王亭亭, 曹 慧, 徐 斐*, 袁 敏, 于勁松, 李 潔, 彭少杰, 王李偉
(1.上海理工大學(xué) 醫(yī)療器械與食品學(xué)院,上海 200093;2.上海市食品藥品監(jiān)督所,上海 200233)
?
饅頭中金黃色葡萄球菌生長(zhǎng)預(yù)測(cè)模型的建立
王亭亭1, 曹 慧1, 徐 斐1*, 袁 敏1, 于勁松1, 李 潔2, 彭少杰2, 王李偉2
(1.上海理工大學(xué) 醫(yī)療器械與食品學(xué)院,上海 200093;2.上海市食品藥品監(jiān)督所,上海 200233)
以傳統(tǒng)面制品饅頭作為研究對(duì)象,采用修正的Gompertz(SGompertz)和修正的Logistic(SLogistic)作為一級(jí)生長(zhǎng)模型,應(yīng)用Origin 9.0軟件分別擬合饅頭中金黃色葡萄球菌在10、15、25、30和37 ℃的生長(zhǎng)情況,獲得其最大比生長(zhǎng)速率(μmax)和遲滯期(λ)。采用平方根模型和二次多項(xiàng)式模型建立饅頭中金黃色葡萄球菌的二級(jí)生長(zhǎng)模型,并對(duì)該模型進(jìn)行驗(yàn)證。結(jié)果表明,SGompertz模型能較好地?cái)M合饅頭中金黃色葡萄球菌的生長(zhǎng)。以μmax建立的平方根和二次多項(xiàng)式模型,R2分別為0.931 5和0.932 0,偏差因子(Bf)分別為1.123 2和1.050 1,準(zhǔn)確因子(Af)分別為1.221 0和1.190 2,表明采用μmax進(jìn)行擬合時(shí),二次多項(xiàng)式模型的擬合效果較好;以遲滯期λ建立的平方根和二次多項(xiàng)式模型,R2分別為0.948 4和0.969 6,Bf分別為0.890 1和0.912 2,Af分別為1.541 1和1.180 3,表明采用遲滯期λ進(jìn)行擬合時(shí),二次多項(xiàng)式模型的擬合效果較好。本研究可為饅頭等傳統(tǒng)面制品的定量風(fēng)險(xiǎn)評(píng)估提供參考。
一級(jí)生長(zhǎng)模型;二級(jí)生長(zhǎng)模型;金黃色葡萄球菌;饅頭
金黃色葡萄球菌 (Staphylococcusaureus) 隸屬于葡萄球菌屬(Staphylococcus),不僅能夠引起皮膚感染[1-2],還容易導(dǎo)致細(xì)菌性食物中毒[3-8]。金黃色葡萄球菌的部分菌株可產(chǎn)生致病性腸毒素,該毒素是一種堿性蛋白,在高溫下很難消除,可耐受100 ℃煮沸30 min而不被破壞[9-13],其引起的中毒癥狀嚴(yán)重。饅頭是一類傳統(tǒng)面制品,營(yíng)養(yǎng)豐富,水分活度高,且加工銷售條件粗放,極適于金黃色葡萄球菌的生長(zhǎng),饅頭中金黃色葡萄球菌不合格的現(xiàn)象時(shí)有發(fā)生。我國(guó)目前已建立的微生物生長(zhǎng)預(yù)測(cè)模型大部分在培養(yǎng)基上完成,無(wú)法克服食品基質(zhì)本身對(duì)微生物生長(zhǎng)的影響,并且絕大部分只針對(duì)肉制品[14-17]、乳制品和蛋類等食品,對(duì)饅頭這類傳統(tǒng)特色面制品的研究較少。因而本研究選用SGompertz和SLogistic作為饅頭中金黃色葡萄球菌的一級(jí)生長(zhǎng)模型,應(yīng)用Origin 9.0軟件分別擬合金黃色葡萄球菌在10、15、25、30和37 ℃的生長(zhǎng)數(shù)據(jù),并以此獲得最大比生長(zhǎng)速率(μmax)和遲滯期(λ)。在此基礎(chǔ)上,采用平方根模型和二次多項(xiàng)式模型建立饅頭中金黃色葡萄球菌的二級(jí)生長(zhǎng)模型,研究結(jié)果可為饅頭等傳統(tǒng)面制品的定量風(fēng)險(xiǎn)評(píng)估提供參考。
1.1 材料
1.1.1 菌種來(lái)源、培養(yǎng)基及試劑 金黃色葡萄球菌菌株ATCC6538,購(gòu)自廣東省微生物研究所;饅頭購(gòu)自楊浦區(qū)的小型食品零售店面;Baird-Parker 瓊脂平板、腦心浸出液肉湯(BHI)、亞碲酸鉀卵黃增菌液、無(wú)菌均質(zhì)袋,青島高科園海博生物技術(shù)有限公司生產(chǎn);氯化鈉、硫酸鉀、硫酸銨、氯化鋇、氯化鉀(分析純?cè)噭?,購(gòu)自國(guó)藥集團(tuán)化學(xué)試劑有限公司。
