徐 謂,李洪軍,賀稚非
(西南大學食品科學學院,重慶 400716)
乳酸菌中毒素-抗毒素系統(tǒng)研究進展
徐 謂,李洪軍,賀稚非*
(西南大學食品科學學院,重慶 400716)
毒素-抗毒素系統(tǒng)(toxin-antitoxin system,TAS)是廣泛存在于細菌和古細菌中的一類小型功能基因。目前已發(fā)現(xiàn)的TAS分為五大類型。超過75種乳酸菌(lactic acid bacteria,LAB)中的TAS被測定,TAS調(diào)控基因(改變細菌鞭毛類型、控制毒素毒性等)、應激環(huán)境下調(diào)節(jié)細菌代謝、在高濃度抗生素作用下形成持留細胞等調(diào)控機制已有較深入研究。本文概述近年來TAS分類發(fā)展及乳酸菌中TAS的研究情況,為深入研究乳酸菌中TAS并應用于食品工業(yè)提供理論依據(jù)。
乳酸菌;毒素-抗毒素系統(tǒng);應用
目前,已經(jīng)測定的乳酸菌基因序列超過75 種,近80 個乳酸菌的基因序列測定工作正在進行[1]。乳酸菌基因序列的測定使得越來越多的益生菌功能基因被發(fā)現(xiàn)[2]。2005年,S iezen等[2]對用于奶酪生產(chǎn)抗噬菌體菌株乳酸鏈球菌(Lactobacillus lactis)SK11中的4 個質(zhì)粒進行測序,首次發(fā)現(xiàn)其中有數(shù)個適應型基因,這些基因表現(xiàn)出能在基因水平轉移,而基因水平轉移與菌種的許多功能,如馬奶酒中分離得到的干酪乳桿菌靈活的糖利用功能[3]有明顯關聯(lián)。這些功能基因的發(fā)現(xiàn)為研制新工程菌并應用于食品工業(yè)奠定了堅實的理論基礎。
毒素-抗毒素系統(tǒng)(toxin-antitoxin system,TAS)廣泛存在于細菌染色體及質(zhì)粒上,是細菌中數(shù)量龐大的一類小型功能基因[4-5]。近20 a中,細菌TAS一直是研究熱點,主要集中在其生物學作用[6-7]、進化過程[8-9]、分類[10]、鑒定[11]、不同類別TAS的作用機理[12-13]等方面的研究。TAS是細菌基因中較靈活的組成部分,在基因活性調(diào)控中有重要意義,可調(diào)控毒素毒性、細胞應激反應等,對于維持細菌質(zhì)粒的垂直遺傳有不可替代的作用。
迄今為止,已發(fā)現(xiàn)的TAS分為五大類型,見表1。第一類TAS中,抗毒素為RNA,通過阻止毒素轉錄來阻礙毒素產(chǎn)生,例如hok-sok系統(tǒng)。第二類TAS幾乎存在于所有的細菌和古細菌中[14]??苟舅貫榈鞍踪|(zhì),通過與毒素蛋白結合形成復合物來完成阻礙毒素作用于細胞。目前已發(fā)現(xiàn)的第二類TAS有10 種以上,例如CcdA-CcdB系統(tǒng)。第三類TAS中抗毒素亦為RNA,但其作用機理不是阻礙毒素基因轉錄,而是直接與毒素蛋白形成復合物,從而抑制其活性。植物病菌歐文氏桿菌中的ToxI-ToxN是典型的第三類TAS[12]。第四類TAS的抗毒素可與毒素競爭性結合毒素在細胞中的靶位,并不直接與毒素形成復合體。CbeA-CbtA編碼的毒素、抗毒素作用于MreB和FtsZ的聚合過程,為第四類TAS[15]。第五類TAS中抗毒素蛋白裂解編碼毒素的mRNA。它由中國科學院南海海洋研究所Wang Xiaoxue等[10]發(fā)現(xiàn),到目前為止,僅此一例。該TAS由抗毒素GhoS和毒素GhoT組成,其中毒素GhoT是一種細胞膜裂解肽,而GhoS為一個單體。GhoS通過特異性切割GhoT mRNA來抑制GhoT的毒性。
表1 TAS分類概括Table 1 Summary of TAS types
