the hydrothermal method [J]. Mater Lett, 2013, 97 (1): 34-36.

[23]Rao T P, Kumar M C S, Hussain N S. Effects of thickness and atmospheric annealing on structural, electrical and optical properties of GZO thin films by spray pyrolysis [J]. J Alloy Compd, 2012, 541 (2): 495-504.

[24]Reddy K T R, Reddy T B S, Forbes I,et al. Highly oriented and conducting ZnO:Ga layers grown by chemical spray pyrolysis [J]. Surf Coat Technol, 2002, 151-152 (1): 110-113.

[25]Minami T, Miyata T, Ohtani Y, et al. Effect of thickness on the stability of transparent conducting impurity-doped ZnO thin films in a high humidity environment [J]. Phys Status Solidi R, 2007, 1(1): R31-R33.

[26]Kim H, Horwitz J S, Kim W H, et al. Doped ZnO thin films as anode materials for organic light-emitting diodes [J]. Thin Solid Films, 2002, 420-421 (2): 539-543.

[27]Wang L, Swensen J S, Polikarpov E, et al. Highly efficient blue organic light-emitting devices with indium-free transparent anode on flexible substrates [J]. Org Electron, 2010, 11: 1555-1560.

[28]Gorrie C W, Sigdel A K, Berry J J, et al. Effect of deposition distance and temperature on electrical, optical and structural properties of radio-frequency magnetron-sputtered gallium-doped zinc oxide [J]. Thin Solid Films, 2010, 519 (1): 190-196.

[29]Liu H, Fang L, Tian D, et al. Different magnetothermoelectric behavior in Al- and Ga-doped ZnO thin films [J]. J Alloy Compd, 2014, 588 (2): 370-373.

[30]Kim Y H, Jeong J, Lee K S, et al. Effect of composition and deposition temperature on the characteristics of Ga doped ZnO thin films [J]. Appl Surf Sci, 2010, 257 (1): 109-115.

[31]Bie X, Lu J, Wang Y, et al. Optimization of parameters for deposition of Ga-doped ZnO films by DC reactive magnetron sputtering using Taguchi method [J]. Appl Surf Sci, 2011, 257 (10): 6125-6128.

[32]Park H-K, Kang J-W, Na S-I, et al. Characteristics of indium-free GZO/Ag/GZO and AZO/Ag/AZO multilayer electrode grown by dual target DC sputtering at room temperature for low-cost organic photovoltaics [J]. Sol Energy Mater Sol Cells, 2009, 93 (7): 1994-2002.

[33]Lin Y C, Yen W T, Shen C H, et al. Surface texturing of Ga-doped ZnO thin films by pulsed direct-current magnetron sputtering for photovoltaic applications [J]. J Electron Mater, 2012, 41(3): 442-450.

[34]Tsay C-Y, Wu C-W, Lei C-M, et al. Microstructural and optical properties of Ga-doped ZnO semiconductor thin films prepared by sol-gel process [J]. Thin Solid Films, 2010, 519 (6): 1516-1520.

[35]Tsay C-Y, Fan K-S, Lei C-M. Synthesis and characterization of sol-gel derived gallium-doped zinc oxide thin films [J]. J Alloy Compd, 2012, 512 (1): 216-222.

[36]Nam T, Lee C W, Kim H J, et al. Growth characteristics and properties of Ga-doped ZnO (GZO) thin films grown by thermal and plasma-enhanced atomic layer deposition [J]. Appl Surf Sci, 2014, 295 (2): 260-265.

[37]Saito K, Hiratsuka Y, Omata A, et al. Atomic layer deposition and characterization of Ga-doped ZnO thin films [J]. Superlattice Microst, 2007, 42 (1): 172-175.

[38]You Z Z, Hua G J. Structural, optical and electrical characterization of ZnO:Ga thin films for organic photovoltaic applications [J]. Mater Lett, 2011, 65 (1): 3234-3236.