1.1.2 儀器與設(shè)備 SW-CJ-1FD型潔凈工作臺(tái),蘇凈集團(tuán)蘇州安泰空氣技術(shù)有限公司;YXQ-LS-75SⅡ型立式壓力蒸汽滅菌鍋,上海博迅實(shí)業(yè)有限公司;DHG-9203A型電熱恒溫鼓風(fēng)干燥箱,上海華連醫(yī)療器械有限公司;SCIENTZ-09無(wú)菌均質(zhì)器,寧波新芝生物科技股份有限公司;HWS-150 型恒溫恒濕培養(yǎng)箱,上海比朗儀器有限公司;BCD-226K50型冰箱,TCL集團(tuán)股份有限公司;XW-80A型漩渦混合器,上海精科實(shí)業(yè)有限公司;FA2204B型電子天平,上海精密科學(xué)儀器有限公司。
1.2 方法
1.2.1 樣品制備、接種 將金黃色葡萄球菌接種到BHI營(yíng)養(yǎng)液中,每隔一段時(shí)間取出,在600 nm下測(cè)吸光值,同時(shí)用平板計(jì)數(shù)法計(jì)數(shù),建立吸光值與細(xì)菌數(shù)量之間的線性關(guān)系。當(dāng)菌種原液濃度至108cfu/mL(OD600=0.15)時(shí),用無(wú)菌生理鹽水將其梯度稀釋至104~105cfu/mL。 每份饅頭樣品取10 g,將其置于無(wú)菌托盤(pán)中,在無(wú)菌操作臺(tái)中正反面紫外殺菌各30 min。 取1 mL稀釋過(guò)的菌液均勻涂抹于殺菌后的饅頭上,使初始接種量為103~104cfu/g。將接種后的饅頭樣品分別置于無(wú)菌均質(zhì)袋中,置于10、15、25、30和37 ℃的恒溫培養(yǎng)箱中培養(yǎng)不同的時(shí)間。
1.2.2 金黃色葡萄球菌計(jì)數(shù)及理化指標(biāo)的測(cè)定 到達(dá)預(yù)設(shè)的培養(yǎng)時(shí)間后,從培養(yǎng)箱中取出無(wú)菌均質(zhì)袋。將 90 mL無(wú)菌生理鹽水加入均質(zhì)袋中,用均質(zhì)機(jī)均質(zhì)2 min。將均質(zhì)液梯度稀釋后,按照GB4789.10-2010《食品微生物學(xué)檢驗(yàn) 金黃色葡萄球菌檢驗(yàn)》中的平板計(jì)數(shù)法測(cè)定菌落數(shù)。
1.2.3 饅頭中金黃色葡萄球菌一級(jí)生長(zhǎng)模型的建立 根據(jù)實(shí)驗(yàn)得到的饅頭中金黃色葡萄球菌在不同溫度下的生長(zhǎng)數(shù)據(jù),選擇修正的 Gompertz (a)和修正的 Logistic 模型[18-21](b)為一級(jí)模型,用 Origin 9.0 軟件擬合饅頭在不同溫度下的金黃色葡萄球菌的生長(zhǎng)數(shù)據(jù),根據(jù)擬合得到的模型參數(shù),SGompertz模型選用(c)計(jì)算出μmax和(d)計(jì)算出λ。SLogistic模型選用(e)計(jì)算出μmax和(f)計(jì)算出λ。
lg(Nt/N0)=a×exp{-exp[-k×(t-xc)]} (a)
lg(Nt/N0)=a/{1+exp[-k×(t-xc)]} (b)
μmax=a×k/e(c)
λ=xc-1/k(d)
μmax=a×k/4 (e)
λ=xc-2/k(f)
式中:Nt、N0分別表示在時(shí)間t時(shí)和初始時(shí)間的微生物的數(shù)量(cfu/g);k為在時(shí)間xc的相對(duì)生長(zhǎng)速率(斜率);μmax為最大比生長(zhǎng)速率(lg(cfu/g)/h);a為穩(wěn)定期微生物數(shù)量與接種時(shí)刻微生物數(shù)量的差值;λ為遲滯期(h);xc為達(dá)到相對(duì)最大生長(zhǎng)速率所需的時(shí)間(h)。
1.2.4 饅頭中金黃色葡萄球菌二級(jí)生長(zhǎng)模型的建立 根據(jù)一級(jí)模型參數(shù)計(jì)算得到饅頭中金黃色葡萄球菌的λ和μmax,利用平方根模型(Square Root model)(g、h)和二次多項(xiàng)式模型[22](Quadratic Polynomial model)(i)分別擬合它們與溫度之間的關(guān)系,關(guān)系式如下:
