張 玉,李洪軍,竇華亭,賀稚非
(1.西南大學(xué)食品科學(xué)學(xué)院,重慶 400715;2.重慶市特色食品工程技術(shù)研究中心,重慶 400715;3.西南大學(xué)柑桔研究所,重慶 400712)
川皮苷體外抗氧化活性及對(duì)腫瘤細(xì)胞生長(zhǎng)抑制作用
張 玉1,2,李洪軍1,*,竇華亭3,賀稚非1
(1.西南大學(xué)食品科學(xué)學(xué)院,重慶 400715;2.重慶市特色食品工程技術(shù)研究中心,重慶 400715;3.西南大學(xué)柑桔研究所,重慶 400712)
目的:研究川皮苷的抗氧化活性及對(duì)腫瘤細(xì)胞生長(zhǎng)抑制作用。方法:在體外測(cè)定川皮苷對(duì)1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)自由基、羥自由基(·OH)和超氧陰離子自由基的清除能力;通過(guò)四甲基偶氮唑藍(lán)(methyl thiazolyl tetrazolium,MTT)法篩選對(duì)川皮苷作用敏感的腫瘤細(xì)胞株,并用倒置顯微鏡和透射電鏡觀察敏感細(xì)胞株在川皮苷作用之后細(xì)胞結(jié)構(gòu)的變化。結(jié)果:川皮苷在體外對(duì)DPPH自由基、·OH和O2-·都具有清除能力,其中對(duì)·OH的清除能力突出。同時(shí),人胰腺癌細(xì)胞株P(guān)ANC-1對(duì)川皮苷作用敏感,即川皮苷可抑制PANC-1細(xì)胞的生長(zhǎng);透射電鏡觀察發(fā)現(xiàn)川皮苷可使PANC-1細(xì)胞的細(xì)胞核膜破裂,胞質(zhì)溶出,形成凋亡小體。結(jié)論:川皮苷具有顯著的體外抗氧化活性,并且可以抑制PANC-1細(xì)胞的增殖,在功能食品等領(lǐng)域具有良好的應(yīng)用前景。
川皮苷;抗氧化;細(xì)胞增殖
自由基是人體進(jìn)行生命活動(dòng)時(shí)所產(chǎn)生的一種活性分子,可以調(diào)節(jié)細(xì)胞間的信號(hào)傳導(dǎo)和細(xì)胞生長(zhǎng)[1-3]。但自由基的過(guò)度氧化會(huì)引起蛋白質(zhì)、核酸等生命物質(zhì)的損壞,對(duì)機(jī)體造成損傷,細(xì)胞癌變的過(guò)程中就有自由基的參與[4-10]。因此,清除機(jī)體內(nèi)過(guò)多的自由基對(duì)癌癥的發(fā)生和發(fā)展有著至關(guān)重要的作用[11-15]。川皮苷(nobiletin,NOB)是柑橘屬植物中的特征黃酮,是一種多甲氧基黃酮類(lèi)化合物[16-23]。有研究表明,多甲氧基黃酮中甲氧基的數(shù)量和取代基位置決定了其抗氧化能力的強(qiáng)弱,其中NOB是具有強(qiáng)抗氧化活性的多甲氧基黃酮[11]。
本實(shí)驗(yàn)以NOB為材料,比較不同濃度的NOB對(duì)不同種類(lèi)自由基的清除能力,并采用VC作為對(duì)照來(lái)考察NOB抗氧化能力的強(qiáng)弱。同時(shí)通過(guò)研究NOB對(duì)人乳腺癌細(xì)胞株MCF-7、人肺癌細(xì)胞株A549、人胰腺癌細(xì)胞株P(guān)ANC-1生長(zhǎng)活力的影響,篩選對(duì)NOB敏感的細(xì)胞株。通過(guò)NOB與敏感細(xì)胞株的時(shí)-效、量-效關(guān)系確定最適培養(yǎng)時(shí)間和最適NOB添加量,并將NOB作用于敏感細(xì)胞株,對(duì)細(xì)胞形態(tài)、抑制效果等指標(biāo)進(jìn)行考察,探討NOB對(duì)敏感細(xì)胞株的生長(zhǎng)抑制作用。
