帶諾依曼邊界的非局部問(wèn)題非平凡解的存在性
周靜,殷紅燕
(中南民族大學(xué) 數(shù)學(xué)與統(tǒng)計(jì)學(xué)學(xué)院,武漢 430074)
摘要主要考慮一類帶諾依曼邊界的分?jǐn)?shù)階薛定諤方程的非平凡解的存在性,通過(guò)直接計(jì)算我們得到非局部算子的分部積分公式和格林公式.該問(wèn)題具有變分結(jié)構(gòu).通過(guò)驗(yàn)證該問(wèn)題滿足山路引理?xiàng)l件,證明了該問(wèn)題存在非平凡解的結(jié)論.
關(guān)鍵詞諾依曼問(wèn)題;分?jǐn)?shù)階非線性薛定諤方程;非局部法向?qū)?shù);非平凡解
收稿日期2014-10-27
作者簡(jiǎn)介周靜(1982-),女,講師,研究方向:非線性偏微分方程,E-mail:zhouj@mail.scuec.edu.cn
基金項(xiàng)目中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金資助項(xiàng)目(CZQ13017)
中圖分類號(hào)O175文獻(xiàn)標(biāo)識(shí)碼A
The Existence of Nontrivial Solution of a Nonlocal
Problem with Neumann Boundary
ZhouJing,YinHongyan
(College of Mathematics and Statistics, South-Central University for Nationalities, Wuhan 430074, China)
AbstractThe main purpose of this paper is to investigate the existence of nontrivial solution of a Neumann type problem for fractional Schrodinger equations.Through direct computation, we obtain the integration by parts formula and Green′s identity.The problem has a variational structure.Through verifying the problem satisfying the Mountain pass theorem, we prove the existence of nontrivial solution of this problem.
KeywordsNeumann problem;fractional nonlinear Schrodinger equation;nonlocal normal derivative;nontrivial solution
本文主要考慮如下分?jǐn)?shù)階非線性方程:
(1)
這里Cn,s是對(duì)應(yīng)于分?jǐn)?shù)階拉普拉斯算子(-Δ)s的標(biāo)準(zhǔn)化常數(shù),滿足:
在本文給出主要結(jié)果之前,先來(lái)回顧關(guān)于經(jīng)典條件下的一些工作,奇異的帶諾依曼邊界條件的次臨界指標(biāo)的非線性薛定諤方程如下:
(2)
1記號(hào)與預(yù)備知識(shí)
分?jǐn)?shù)階微分方程是許多工程和物理問(wèn)題中的抽象形式,在分形和多孔介質(zhì)的彌散、電解化學(xué)、半導(dǎo)體物理、凝聚態(tài)物理、粘彈性系統(tǒng)、生物數(shù)學(xué)及統(tǒng)計(jì)學(xué)等學(xué)科中有重要的應(yīng)用,從而使得分?jǐn)?shù)階微分方程的研究得以飛速發(fā)展. 分?jǐn)?shù)階微積分理論主要研究任意階數(shù)的微分、積分算子的特性及應(yīng)用,其發(fā)展幾乎與整數(shù)階微積分理論同步,是整數(shù)階微積分理論的延伸,而分?jǐn)?shù)階微分算子與整數(shù)階微分算子最主要的區(qū)別在于:分?jǐn)?shù)階微分算子為非局部算子而整數(shù)階微分算子為局部算子.
分?jǐn)?shù)階拉普拉斯算子中的s,s∈(0,1)是一個(gè)帶有|ξ|2s的偽梯度算子,精確的說(shuō):
(-Δ)su=F-1(|ξ|2sF(u)(ξ)),
(3)
其中F為傅里葉變換.設(shè)u∈H2s(Rn),那么由(3)式所定義的分?jǐn)?shù)階拉普拉斯算子與下面的公式等價(jià)[2]:
其中Cn,s是單位化常數(shù).
記γ(x,y)=Cn,s|x-y|-(n+2s).定義:
注意到K(x,y)=-K(y,x),且2K(x,y)·K(y,x)=γ(x,y).
x∈Rn.