此外,TAS研究過程中還觀察到一些特殊現(xiàn)象。TAS基因組成結構一般為抗毒素基因位于毒素基因上游,在hicA-hicB[18]、HigB-HigA[19]以及BrnT-BrnA[20]等系統(tǒng)中,抗毒素基因卻位于毒素基因下游。一般意義上講,TAS由毒素基因和抗毒素基因共同組成,但也有報道部分TAS由一個獨立基因控制[21-22]。存在由3 個基因組成的TAS,其典型例子為ω-ε-ζ。該系統(tǒng)只存在于革蘭氏陽性菌中,且其功能等尚不清楚[23]。抗毒素一般是41~206 個氨基酸組成的肽鏈,毒素一般由31~204個氨基酸組成,毒素通常比相應的抗毒素氨基酸鏈長。但HipB-HipA系統(tǒng)中毒素包含440 個氨基酸,遠多于普通毒素。這些發(fā)現(xiàn)打破了原有的認識,為TAS的發(fā)現(xiàn)和研究帶來困難。但同時也表明TAS形式的多樣性,為更深入地研究、開發(fā)和應用提供科學基礎。
近幾十年,乳酸菌作為益生菌廣泛應用于食品和藥品中。乳酸菌因能耐受胃酸和膽汁酸,存活至腸道,常被用作一些功能蛋白的載體[24]。乳酸桿菌屬中大約有38%的菌帶有質(zhì)粒[25],這些質(zhì)粒因賦予宿主多種特性而引起人們廣泛的研究興趣,例如質(zhì)粒攜帶的TAS基因可維持細胞質(zhì)粒的遺傳穩(wěn)定性。乳酸菌中TAS研究受到了相當?shù)闹匾暎诘诙惗舅?抗毒素系統(tǒng)資源網(wǎng)(a webbased resource for type 2 toxin-antitoxin loci in bacteria and archaea,TADB)上可查詢TAS信息的乳酸菌屬菌株共有18 個,兩個干酪乳桿菌菌株Lacto bacillus casei ATCC 334以及Lactobacillus casei BL23均可查詢,在它們的基因中已分別鑒定出了2 個和8 個TAS[26]。乳酸菌屬中,鼠李糖乳桿菌(Lactobacillus rhamnosus)中TAS研究最為成熟。
1.1 鼠李糖乳桿菌中毒素-抗毒素系統(tǒng)
鼠李糖乳桿菌(L. rhamnosus)屬乳酸菌屬,是世界上最著名的益生菌之一。臨床實驗表明,鼠李糖乳桿菌可通過多種渠道改善胃腸道功能。目前對鼠李糖乳桿菌的研究主要集中在GG菌株(L. rhamnosus GG,LGG)上,其相關研究文獻多于目前市場上絕大多數(shù)益生菌,在TAS相關方面的研究上占有優(yōu)勢。
基因序列測定結果表明,鼠李糖乳桿菌(L. rhamnosus)ATCC 53103與干酪乳桿菌(Lactobacillus casei)ATCC 334有極強的親緣關系[27],為干酪乳桿菌的亞種。截至2014年2月,已發(fā)現(xiàn)的經(jīng)過主要基因測序的鼠李糖乳桿菌菌株已有14 個,依次為ATCC 21052、HN001、CASL、Lc705、ATCC 8530、LMS2-1、R0011、MTCC 5462、LRHMDP2、LRHMDP3,2 個GG菌株[27]和LOCK908[28](之前認為是干酪乳桿菌),LR231[29],它們的來源各不相同。Klimina等[27]分析了10 個鼠李糖乳桿菌菌株11 個基因組中TAS的組成和分布情況,推斷出多種存在于鼠李糖乳桿菌(L. rhamnosus)中的TAS。截至目前,已經(jīng)證實存在于在鼠李糖乳桿菌(L. rhamnosus)中的TAS有6 種,其中一種(PemK1-A1Lrh)由TADB報道。Blower等[30]通過聚合酶鏈式反應(polymerase chain reaction,PCR)分析了取自15 個實驗室分離的鼠李糖乳桿菌(L. rhamnosus)的基因,證實了另外5 種(PemK2-A2Lrh、PemK3-RelB2Lrh、Rel-E1Lrh、RelB3-RelE3Lrh和YefM-YoeBLrh)TAS,為鼠李糖乳桿菌(L. rhamnosus)中TAS的研究做出了重要貢獻。
1.2 其他乳酸菌中毒素-抗毒素系統(tǒng)