μmaxorλ=a+bT+cT2(i)
式中:T是實(shí)驗(yàn)中的生長(zhǎng)溫度(℃);Tmin是理論上金黃色葡萄球菌生長(zhǎng)的最低溫度;μmax為最大比生長(zhǎng)速率(lg(cfu/g)/h);λ是遲滯期(h);a、b、c為模型的參數(shù)。
1.2.5 模型的可靠性評(píng)價(jià) 根據(jù)相關(guān)系數(shù)R2,并適當(dāng)結(jié)合殘差平方和RSS,可判斷一級(jí)模型擬合程度的好壞。選擇相關(guān)系數(shù)R2、準(zhǔn)確因子Af(k)、偏差因子Bf(j)對(duì)二級(jí)模型預(yù)測(cè)效果進(jìn)行驗(yàn)證和評(píng)價(jià)[23-24]。一般情況,偏差因子在0.75~1.25之間時(shí),模型可接受;準(zhǔn)確因子在1.1~1.9之間時(shí),模型可接受。
式中:observed表示實(shí)驗(yàn)實(shí)際測(cè)得的值;predicted表示根據(jù)所得模型預(yù)測(cè)得到的值;n代表觀測(cè)值個(gè)數(shù)(實(shí)驗(yàn)次數(shù))。
2.1 饅頭中金黃色葡萄球菌的一級(jí)生長(zhǎng)預(yù)測(cè)模型
采用SGompertz和SLogistic模型,應(yīng)用Origin 9.0軟件分別對(duì)金黃色葡萄球菌在5個(gè)溫度下的生長(zhǎng)情況進(jìn)行擬合(見(jiàn)圖1~5),并由此得到相應(yīng)的模型擬合參數(shù)(見(jiàn)表1)。結(jié)果表明,SGompertz模型和SLogistic模型都能較好地?cái)M合饅頭中金黃色葡萄球菌在不同溫度下的生長(zhǎng)狀況,SGompertz模型得到的10、15、25、30和37 ℃下的的R2值分別為0.996 8、0.997 8、0.999 1、0.999 1、0.997 0,RSS值分別為0.247 9、0.113 4、0.045 4、0.127 4、0.113 1。SGompertz模型的擬合度較高,且優(yōu)于SLogistic模型,因此選擇其作為金黃色葡萄球菌的最適一級(jí)生長(zhǎng)模型,并由此計(jì)算出最大比生長(zhǎng)速率和遲滯期。由表3可見(jiàn),隨著溫度的增加,金黃色葡萄球菌在饅頭中的最大比生長(zhǎng)速率呈上升趨勢(shì),而遲滯期呈下降趨勢(shì)。
圖1 SGompertz模型和SLogistic模型擬合的饅頭中金黃色葡萄球菌在10 ℃的生長(zhǎng)曲線Fig.1 Growth curves of Staphylococcus aureus in steamed bun at 10 ℃ from SGompertz and SLogistic model
圖3 SGompertz模型和SLogistic模型擬合的饅頭中金黃色葡萄球菌在25 ℃的生長(zhǎng)曲線Fig.3 Growth curves of Staphylococcus aureus in steamed bun at 25 ℃ from SGompertz and SLogistic model
圖4 SGompertz模型和SLogistic模型擬合的饅頭中金黃色葡萄球菌在30 ℃的生長(zhǎng)曲線Fig.4 Growth curves of Staphylococcus aureus in steamed bun at 30 ℃ from SGompertz and SLogistic model
圖5 SGompertz模型和SLogistic模型擬合的饅頭中金黃色葡萄球菌在37 ℃的生長(zhǎng)曲線Fig.5 Growth curves of Staphylococcus aureus in steamed bun at 37 ℃ from SGompertz and SLogistic model
表1 饅頭中金黃色葡萄球菌的一級(jí)生長(zhǎng)模型擬合參數(shù)