1.1 材料與試劑
川皮苷(NOB)從甜橙皮渣中分離得到(甜橙皮渣由重慶市三峽果業(yè)有限公司提供),精制后經(jīng)高效液相色譜檢測(cè)純度為98%;MCF-7、A549、PANC-1細(xì)胞株上海中科院細(xì)胞庫(kù)。
1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)、VC、四甲基偶氮唑藍(lán)(methyl thiazolyl tetrazolium,MTT) 美國(guó)Sigma公司;磷酸鹽緩沖液(phosphate buffered saline,PBS)、RPMI-1640培養(yǎng)基、MEM培養(yǎng)基 美國(guó)Gibco公司;胎牛血清 天津TBD公司;雙抗(青霉素、鏈霉素)、胰酶 北京賽馳生物公司;其他常規(guī)試劑均為分析純。
1.2 儀器與設(shè)備
DFM-20C熒光倒置顯微鏡 日本Olympus公司;TECNAI-10透射電子顯微鏡 荷蘭Philips公司;DG3022酶標(biāo)儀 美國(guó)Bio-Tek公司;TU-1901雙光束紫外-可見(jiàn)分光光度計(jì) 北京普析通用儀器有限責(zé)任公司;UV-7504紫外分光光度計(jì) 上海欣茂有限公司。
1.3 方法
1.3.1 川皮苷體外抗氧化能力的測(cè)定
1.3.1.1 DPPH自由基清除能力的測(cè)定
將2 mL濃度分別為0.05、0.1、0.2、0.4、0.8、1.6 mmol/L的NOB溶液(以VC溶液作為陽(yáng)性對(duì)照)與2 mL 2×10?4mol/L DPPH溶液混合后搖勻,避光放置30 min,測(cè)定吸光度A1;對(duì)照組以無(wú)水乙醇替代樣品,其他操作相同,測(cè)定吸光度A0;空白組為2 mL樣品與2 mL無(wú)水乙醇(替代DPPH溶液)混合,其他操作相同,測(cè)定吸光度A2。按照公式(1)計(jì)算不同濃度的NOB溶液和VC溶液對(duì)DPPH自由基的清除率。
1.3.1.2 羥自由基(·OH)清除能力的測(cè)定
取0.75 mL 5 mmol/L的鄰二氮菲無(wú)水乙醇溶液,加入2 mL磷酸鹽緩沖液(phosphate buffered saline,PBS)(0.75 mol/L,pH 7.4),混合均勻后,加入0.5 mL 7.5 mmol/L FeSO4溶液和2.5 mL濃度分別為0.125、0.25、0.50、0.75、1.00、1.25 μmol/L NOB溶液(以VC溶液作為陽(yáng)性對(duì)照),混合均勻,再加入0.5 mL體積分?jǐn)?shù)1%的H2O2,于37 ℃水浴60 min,在536 nm波長(zhǎng)處測(cè)定吸光度AS。對(duì)照組以2.5 mL蒸餾水代替樣品,其他操作相同,測(cè)定吸光度AP。空白組以2.5 mL蒸餾水代替樣品,0.5 mL蒸餾水代替0.5 mL H2O2,其他操作相同,測(cè)定吸光度AB。按照公式(2)計(jì)算不同濃度的NOB溶液和VC溶液對(duì)·OH的清除率。
1.3.1.3 超氧陰離子自由基(O2-·)清除能力的測(cè)定
在試管中加入5 mL Tris-HCl(0.05 mol/L,pH 8.2)緩沖溶液,再緩慢加入1 mL濃度分別為0.05、0.1、0.2、0.4、0.8、1.6 mmol/L NOB溶液(以VC溶液作為陽(yáng)性對(duì)照),混合均勻后置于25 ℃條件下放置20 min。然后加入0.2 mL 2 mmol/L鄰苯三酚溶液,混合均勻,反應(yīng)4 min后,置于325 nm波長(zhǎng)處測(cè)定其吸光度A1??瞻捉M以1 mL蒸餾水代替樣品溶液,其他操作相同,測(cè)定吸光度A0。按照公式(3)計(jì)算不同濃度的NOB溶液和VC溶液對(duì)O2-·的清除率。