除鼠李糖乳桿菌(L. rhamnosus)外,多種乳酸菌屬益生菌中TAS研究有較大進展。2014年,Emma等[31]在唾液乳桿菌(L. salivarius)JCM1046共生的質(zhì)粒pMP1046A以及pLMP1046中鑒定出數(shù)對完整的TAS,并確定其在質(zhì)粒pMP1046A基因上的位置:170398~170802為毒素基因、170802~171023為抗毒素基因。唾液乳桿菌(Lactobacillus salivarius)UCC118中的質(zhì)粒pSF118-20編碼pemI和pemK的同源物。在特定宿主中,細胞對質(zhì)粒pSF118-20中抗毒素基因(pemI)和毒素基因(pemK)具有依賴性。該TAS可保證細胞分裂后的穩(wěn)定性,同時也保障在翻譯過程中產(chǎn)生PemI以維持質(zhì)粒完整性。當該TAS基因不存在時,新產(chǎn)生的質(zhì)粒會出現(xiàn)裂口。這表明,PemI在質(zhì)粒pSF118-20轉錄翻譯過程對其有愈合作用。這解釋了前人無法獲得完整質(zhì)粒pSF118-20作為基因探針插入唾液乳桿菌(L. salivarius)UCC118的原因。研究者以此作為理論依據(jù)設計構造了新的質(zhì)粒pLS201以引入唾液乳桿菌(L. salivarius)UCC118中[32]。由TAS在細菌質(zhì)粒中的功能以及目前已經(jīng)獲得的研究成果可以推知,這些TAS對于JCM1046菌株的穩(wěn)定性以及其中共存的質(zhì)粒的穩(wěn)定遺傳有重要作用,但其具體作用機制及功能尚不明確,有待深入研究。
戊糖乳桿菌(Lactobacillus pentosus)能同時利用六碳糖以及五碳糖發(fā)酵產(chǎn)生乳酸,被認為是應用于發(fā)酵木質(zhì)纖維素水解液生產(chǎn)乳酸的潛力菌種[33]。根據(jù)戊糖乳桿菌(L. pentosus)KCA1基因序列,可推斷其包含7 種完整的TAS[34],其中屬于xre/HigA/VapI-HigB家族的TAS對其在抵抗抗生素尤其是氯霉素作用時有重要意義[35]。植物乳桿菌(Lactobacillus plantarum)廣泛存在于蔬菜、豬肉、魚、乳制品等多種食品中[36-39],經(jīng)基因測序發(fā)現(xiàn),其模型菌株植物乳桿菌(L. plantarum)WCFS1中僅含有一對完整的TAS[40],對其功能等尚無研究。
除乳酸菌外,其他的益生菌中TAS的研究也有較大進展,例如乳酸片球菌(Pediococcus acidilactici)中的質(zhì)粒pEOC01中TAS已有報道。因毒素、抗毒素結構的穩(wěn)定性有差異--抗毒素相對于毒素較不穩(wěn)定,在丟失質(zhì)粒的子代細胞中,抗毒素被誘導水解,釋放毒素從而殺死子代細胞,這一過程稱為分裂后致死效應(postsegregational killing,PSK)。PSK效應選擇性保留繼承親代質(zhì)粒的細菌,從而保證質(zhì)粒在細菌中穩(wěn)定遺傳。乳酸片球菌中的一對基因質(zhì)粒pEOC01中ORF13~ORF15與釀膿鏈球菌(Streptococcus pyogenes)質(zhì)粒pSM19035 中TAS(ω-ε-ζ)的操縱子同源性達99%[41]。這一操縱子控制的TAS(ω-ε-ζ)可影響質(zhì)粒穩(wěn)定性從而導致PSK。質(zhì)粒pSM19035中ORF14類似ε(抗毒素),而ORF15類似ζ(毒素)[42]。糞腸球菌(Enterococcus faecalis)質(zhì)粒pAD1中控制多肽類毒素Fst及其相似的幾種毒素的TAS也有較深入的研究[43]。
TAS對乳酸菌的特性,例如同一TAS基因的不同種乳酸菌中表現(xiàn)出的基因多樣性等研究是其應用的基礎,目前已有一定進展。學者們基于乳酸菌中TAS的特性對其進行開發(fā),目前,乳酸菌TAS已在鑒定乳酸菌種、測定人體益生菌群組成等方面應用。
基因序列測定結果表明,植物乳桿菌(Lactobacillus plantarum)WCSF1和植物乳桿菌(Lactobacillus plantarum)C11兩個菌株的pln基因序列完全相同,且其蛋白結構差異也不大。然而,它們基因位點的一端存在差異:WCFS1菌株基因plnGHSTUW后面還有兩個基因(plnXY),而C11菌株卻沒有,plnXY與TAS有極類似于一對TAS基因[44]。WCFS1-pln位點上plnXY的功能尚不清楚,但其可作為區(qū)別WCSF1和C11兩個菌株的重要序列。