通過(guò)直接計(jì)算不難得出[1],s滿足:
定義3對(duì)應(yīng)于分?jǐn)?shù)階拉普拉斯算子的交互算子N定義為:
x∈Ωc.
由以上定義我們可以推導(dǎo)出如下高斯型公式和分部積分公式:
∫Ωv(-Δ)sudx=∫R2nΩcsu·svdydx-
本文所考慮的問(wèn)題具有變分結(jié)構(gòu),令:
定義空間Hs(Ω)={u:Rn→R可測(cè),且u,vHs(Ω) <∞},它為Hilbert空間,范數(shù)為‖·‖2=·,·Hs(Ω) ,詳見(jiàn)文獻(xiàn)[1]中命題3.1 g=0,ε=1 的情形.由索伯列夫定理可知,在Hs(Ω)上可以定義等價(jià)范數(shù):
∫ΩV(x)u2dx.
顯然問(wèn)題(1)的弱解為如下泛函的臨界點(diǎn):
若u∈Hs(Ω)是問(wèn)題(1)的弱解,則對(duì)任意的v∈Hs(Ω),有:
∫R2n(Ωc)2(su·sv)(x,y)dxdy+
∫ΩV(x)uvdx-∫Ω|u|p-1uvdx=0.
(4)
由格林公式有:
∫R2n(Ωc)2(su·sv)(x,y)dxdy=
∫Ωv(-Δ)sudx-∫ΩcvN(su)dx,
最后一步具體由文獻(xiàn)[2]可得.從而(4)式變成:
∫Ω((-Δ)su+V(x)u-|u|p-1u)vdx-
∫ΩcvNsudx=0.
2主要結(jié)果及證明
引理1I的臨界點(diǎn)是問(wèn)題(1)的解.
證明對(duì)任意的v∈Hs(Ω),有:
I(u+tv)=I(u)+t(∫R2n(Ωc)2(su·sv)(x,
y)dxdy+∫ΩV(x)uvdx-∫Ω|u|p-1uvdx)+
p∫Ω|u+θtv|p-1v2dx).
其中θ∈(0,1),所以:
∫R2n(Ωc)2(su·sv)(x,y)dxdy+∫ΩV(x)uvdx-
∫Ω|u|p-1uvdx=u,vHs(Ω) -∫Ω|u|p-1uvdx.
從而可知若u∈Hs(Ω)是I的臨界點(diǎn),那么u∈Hs(Ω)是問(wèn)題(1)的弱解.
引理2I滿足PS緊性條件.
從而有‖un‖有界.
顯然有:
I′(un)-I′(u),un-uHs(Ω) →0,n→∞.
由索伯列夫不等式可得:
引理3I滿足山路引理結(jié)構(gòu).
證明由引理1可知泛函:
由于p>1,可找到r>0使得:
由山路引理[6]可知,I有臨界點(diǎn),從而問(wèn)題(1)有非平凡解.
參考文獻(xiàn)
[1]Dipierro S, Ros-Oton V, Valdinoci E. Nonlocal problems with Neumann boundary conditions[EB/OL]. [2014-07-11]. http://arxiv.org/abs/1407.3313v3.
[2]Nezza Eleonora Di, Palatucci G, Valdinoci E.
Hitchhiker′s guide to fractional Sobolev spaces[J]. Bull Sci Math, 2012,136:521-573.
[3]Lin C S, Ni W M, Takagi I. Large amplitude stationary solutions to a chemotaxis system[J]. J Differential Equations, 1988,72(1):1-27.
[4]Ambrosetti A, Malchiodi A, Ni W M. Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres I[J]. Comm Math Phys, 2003,235(3):427-466.
[5]Ambrosetti A, Rabinowitz P H. Dual variational methods in critical point theory and applications[J]. J Funct Anal,1973,14:349-381.
[6]Brezis H,Coron J M, Nirenberg L. Free vibrations for a nonlinear wave equation and a theorem of P. Rabinowtiz[J].Comm Pure Appl Math,1980,33:667-689.