1.3.2 細(xì)胞培養(yǎng)
MCF-7細(xì)胞:含10%(體積分?jǐn)?shù),下同)胎牛血清的MEM培養(yǎng)基,添加1%雙抗;A549細(xì)胞:含10%胎牛血清的RPMI-1640培養(yǎng)基,添加1%雙抗;PANC-1細(xì)胞:含10%胎牛血清的RPMI-1640培基,添加1%雙抗。3 種細(xì)胞株同時(shí)置于37 ℃、5% CO2、飽和濕度的細(xì)胞培養(yǎng)箱中培養(yǎng),在倒置顯微鏡下觀察細(xì)胞貼壁情況,確定稀釋倍數(shù),用PBS反復(fù)清洗,以0.25%胰酶消化,進(jìn)行傳代培養(yǎng)。
1.3.3 細(xì)胞生長(zhǎng)活力測(cè)定
細(xì)胞生長(zhǎng)活力測(cè)定方法參照文獻(xiàn)[24]。取對(duì)數(shù)生長(zhǎng)期的細(xì)胞,以103~105個(gè)/孔接種于96 孔板。置于37 ℃、5% CO2、飽和濕度的細(xì)胞培養(yǎng)箱中培養(yǎng)。待細(xì)胞生長(zhǎng)達(dá)到60%~70%,加入NOB終濃度分別0、2.5、5、10、20、40、60 μmol/L的新培養(yǎng)基,分別培養(yǎng)至24、48 h后,每孔加MTT溶液20 μL;繼續(xù)孵育4 h,每孔加二甲基亞砜(dimethyl sulfoxide,DMSO)150 μL,將96 孔板在脫色搖床上振蕩10 min,測(cè)定490 nm波長(zhǎng)處的吸光度,按照公式(4)計(jì)算細(xì)胞活力。以NOB濃度為橫坐標(biāo),細(xì)胞活力為縱坐標(biāo)作圖,篩選敏感細(xì)胞株。
式中:A0為空白孔(只加培養(yǎng)基)吸光度;A1為正??祝ㄕ<?xì)胞,不加藥物處理)吸光度;A2為加藥組吸光度。
1.3.4 透射電鏡下細(xì)胞形態(tài)觀察
取對(duì)數(shù)生長(zhǎng)期的PANC-1細(xì)胞,將細(xì)胞密度調(diào)整為1×105個(gè)/mL,接種到6 孔板,2 mL/孔。待細(xì)胞生長(zhǎng)達(dá)到60%~70%,加入NOB終濃度為100 μmol/L的新培養(yǎng)基,繼續(xù)培養(yǎng)48 h。然后用胰酶消化并收集細(xì)胞,1 000 r/min離心5 min,棄去上清液,加PBS混勻,1 000 r/min離心10 min,棄去PBS,加1 mL質(zhì)量分?jǐn)?shù)2.5%的丙二醛,4 ℃條件下保存,待檢。
1.4 數(shù)據(jù)統(tǒng)計(jì)分析
實(shí)驗(yàn)數(shù)據(jù)采用SPSS 16.0分析,實(shí)驗(yàn)結(jié)果用 ±s表示。
2.1 NOB的DPPH自由基清除能力
圖1 NOB與VC對(duì)DPPH自由基的清除能力(n=3)Fig.1 Scavenging effects of NOB and VC on DPPH free radicals (n = 3)
如圖1所示,NOB和VC都具有清除DPPH自由基的能力。在濃度≤1.60 mmol/L范圍內(nèi),隨著濃度的增加,NOB和VC兩者對(duì)DPPH的清除能力都逐漸增強(qiáng)。當(dāng)濃度高于0.8 mmol/L時(shí),NOB對(duì)DPPH自由基的清除能力無(wú)顯著性變化(P>0.05);同時(shí)VC對(duì)DPPH自由基的清除能力增強(qiáng)也不顯著(P>0.05)。總體看來(lái),NOB對(duì)DPPH自由基清除能力強(qiáng)于VC。