研究表明,不同肺炎鏈球菌中TAS(yefM-yoeB)抗毒素(yefM)基因編碼同樣的抗毒素蛋白,但其啟動子序列卻有很大不同[45],這表明TAS基因結構的多態(tài)性與細菌菌株具有密切關系。俄羅斯聯(lián)邦科學家Alekseeva等[46]利用這種多態(tài)性將TAS(RelB-RelE和MazE-MazF)用于乳酸菌種屬的鑒定,并于2011年申請了一項專利。在2012年國際人體微生態(tài)大會上,Danilenko等[47]發(fā)表了關于利用TAS的多態(tài)性來鑒定人體益生菌組成的文章。
TAS是乳酸菌中重要功能基因,其具體功能及作用機制尚不完全明確,需進行大量的研究以進一步深入了解。乳酸菌中TAS的研究對乳酸菌中菌株的多樣化的元基因組分析以及乳酸菌開發(fā)有重要意義,為乳酸菌更好應用于食品工業(yè)開拓出廣闊的前景。
在細菌生長的穩(wěn)定期,如果受到高濃度的抗菌物質(zhì)作用,TAS可調(diào)控細菌形成持留細胞從而得以存活[48]。通過研究TAS對細胞的這一調(diào)控作用,可以利用基因手段改善乳酸菌株對外界環(huán)境的抵抗能力,比如使其能耐受某些抗生素或是抗菌劑,從而在壓力環(huán)境下維持菌群數(shù)量穩(wěn)定;或是使細菌更穩(wěn)定的遺傳,防止重要特性變異。近年來,白藜蘆醇由于其突出的抗氧化作用而得到食品行業(yè)的廣泛關注,但其本身有抑菌作用,若要將其應用于某些帶有益生菌的食品中,可通過改變TAS改善菌株對其耐受性從而得到對白藜蘆醇更優(yōu)的利用方法。研究乳酸菌種TAS為其更好地應用于食品生產(chǎn)提供依據(jù)。
TAS中兩個基因分別控制毒素與抗毒素產(chǎn)生,抗毒素的不穩(wěn)定性為毒素的積累提供條件。而抑制毒素的產(chǎn)生一方面可維持細胞增長,另一方面降低下游工程難度,提高產(chǎn)品的品質(zhì)。深入研究乳酸菌中TAS,針對毒素的產(chǎn)生調(diào)控或改變其TAS,對于控制發(fā)酵過程中毒素的產(chǎn)生以及提高工業(yè)菌株品質(zhì)等有重要意義。當抗毒素被大量水解時,游離毒素可大量產(chǎn)生從而導致細菌程序性死亡(programmed cell death,PCD)。醫(yī)學研究中,有學者提出利用TAS可引起PCD開發(fā)兩類非直接作用于TAS的抗菌藥物:1)抑制抗毒素基因轉錄;2)抑制葉酸代謝從而引起胸腺嘧啶缺乏[49]。Kolodkin-Gal等[50]研究發(fā)現(xiàn),在大腸桿菌細胞中,mazEF介導程序性死亡需要一種線性五肽的參與,并稱之為胞外致死因子。一般情況下,胞外致死因子EDF可通過使單個細胞死亡來維持群體生存。如果EDF相關理論得到證實,我們可以用同樣的思路探尋其他菌種的胞外致死因子加以利用。如,可以通過防止EDF進入細胞保護有益菌或是通過導入EDF抑制有害菌群生長。Williams等[51]提出可以利用TAS介導的PCD殺死細胞。例如,通過誘導蛋白酶產(chǎn)生加速抗毒素蛋白的水解。毒素-抗毒素基因的啟動子可以產(chǎn)生一種分子阻斷基因轉錄從而斷絕抗毒素蛋白的補給,而Lon以及Clp等蛋白水解酶會降解已經(jīng)產(chǎn)生的抗毒素,從而使毒素重新產(chǎn)生活性進而殺死細胞。
在發(fā)酵食品生產(chǎn)過程中,噬菌體污染是一個頻發(fā)的問題。它可能導致生產(chǎn)崩潰,引起巨額經(jīng)濟損失,甚至反復發(fā)生。研究發(fā)現(xiàn),TAS可使細菌對噬菌體產(chǎn)生排斥,Pecota等[52]報道了位于P1質(zhì)粒上的hok-sok排斥T4噬菌體的現(xiàn)象。通過特異性改變TAS基因,研制抗噬菌體菌株,對于食品中乳品發(fā)酵等多個行業(yè)具有重大意義。