Table 1 The fitting parameters of Primary growth model ofStaphylococcusaureusin the steamed bun
溫度/℃模型分類系數(shù)axckRSSR210SGompertz4.3958105.54710.01880.13910.9968SLogistic4.2564126.55700.02980.24790.994315SGompertz5.069146.06390.04920.16470.9978SLogistic4.961155.06110.07650.11340.998525SGompertz4.81089.12520.22360.03910.9991SLogistic4.748110.72850.39710.04540.998930SGompertz4.97286.50020.32340.04070.9991SLogistic4.93327.88410.50930.12740.997337SGompertz4.96915.77890.34130.12800.9970SLogistic4.91417.06440.52940.11310.9973
表2 饅頭中金黃色葡萄球菌的最適一級(jí)生長(zhǎng)模型
Table 2 The optimal primary growth model ofStaphylococcusaureusin the steamed bun
溫度/℃SGompertz模型方程10lgNt=3.39+4.3958exp{-exp[-0.0188(t-105.5471)]}15lgNt=3.12+5.0691exp{-exp[-0.0492(t-46.0639)]}25lgNt=3.30+4.8108exp{-exp[-0.2236(t-9.1252)]}30lgNt=3.08+4.9728exp{-exp[-0.3234(t-6.5002)]}37lgNt=3.31+4.9691exp{-exp[-0.3413(t-5.7789)]}
表3 SGompertz模型得到的不同溫度下的生長(zhǎng)參數(shù)
Table 3 Kinetic growth parameters estimated by the SGompertz model at different temperatures
溫度/℃μmax/lg(cfu/g)/hλ/h100.030452.2989150.091725.7222250.39584.6538300.59163.4079370.62392.8488
2.2 饅頭中金黃色葡萄球菌的二級(jí)生長(zhǎng)預(yù)測(cè)模型
分別采用平方根和二次多項(xiàng)式模型作為二級(jí)模型,應(yīng)用Origin 9.0軟件分別對(duì)最大比生長(zhǎng)速率、遲滯期與溫度的關(guān)系進(jìn)行擬合,結(jié)果如圖6、7所示。
由圖6、7可見(jiàn),平方根模型和二次多項(xiàng)式模型都能較好地?cái)M合溫度與μmax及λ之間的關(guān)系。二次多項(xiàng)式模型的擬合結(jié)果較優(yōu),采用其擬合溫度與μmax之間的關(guān)系時(shí),R2為0.932 0;采用其擬合溫度與λ之間的關(guān)系時(shí),R2為0.969 6,因此選擇二次多項(xiàng)式模型為金黃色葡萄球菌的最適二級(jí)模型。
2.3 模型評(píng)價(jià)
利用偏差因子Bf和準(zhǔn)確因子Af驗(yàn)證模型的可靠度。Bf值在0.75~1.25范圍之內(nèi),Af在1.1~1.9之間,通常認(rèn)為該模型可以被接受。Af和Bf值越接近1,模型越可靠。R2則用來(lái)評(píng)價(jià)模型的擬合度,R2越接近1說(shuō)明預(yù)測(cè)模型擬合度越好。因此,本研究采用R2、Bf和Af對(duì)所建的平方根模型和二次多項(xiàng)式模型進(jìn)行評(píng)價(jià),結(jié)果如表4所示。由表4可知,在對(duì)饅頭中金黃色葡萄球菌生長(zhǎng)溫度與最大比生長(zhǎng)速率μmax之間的關(guān)系進(jìn)行擬合時(shí),平方根模型的Bf為1.123 2,Af為1.221 0,R2為0.931 5,二次多項(xiàng)式模型的Bf為1.050 1,Af為1.190 2,R2為0.932 0,由此可見(jiàn),二次多項(xiàng)式模型的Bf和Af更接近于1,且R2更接近于1,因此采用μmax進(jìn)行擬合時(shí)二次多項(xiàng)式模型的預(yù)測(cè)效果較好。