2.2 NOB的·OH清除能力
圖2 NOB和VC對(duì)·OH的清除能力(n=3)Fig.2 Scavenging effects of NOB and VC on hydroxyl free radicals (n = 3)
如圖2所示,隨著NOB濃度的增加,NOB對(duì)·OH的清除能力顯著增強(qiáng),當(dāng)濃度低于0.750 μmol/L時(shí),NOB 對(duì)·OH的清除能力呈線性增長(zhǎng)趨勢(shì);而當(dāng)NOB濃度高于1.250 μmol/L后,其對(duì)·OH的清除能力接近100%。而VC在本實(shí)驗(yàn)所選濃度范圍內(nèi)對(duì)·OH無(wú)清除能力。由此可見(jiàn),在實(shí)驗(yàn)所選濃度范圍內(nèi),NOB對(duì)·OH的清除效果更好。
圖3 NOB和VCC 對(duì)OO-2·的清除能力(n==33)Fig.3 Scavenging effects of NOB and VC on superoxide anion radicals (n = 3)
如圖3所示,在0.05~1.60 mmol/L濃度范圍內(nèi),隨著NOB濃度的增加,其對(duì)O2-·的清除能力逐漸增強(qiáng),尤其是在0.05~0.80 mmol/L濃度范圍內(nèi),其對(duì)O2-·的清除能力呈線性增長(zhǎng)趨勢(shì)。而在0.05~0.20 mmol/L濃度范圍內(nèi),VC 對(duì)O2-·的清除能力為0;當(dāng)濃度在0.80~1.60 mmol/L范圍內(nèi)時(shí),VC對(duì)O2-·的清除能力略高于NOB。
2.4 對(duì)川皮苷敏感的腫瘤細(xì)胞篩選結(jié)果
圖4 NOB對(duì)不同腫瘤細(xì)胞株的影響(n=6)Fig.4 Inhibitory effect of NOB on the growth of different tumor cells (n=6)
如圖4所示,不同濃度的NOB作用于PANC-1、A549、MCF-7這3 種腫瘤細(xì)胞株后,會(huì)對(duì)細(xì)胞活力產(chǎn)生不同的影響。NOB作用PANC-1細(xì)胞24 h后,細(xì)胞活力下降至(71.22±6.80)%;繼續(xù)培養(yǎng)至48 h時(shí),PANC-1細(xì)胞活力變化較24 h時(shí)無(wú)顯著變化(P>0.05)。由此可見(jiàn),NOB對(duì)PANC-1細(xì)胞的增殖有一定抑制作用。NOB作用于A549細(xì)胞24 h后,細(xì)胞活力下降至(82.35±7.50)%,繼續(xù)培養(yǎng)至48 h時(shí),在所選濃度范圍內(nèi),A549細(xì)胞活力仍維持在90%左右,說(shuō)明A549細(xì)胞對(duì)NOB不敏感。NOB作用于MCF-7細(xì)胞24 h后,細(xì)胞活力已經(jīng)下降至(67.04±4.80)%,繼續(xù)培養(yǎng)至48 h時(shí),MCF-7細(xì)胞活力繼續(xù)下降至(57.17±1.40)%。由此可見(jiàn),MCF-7細(xì)胞對(duì)NOB非常敏感,細(xì)胞活力在低濃度條件下下降顯著(P<0.05),此結(jié)果與文獻(xiàn)[8]報(bào)道一致。由于NOB對(duì)MCF-7細(xì)胞株的作用已有報(bào)道,且與本實(shí)驗(yàn)結(jié)果一致,故本實(shí)驗(yàn)不再對(duì)MCF-7做進(jìn)一步的研究。
2.4 PANC-1細(xì)胞的形態(tài)變化