TAS的多種功能特性使其具有廣闊的應用前景,但目前乳酸菌中TAS的相關基礎研究尚未完善,需進一步開展基礎研究工作,更明確地了解乳酸菌中TAS的遺傳背景、功能特性等,為其應用性研究奠定堅實的理論基礎。
乳酸菌中TAS數(shù)量龐大,清楚地了解其進化背景是進行基因改造的基礎。TAS在細菌基因中分布如此之廣的重要原因是其可通過基因水平轉移進行移動[53]。同一菌株中可發(fā)現(xiàn)同一TAS的多個拷貝。這成為TAS作為功能基因的優(yōu)越特性,但同時也可能為其應用于生產(chǎn)實踐帶來菌株遺傳穩(wěn)定性的問題。TAS可調(diào)控細胞在高濃度抗菌劑作用下形成持留細胞得以存活,其在細菌中的基因水平轉移可能導致TAS轉入到有害微生物中引起有害細菌能夠耐受高濃度抗菌劑。目前普遍認為由TAS引起的這一特性不會發(fā)展成為耐藥性[15],但仍須謹慎對待。食品生產(chǎn)中,一般不推薦應用帶有位于染色體轉座子或是質(zhì)粒上的基因等可傳播的耐抗生素基因的細菌。歐洲食品安全局推薦使用天然帶有抗藥性或是通過基因突變獲得抗藥性的菌株,不推薦通過植入基因獲得抗藥性的菌株[43]。以后在開發(fā)工程菌時也應將這一問題納入考慮范圍。
此外,有實驗證明,從同一原始菌株中分離的兩株菌基因測定結果有較大差異[1]。這說明乳酸菌在一定實驗條件下存在基因并不穩(wěn)定。這提示我們在菌株應用前必須重視菌株的穩(wěn)定性測試。在一定程度上講,新菌株與野生菌種功能同一性非常重要,一些關聯(lián)細菌典型特性的表現(xiàn)型缺失可能會誤導研究者,需引起注意。但是,TAS為一對基因,具有雙穩(wěn)性,可保證兩個基因同時表達,這又在一定程度上保障了該系統(tǒng)本身的穩(wěn)定性。
乳酸菌中TAS研究雖已經(jīng)取得一定成果,且表現(xiàn)出廣闊的應用前景,但仍不足以作為其廣泛應用的支撐依據(jù)。有待研究者們對已經(jīng)提出以及尚未發(fā)現(xiàn)的問題進行進一步深入研究和探討,使TAS不再局限于醫(yī)學應用,并且能夠更好地服務于食品行業(yè)。
[1] ZHANG Heping, CAI Yimin. Lactic acid bacteria: fundamentals and practice[M]. Germany: Springer, 2014: 205-247.
[2] SIEZEN R J, RENCKENS B, van SWAM I, et al. Complete sequences of four plasmids of Lactococcus lactis subsp. cremoris SK11 reveal extensive adaptation to the dairy environment[J]. Applied and Environmental Microbiology, 2005, 71(12): 8371-8382.
[3] ZHANG Wenyi, YU Dongliang, SUN Zhihong, et al. Complete genome sequence of Lactobacillus casei Zhang, a new probiotic strain isolated from traditional homemade koumiss in Inner Mongolia, China[J]. Journal of Bacteriology, 2010, 192(19): 5268-5269.
[4] OGURA T, HIRAGA S. Mini-F plasmid genes that couple hostcell division to plasmid proliferation[J]. Proceedings of the National Academy of Sciences of the United States of America, 1983, 80(15): 4784-4788.