圖6 平方根模型(a)和二次多項(xiàng)式模型(b)擬合的饅頭中μmax與生長(zhǎng)溫度的關(guān)系曲線Fig.6 Square Root model(a) and Quadratic Polynomial model (b)of the maximum growth rate of Staphylococcus aureus at different temperatures in the steamed bun
圖7 平方根模型(a)和二次多項(xiàng)式模型(b)擬合的饅頭中λ與生長(zhǎng)溫度的關(guān)系曲線Fig.7 Square Root model(a) and Quadratic Polynomial model (b)of the lag time of Staphylococcus aureus at different temperatures in the steamed bun
生長(zhǎng)參數(shù)模型類型方程BfAfR2μmax平方根模型μmax=0.0248(T-1.9283)1.12321.22100.9315μmax二次多項(xiàng)式模型μmax=-2.9674×10-4T2+0.0384T-0.36051.05011.19020.9320λ平方根模型1/λ=0.0184(T-2.4365)0.89011.54110.9484λ二次多項(xiàng)式模型λ=0.1112T2-6.9219T+108.17690.91221.18020.9696
在對(duì)饅頭中金黃色葡萄球菌生長(zhǎng)溫度與遲滯期λ之間的關(guān)系進(jìn)行擬合時(shí),平方根模型的Bf為0.890 1,Af為1.541 1,R2為0.948 4,二次多項(xiàng)式模型的Bf為0.912 2,Af為1.180 2,R2為0.969 6,由此可見(jiàn)二次多項(xiàng)式模型的Bf和Af更接近于1,且R2更接近于1,因此采用λ進(jìn)行擬合時(shí)二次多項(xiàng)式模型的預(yù)測(cè)效果較好。
SGompertz模型能較好地?cái)M合饅頭中金黃色葡萄球菌在不同溫度(10、15、25、30和37 ℃)下的生長(zhǎng),其R2值都在0.99以上,RSS值均小于0.37,因此選擇SGompertz模型為金黃色葡萄球菌的一級(jí)生長(zhǎng)預(yù)測(cè)模型。在對(duì)金黃色葡萄球菌生長(zhǎng)溫度與其最大比生長(zhǎng)速率之間的關(guān)系進(jìn)行擬合時(shí),二次多項(xiàng)式模型的Bf為1.050 1,Af為1.190 2,R2為0.932 0,均接近于1,因此選擇二次多項(xiàng)式模型預(yù)測(cè)饅頭中金黃色葡萄球菌在不同溫度下的最大比生長(zhǎng)速率,對(duì)應(yīng)的二次多項(xiàng)式模型為μmax=-2.967 4×10-4T2+0.038 4T-0.360 5。在對(duì)金黃色葡萄球菌生長(zhǎng)溫度與其遲滯期之間的關(guān)系進(jìn)行擬合時(shí),二次多項(xiàng)式模型的Bf為0.912 2,Af為1.180 2,R2為0.969 6,因此選擇二次多項(xiàng)式模型預(yù)測(cè)饅頭中金黃色葡萄球菌在不同溫度下的生長(zhǎng)遲滯期,相應(yīng)的二次多項(xiàng)式模型為λ=0.111 2T2-6.921 9T+108.176 9。本研究可為饅頭等傳統(tǒng)面制品的定量風(fēng)險(xiǎn)評(píng)估提供參考。
[1] Isabel CM Fensterseife,Osmar N Silva,Uru Malik,et al.Effects of cyclotides against cutaneous infections caused byStaphylococcusaureus[J].Peptides,2015,63:38-42.