圖5 NOB濃度和處理時(shí)間對(duì)PANC-1細(xì)胞形態(tài)的影響(20×)Fig.5 Morphology of PANC-1 cells treated with NOB (20 ×)
如圖5所示,在倒置顯微鏡下觀察經(jīng)NOB處理的PANC-1細(xì)胞,對(duì)照組細(xì)胞呈近圓形,細(xì)胞間結(jié)構(gòu)緊密,細(xì)胞生長(zhǎng)旺盛(圖5a);而經(jīng)NOB處理后,PANC-1細(xì)胞形狀發(fā)生變化,呈現(xiàn)無(wú)規(guī)則狀態(tài),輪廓感增強(qiáng),反差增大,細(xì)胞浮起,細(xì)胞間距離增大,細(xì)胞數(shù)量有所減少,并且隨著NOB濃度的增加,其變化程度加?。▓D5b~5d)。并且在NOB濃度相同(100 μmol/L)的條件下,隨著培養(yǎng)時(shí)間的延長(zhǎng),PANC-1細(xì)胞形態(tài)變化明顯,細(xì)胞拉長(zhǎng),細(xì)胞質(zhì)分布不均勻,細(xì)胞間聯(lián)系松散,大量細(xì)胞浮起,細(xì)胞數(shù)量也明顯減少(圖5e、5c、5f)。
圖6 掃描電鏡下NOB處理前后PANC-1細(xì)胞的形態(tài)Fig.6 Morphology of PANC-1 cells treated with NOB
如圖6所示,通過(guò)透射電鏡觀察發(fā)現(xiàn),對(duì)照組PANC-1細(xì)胞表面微絨毛豐富,使相鄰細(xì)胞被微絨毛所連接;細(xì)胞質(zhì)均勻,向四周伸展;細(xì)胞器區(qū)分明顯,核膜、核仁清晰可見(jiàn)。而100 μmol/L NOB組PANC-1細(xì)胞表面微絨毛稀少;細(xì)胞間分離,輪廓感增強(qiáng);細(xì)胞質(zhì)減少,細(xì)胞器萎縮;核膜破裂,胞質(zhì)溶出,逐漸形成凋亡小體。
本研究將NOB和VC對(duì)不同自由基的清除能力作比較,以評(píng)價(jià)NOB對(duì)自由基清除作用的有無(wú)與強(qiáng)弱。實(shí)驗(yàn)結(jié)果表明,NOB對(duì)DPPH自由基、·OH和O2-·都有較強(qiáng)的清除能力,尤其是在實(shí)驗(yàn)所選濃度范圍內(nèi),對(duì)·OH的清除能力比VC高數(shù)10 倍。同時(shí),NOB對(duì)PANC-1和MCF-7兩種細(xì)胞敏感,由于NOB對(duì)MCF-7細(xì)胞株的作用已另有文獻(xiàn)[8]報(bào)道,且與本實(shí)驗(yàn)結(jié)果一致,故本實(shí)驗(yàn)不再對(duì)MCF-7做進(jìn)一步的研究。因此本研究以PANC-1細(xì)胞作為研究對(duì)象,探討NOB對(duì)其形態(tài)學(xué)的影響。結(jié)果顯示,經(jīng)不同濃度NOB處理后的PANC-1細(xì)胞均出現(xiàn)不同程度的變形、細(xì)胞分離、數(shù)量減少。通過(guò)透射電鏡觀察發(fā)現(xiàn),用100 μmol/L的NOB處理48 h,PANC-1細(xì)胞形態(tài)變化明顯,細(xì)胞微絨毛明顯減少、細(xì)胞質(zhì)分布不均勻,細(xì)胞呈現(xiàn)凋亡趨勢(shì)。
[1] GHOSH K, RAY M, ADAK A, et al. Microbial, saccharifying and antioxidant properties of an Indian rice based fermented beverage[J]. Food Chemistry, 2014, 168: 196-202.