[5] MASUDA Y J, MIYAKAWA K, NISHIMURA Y, et al. Chpa and Chpb, Escherichia coli chromosomal homologs of the pem locus responsible for stable maintenance of plasmid R100[J]. Journal of Bacteriology, 1993, 175(21): 6850-6856.
[6] BLOWER T R, SALMOND G P C, LUISI B. Balancing at survival’s edge: the structure and adaptive benefits of prokaryotic toxin-antitoxin partners[J]. Current Opinion in Structural Biology, 2011, 21(1): 109-118.
[7] van MELDEREN L, de BAST M S. Bacterial toxin-antitoxin systems: more than selfi sh entities?[J]. PLoS Genetics, 2009, 5(3): e1000437. doi: 10.1371/journal.pgen.1000437.
[8] BROWN B L, GRIGORIU S, KIM Y, et al. Three dimensional structure of the MqsR: MqsA complex: a novel ta pair comprised of a toxin homologous to RelE and an antitoxin with unique properties[J]. PLoS Pathogens, 2009, 5(12): e1000706. doi: 10.1371/journal.ppat.1000706.
[9] LEPLAE R, GEERAERTS D, HALLEZ R, et al. Diversity of bacterial type II toxin-antitoxin systems: a comprehensive search and functional analysis of novel families[J]. Nucleic Acids Research, 2011, 39(13): 5513-5525.
[10] WANG Xiaoxue, LORD D M, CHENG H Y, et al. A new type V toxin-antitoxin system where mRNA for toxin GhoT is cleaved by antitoxin GhoS[J]. Nature Chemical Biology, 2012, 8(10): 855-861.
[11] SEVIN E W, BARLOY-HUBLER F. RASTA-bacteria: a web-based tool for identifying toxin-antitoxin loci in prokaryotes[J]. Genome Biology, 2007, 8(8): R155. doi: 10.1186/gb-2007-8-8-r155.
[12] FINERAN P C, BLOWER T R, FOULDS I J, et al. The phage abortive infection system, ToxIN, functions as a protein-RNA toxinantitoxin pair[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(3): 894-899.
[13] DY R L, PRZYBILSKI R, SEMEIJN K, et al. A widespread bacteriophage abortive infection system functions through a Type IV toxin-antitoxin mechanism[J]. Nucleic Acids Research, 2014, 42(7): 4590-4605.
[14] TAfinder. A web-based tool to identify type II toxin-antitoxin loci in bacterial genome sequences[EB/OL]. [2014-11-25]. http://202.120.12.133/TAfi nder/Introduction.html.
[15] O’BRIEN K. Issues and challenges in compiling for the CBEA[J]. Acm Sigplan Notices, 2007, 42(7): 134.
[16] FOZO E M, MAKAROVA K S, SHABALINA S A, et al. Abundance of type I toxin-antitoxin systems in bacteria: searches for new candidates and discovery of novel families[J]. Nucleic Acids Research, 2010, 38(11): 3743-3759.
[17] HAYES F, MELDEREN L V. Toxins-antitoxins: diversity, evolution and function[J]. Critical Reviews in Biochemistry and Molecular Biology, 2011, 46(5): 386-408.
[18] JORGENSEN M G, PANDEY D P, JASKOLSKA M, et al. HicA of Escherichia coli defines a novel family of translation-independent mRNA interferases in bacteria and archaea[J]. Journal of Bacteriology, 2009, 191(4): 1191-1199.
[19] TIAN Q B, HAYASHI T, MURATA T, et al. Gene product identifi cation and promoter analysis of hig locus of plasmid Rts1[J]. Biochemical and Biophysical Research Communications, 1996, 225(2): 679-684.
[20] HEATON B E, HERROU J, BLACKWELL A E, et al. Molecular structure and function of the novel BrnT/BrnA toxin-antitoxin system of Brucella abortus[J]. Journal of Biological Chemistry, 2012, 287(15): 12098-12110.
[21] PANDEY D P, GERDES K. Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes[J]. Nucleic Acids Research, 2005, 33(3): 966-976.
[22] MITTENHUBER G. Occurrence of mazEF-like antitoxin/toxin systems in bacteria[J]. Journal of Molecular Microbiology and Biotechnology, 1999, 30(1): 295-302.