[2] Effat Abbasi Montazeri,Azar Dokht Khosravi,Abbas Jolodar,et al.Identification of methicillin-resistantStaphylococcusaureus(MRSA) strains isolated from burn patients by multiplex PCR[J].Burns,2015,41(3):590-594.
[3] 許振偉,韓奕奕,孟瑾,等.熟食肉制品中金黃色葡萄球菌風(fēng)險(xiǎn)評(píng)估基礎(chǔ)研究[J].包裝與食品器械,2012,30(5):40-41.
[4] Tara C Smith,Shylo E Wardyn.Human Infections withStaphylococcusaureusCC398[J].Current Environmental Health Reports,2015,2(1):41-51.
[5] Guanghui Li,Congming Wu,Xin Wang,et al.Prevalence and characterization of methicillin susceptibleStaphylococcusaureusST398 isolates from retail foods[J].International Journal of Food Microbiology,2015,196:94-97.
[6] P DiCiccio,A Vergara,A R Festino,et al.Biofilm formation byStaphylococcusaureuson food contact surfaces: Relationship with temperature and cell surface hydrophobicity[J].Food Control,2015,50:930-936.
[7] Nielsen LH,Jensen-Fangel S,Benfield T,et al.Risk and prognosis ofStaphylococcusaureusbacteremia among individuals with and without end-stage renal disease: a Danish, population-based cohort study[J].BMC Infect Dis,2015,15(1):6.
[8] Brittany L Fries,Carmelo Licitra,Antonio Crespo,et al.Infectious Diseases Consultation and the Management ofStaphylococcusaureusBacteremia[J].Clinical Infectious Diseases,2014,58(4):598-599.
[9] Balaban N, Rasooly A. Staphylococcal enterotoxins review[J].International Journal of Food Microbiology, 2000,61(1):1-10.
[10]V Carfora,A Caprioli,N Marri,et al.Enterotoxin genes, enterotoxin production, and methicillin resistance inStaphylococcusaureusisolated from milk and dairy products in Central Italy[J].International Dairy Journal,2015,42:12-15.
[11]Sakai F,Ihara H,Aoyama K,et al.Characteristics of enterotoxin H-producingStaphylococcusaureusisolated from clinical cases and properties of the enterotoxin productivity[J].Journal of food protection,2008,71(9):1855-1860.
[12]Jing Hui,Yan Cao,F(xiàn)ang Xiao,et al.Staphylococcusaureusenterotoxin C2 mutants: biological activity assay in vitro[J].Journal of Industrial Microbiology and Biotechnology,2008,35(9):975-980.
[14]龍文玲,姚開(kāi),賈冬英,等.肉制品預(yù)測(cè)微生物模型的研究進(jìn)展[J].食品科技,2007,2007(6):27-30.
[15]劉超群,王宏勛,侯溫甫.低溫肉制品微生物控制與預(yù)測(cè)模型應(yīng)用研究進(jìn)展[J].食品科學(xué),2009,30(21):481-484.
[16]李苗云,田璐,趙改名,等.肉品微生物生長(zhǎng)預(yù)測(cè)模型研究進(jìn)展[J].肉類研究,2012,26(12):20-24.
[17]李飛燕,梁榮蓉,羅欣,等.冷卻肉中微生物生長(zhǎng)模型和貨架期預(yù)測(cè)模型的研究進(jìn)展[J].食品科學(xué),2009,30(z1):172-177.