[39]林慶祥, 黃毅. P型透明導(dǎo)電氧化物CuAlO2的研究進(jìn)展[J]. 西南民族大學(xué)學(xué)報(bào): 自然科學(xué)版, 2014, 40 (2): 256-260.

[40]Zheng X, Li J, Zhou Y. X-ray diffraction measurement of residual stress in PZT thin films prepared by pulsed laser deposition [J]. Acta Mater, 2004, 52 (5): 3313-3322.

[41]Hsiao C C, Hu Y C, Chang R C, et al. Residual stresses and mechanical properties of a ZnO pyroelectric sensor [J]. Theor Appl Fract Mech, 2009, 52 (1): 1-6.

[42]Raoufi D, Raoufi T. The effect of heat treatment on the physical properties of sol-gel derived ZnO thin films [J]. Appl Surf Sci, 2009, 255 (7): 5812-5817.

[43]Zhong Z Y, Zhang T. Microstructure and optoelectronic properties of titanium-doped ZnO thin films prepared by magnetron sputtering [J]. Mater Lett, 2013, 96 (2): 237-239.

[44]Valle G G, Hammer P, Pulcinelli S H, et al. Transparent and conductive ZnO:Al thin films prepared by sol-gel dip-coating [J]. J Eur Ceram Soc, 2004, 24 (4): 1009-1013.

[45]Hong R, Shao J, He H, et al. ZnO:Zn phosphor thin films prepared by face-to-face annealing [J]. J Cryst Growth, 2005, 284 (3-4) 347-352.

[46]黃濤, 李燦, 吳靜, 等. 四方形鈀納米片的控制合成 [J]. 中南民族大學(xué)學(xué)報(bào): 自然科學(xué)版, 2013, 32 (3): 5-7.

[47]Zhang T, Zhong Z. Effect of working pressure on the structural, optical and electrical properties of titanium-gallium co-doped zinc oxide thin films[J]. Mater Sci-Poland, 2013, 31(3): 454-461.

[48]Swapna R, Kumar M C S, The role of substrate temperature on the properties of nanocrystalline Mo doped ZnO thin films by spray pyrolysis [J]. Ceram Int, 2012, 38 (5): 3875-3883.

[49]Conchon F, Renault P O, Bourhis E L, et al. X-ray diffraction study of thermal stress relaxation in ZnO films deposited by magnetron sputtering [J]. Thin Solid Films, 2010, 519 (6): 1563-1567.

猜你喜歡
磁控濺射
C/C復(fù)合材料表面磁控濺射ZrN薄膜
俄用磁控濺射法制造燃料電池電解質(zhì)
2019高功率脈沖磁控濺射沉積薄膜技術(shù)與應(yīng)用會(huì)議將在蘭州召開
Zr含量對(duì)磁控濺射NiCrZr薄膜結(jié)構(gòu)及耐蝕性的影響
N2氣流量比對(duì)磁控濺射Mo-N涂層結(jié)構(gòu)和性能的影響
復(fù)雜腔體件表面磁控濺射鍍膜關(guān)鍵技術(shù)的研究
AZO薄膜理想表面形貌的制備與加工工藝優(yōu)化
工藝參數(shù)對(duì)直流磁控濺射法制備氧化鋁薄膜的試驗(yàn)研究
調(diào)制中頻高功率脈沖磁控濺射電源的設(shè)計(jì)
微波介質(zhì)陶瓷諧振器磁控濺射金屬化
土默特右旗| 招远市| 芦溪县| 黑龙江省| 陆川县| 平顶山市| 腾冲县| 南雄市| 娱乐| 连南| 华容县| 临西县| 赤壁市| 文山县| 梨树县| 溆浦县| 通州区| 二连浩特市| 余庆县| 榕江县| 美姑县| 个旧市| 靖西县| 鹤壁市| 广州市| 海城市| 大化| 台江县| 苍南县| 从江县| 高邮市| 平罗县| 新余市| 银川市| 绥化市| 怀集县| 五台县| 汨罗市| 谷城县| 武宣县| 会东县|