[23] de la HOZ A B, AYORA S, SITKIEWICZ I, et al. Plasmid copynumber control and better-than-random segregation genes of pSM19035 share a common regulator[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(2): 728-733.
[24] HIRAMATSU Y, YAMAMOTO M, SATHO T, et al. Recombinant fusion protein of cholera toxin B subunit with YVAD secreted by Lactobacillus casei inhibits lipopolysaccharide-induced caspase-1 activation and subsequent IL-1 beta secretion in Caco-2 cells[J]. BMC Biotechnology, 2014, 14(1): 1-38.
[25] WANG T T, LEE B H. Plasmids in Lactobacillus[J]. Critical Reviews in Biotechnology, 1997, 17(3): 227-272.
[26] Database Toxin-Antitoxin. Organism list of browse by organism[DB/OL]. [2014-11-25]. http://202.120.12.135/TADB2/ browse_org.php?alpha=L.
[27] KLIMINA K M, KJASOVA D K, POLUEKTOVA E U, et al. Identifi cation and characterization of toxin-antitoxin systems in strains of Lactobacillus rhamnosus isolated from humans[J]. Anaerobe, 2013, 22(10): 82-89.
[28] KORYSZEWSKA-BAGINSKA A, BARDOWSKI J, ALEKSANDRZAK-PIEKARCZYK T. Genome sequence of the probiotic strain Lactobacillus rhamnosus (formerly Lactobacillus casei) LOCK908[J]. Genome Announcements, 2014, 2(1): 114-120.
[29] AMBALAM P, PITHVA S, KOTHARI C, et al. Insight into the draft genome sequence of human isolate Lactobacillus rhamnosus LR231, a bacterium with probiotic potential[J]. Genome Announcements, 2014, 2(1): 111-114.
[30] BLOWER T R, SHORT F L, RAO F, et al. Identification and classifi cation of bacterial type III toxin-antitoxin systems encoded in chromosomal and plasmid genomes[J]. Nucleic Acids Research, 2 012, 40(13): 6158-6173.
[31] EMMA J R, BRIAN M F, MARCUS J C, et al. Unusual genome complexity in Lactobacillus salivarius JCM1046[J]. BMC Genomics, 2014, 15: 771. doi: 10.1186/1471-2164-15-771.
[32] FANG Fang, FLYNN S, LI Yin, et al. Characterization of endogenous plasmids from Lactobacillus salivarius UCC118[J]. Applied and Environmental Microbiology, 2008, 74(10): 3216-3228.
[33] BUSTOS G, MOLDES A B, CRUZ J M, et al. Influence of the metabolism pathway on lactic acid production from hemicellulosic trimming vine shoots hydrolyzates using Lactobacillus pentosus[J]. Biotechnology Progress, 2005, 21(3): 793-798.
[34] ANUKAM K C, MACKLAIM J M, GLOOR G B, et al. Genome sequence of Lactobacillus pentosus KCA1: vaginal isolate from a healthy premenopausal woman[J]. PLoS ONE, 2013, 8(3): e59239. doi: 10.1371/journal.pone.0059239.
[35] KOHANSKI M A, DWYER D J, HAYETE B, et al. A common mechanism of cellular death induced by bactericidal antibiotics[J]. Cell, 2007, 130(5): 797-810.
[36] ARYANTA R W, FLEET G H, BUCKLE K A. The occurrence and growth of microorganisms during the fermentation of fi sh sausage[J]. International Journal of Food Microbiology, 1991, 13(2): 143-155.
[37] AQUILANTI L, SANTARELLI S, SILVESTRI G, et al. The microbial ecology of a typical Italian salami during its natural fermentation[J]. International Journal of Food Microbiology, 2007, 120(2): 136-145.
[38] ERCOLINI D, HILL P J, DODD C E R. Bacterial community structure and location in Stilton cheese[J]. Applied and Environmental Microbiology, 2003, 69(6): 3540-3548.
[39] MUNDT J O, HAMMER J L. Lactobacilli on plants[J]. Applied Microbiology, 1968, 16(9): 1326-1340.
[40] SIEZEN R J, FRANCKE C, RENCKENS B, et al. Complete resequencing and reannotation of the Lactobacillus plantarum WCFS1 genome[J]. Journal of Bacteriology, 2012, 194(1): 195-196.