[18]Alejandra Tomac,Rodolfo Horacio Mascheroni,María Isabel Yeannes.Modelling the effect of gamma irradiation on the inactivation and growth kinetics of psychrotrophic bacteria in squid rings during refrigerated storage. Shelf-life predictions[J].Journal of Food Engineering,2013,117(2):211-216.
[19]Sagdic,Osman.Kinetic Modeling ofEscherichiacoliO157:H7 Growth in Rainbow Trout Fillets as Affected by Oregano and Thyme Essential Oils and Different Packing Treatments[J].International Journal of Food Properties,2014,17(2):371-385.
[20]Liang Shen,Zhongtao An,Qingbiao Li,et al.Three-stage fermentation and kinetic modeling of bioflocculant byCorynebacteriumglutamicum[J].Chinese Journal of Chemical Engineering,2015,23(1):219-226.
[21]Ting Fang,Lihan Huang.Growth and survival kinetics ofListeriamonocytogenesin cooked egg whites[J].Food Control,2014,36(1):191-198.
[22]Z Hamidi-Esfahani,S A Shojaosadati,A Rinzema.Modelling of simultaneous effect of moisture and temperature onA.nigergrowth in solid-state fermentation[J].Biochemical Engineering Journal,2004,21(3):265-272.
[23]Ross T.Indices for performance evaluation of predictive model in food microbiology[J]. Journal of Applied Microbiology,1996,81(5):501-508.
[24]Te-Giffel M C, Zwietering M H.Validation of predictive models describing the growth ofListeriamonocytogenes[J]. International Journal of Food Microbiology,1999, 46(2): 135-149.
Establishment of Growth Model ofStaphylococcusaureusin Steamed Buns
WANG Ting-ting1, CAO Hui1, XU Fei1, YUAN Min1, YU Jin-song1,LI Jie2, PENG Shao-jie2, WANG Li-wei2
(1.Schl.ofMed.Instrum't&FoodEngin.,ShanghaiUni.ofSci. &Engin.,Shanghai200093;2.Inst.ofFood&DrugInspect.,Shanghai200233)
Traditional flour product of steamed bun was chosen as the object of study. Using the revised Gompertz (SGompertz) and revised Logistic (Slogistic) as a primary growth model to describe growth ofStaphylococcusaureusin steamed buns at different temperatures. In order to obtain the maximum specific growth rate (μmax) and lag phase (λ), Origin 9.0 software was used to fit the growth curve ofS.aureuswith variable storage temperatures (10 ℃, 15 ℃, 25 ℃, 30 ℃, and 37 ℃) and the square root model combine with quadratic polynomial model was used as a secondary growth model ofS.aureusand then the model was verified. The results showed that, SGompertz model can well fit the growth ofS.aureusin steamed buns. Theμmaxand λ values obtained from the SGompertz model were used to establish the secondary growth models. When μmaxwas used as an argument to establish the square root models and quadratic polynomial models respectively,R2values were 0.931 5 and 0.932 0 respectively;Bf1.123 2 and 1.050 1 respectively;Af1.221 0 and 1.190 2 respectively; suggested the quadratic polynomial model could better be employed to predictμmax. When λ was used as an argument to establish the square root models and quadratic polynomial models respectively,R2values were 0.948 4 and 0.969 6 respectively;Bf0.890 1 and 0.912 2 respectively;Af1.541 1 and 1.180 2 respectively; suggested the quadratic polynomial model could better be employed to predict λ. This study can provide theoretical basis for quantitative risk assessment in steamed buns and other traditional flour products.
primary growth model; secondary growth model;Staphylococcusaureus; steamed buns
上海市科委重點(diǎn)攻關(guān)項(xiàng)目(13391901400-3)
王亭亭 女,碩士研究生。研究方向?yàn)槭称钒踩L(fēng)險(xiǎn)評(píng)估。E-mail:wang151ting@163.com
* 通訊作者。女,博士,教授,博士生導(dǎo)師。研究方向?yàn)槭称钒踩L(fēng)險(xiǎn)評(píng)估。E-mail:xufei.first@263.net
2015-07-08;
2015-08-22
Q939.97;TS201.3
A
1005-7021(2015)06-0049-07
10.3969/j.issn.1005-7021.2015.06.009