[41] ZIELENKIEWICZ U, CEGLOWSKI P. The toxin-antitoxin system of the streptococcal plasmid pSM19035[J]. Journal of Bacteriology, 2005, 187(17): 6094-6105.
[42] GEORGES B, PAUL B, de JOAQUIM B B, et al. Update of the criteria used in the assessment of bacterial resistanc e to antibiotics of human or veterinary importance[J]. The EFSA Journal, 2008, 732: 1-15.
[43] WEAVER K E, REDDY S G, BRINKMAN C L, et al. Identifi cation and characterization of a family of toxin-antitoxin systems related to the Enterococcus faecalis plasmid pAD1 par addiction module[J]. Microbiology, 2009, 155(9): 2930-2940.
[44] DIEP D B, STRAUME D, KJOS M, et al. An overview of the mosaic bacteriocin pln loci from Lactobacillus plantarum[J ]. Peptides, 2009, 30(8): 1562-1574.
[45] CHAN Waiting, NIETO C, HARIKRISHNA J A, et al. Genetic regulation of the yefm-yoeb toxin-antitoxin locus of Streptococcus pneumoniae[J]. Journal of Bacteriology, 2011, 193(18): 4612-4625.
[46] ALEKSEEVA MG D V, KLIMINA K M. The use of genes of toxin-antitoxin systems RelBE and MazEF for species and strain identification in Lactobacillus: Russian Federation, 2011152586[P]. 2011[2014-11-20].
[47] DANILENKO V, AVERINA O, ALEKSEEVA M, et al. The toxinantitoxin system gene polymorphism as a marker for specie s and strain identifi cation of the probiotic component of human microbiome[C]. Paris: Proceedings of the International Human Microbiome Congress, 2012.
[48] HARRISON J J, WADE W D, AKIERMAN S. The chromosomal toxin gene yafQ is a determinant of multidrug tolerance for Escherichia coli growing in a biofi lm[J]. Antimicrobial Agents and Chemotherapy, 2009, 53(6): 2253-2258.
[49] GHAFOURIAN S, RAFTARI M, NOURKHODA, et al. Toxinantitoxin systems: classification, biological function and application in biotechnology[J]. Current Issues in Molecular Biology, 2014, 16(1): 9-14.
[50] KOLODKIN-GAL I, HAZAN R, GAATHON A, et al. A linear pentapeptide is a quorum-sensing factor required for mazEF-mediated cell death in Escherichia coli[J]. Science, 2007, 318(10): 652-655.
[51] WILLIAMS J J, HERGENROTHER P J. Artificial activation of toxin-antitoxin systems as an antibacterial strategy[J]. Trends in Microbiology, 2012, 20(6): 291-298.
[52] PECOTA D C, WOOD T K. Exclusion of T4 phage by the hok/sok killer locus from plasmid R1[J]. Journal of Bacteriology, 1996, 178(7): 2044-2050.
[53] BRZOZOWSKA I, ZIELENKIEWICZ U. Regulation of toxinantitoxin systems by proteolysis[J]. Plasmid, 2013, 70(1): 33-41.
Advances in Toxin-Antitoxin System of Lactic Acid Bacteria
XU Wei, LI Hongjun, HE Zhifei*
(College of Food Science, Southwest University, Chongqing 400716, China)
As a functional gene, toxin-antitoxin system (TAS) is present widely in bacteria and archaea. Five types of TAS have been discovered until now. The TAS in more than 75 species of Lactobacillus rhamnosus has been identifi ed. TAS could regulate the genes such as changing the type of bacterial flagellum and controlling the toxicity of toxins, change the metabolism of bacteria under stress conditions, and metamorphose cells into persistent cells in medium with high concentration of antibiotics. In this review, we summarize recent progress in studying the TAS of L. rhamnosusin and its classifi cation, aiming to provide a solid theoretical foundation for future research and application in the food industry.
Lactobacillus rhamnosus; toxin-antitoxin syste m (TAS); application
TS201.3
A
1002-6630(2015)19-0260-05
10.7506/spkx1002-6630-201519047
2014-12-09
國家自然科學基金面上項目(31071566)
徐謂(1991-),女,碩士研究生,研究方向為食品科學。E-mail:xu.wei47@yahoo.com
*通信作者:賀稚非(1960-),女,教授,博士,研究方向為食品科學。E-mail:2628576386@qq.com