[2] VILLA-RODRIGUEZ J A, PALAFOX-CARLOS H, YAHIA E M, et al. Maintaining antioxidant potential of fresh fruits and vegetables after harvest[J]. Critical Reviews in Food Science and Nutrition, 2015, 55(6): 806-822.
[3] ZHAO Pan, DUAN Li, GUO Long, et al. Chemical and biological comparison of the fruit extracts of Citrus wilsonii Tanaka and Citrus medica L.[J]. Food Chemistry, 2015, 173: 54-60.
[4] LONDONO-LONDONO J, de LIMA V, LARA O, et al. Clean recovery of antioxidant flavonoids from citrus peel: optimizing anaqueous ultrasoundassisted extraction method[J]. Food Chemistry, 2010, 119: 81-87.
[5] LESGARDS J F, BALDOVINI N, VIDAL N, et al. Anticancer activities of essential oils constituents and synergy with conventional therapies: a review[J]. Transplantation Proceedings, 2014, 28: 1423-1446.
[6] PRADEEP P M, SREERAMA Y N. Impact of processing on the phenolic profi les of small millets: evaluation of their antioxidant and enzyme inhibitory properties associated with hyperglycemia[J]. Food Chemistry, 2014, 116: 455-463.
[7] MA Gaoxing, YANG Wenjian, MARRIGA A M, et al. Purifi cation, characterization and antitumor activity of polysaccharides from Pleurotus eryngii residue[J]. Carbohydrate Polymers, 2014, 114: 297-305.
[8] ANDROUTSOPOULOS V, SURICHAN S, ARROO R, et al. Citrus flavonoid nobiletin induces CVP1-enzyme activity and CYP1-mediated oxidative metabolism in MCF-7 breast adenocarcinoma cells[J]. International Journal of Molecular Medicine, 2010, 26: 52.
[9] MIYATA Y, SATO T, IMADA K, et al. A citrus polymethoxyflavonoid, nobiletin, is a novel MEK inhibitor that exhibits antitumor metastasis in human fi brosarcoma HT-1080 cells[J]. Biochemical and Biophysical Research Communications, 2008, 366: 168-173.
[10] HAGENLOCHER Y, BISCHOFF S C, LORENTZ A. Citrus fl avonoid nobiletin acts anti-infl ammatory on mast cells activated via different stimuli[J]. Allergy, 2014, 69: 206.
[11] LEE Y C, CHENG T H, LEE J S, et al. Nobiletin, a citrus fl avonoid, suppresses invasion and migration involving FAK/PI3K/Akt and small GTPase signals in human gastric adenocarcinoma AGS cells[J]. Molecular and Cellular Biochemistry, 2011, 347: 103-115.
[12] DING Chuan, KHAN M, ZHENG Bin, et al. Casticin induces apoptosis and mitotic arrest in pancreatic carcinoma PANC-1 cells[J]. African Journal of Pharmacy and Pharmacology, 2012, 6: 412-418.
[13] AKAO Y, OHGUCHI K, IINUMA M, et al. Interactive effects of polymethoxy fl avones from citrus on cell growth inhibition in human neuroblastoma SH-SY5Y cells[J]. Bioorganic & Medicinal Chemistry, 2008, 16: 2803-2810.
[14] SHEN J K, DU H P, YANG M, et al. Casticin induces leukemic cell death through apoptosis and mitotic catastrophe[J]. Annals of Hematology, 2009, 88: 743-752.
[15] QI Xiaoli, ZHANG Dianrui, XU Xia, et al. Oridonin nanosuspension was more effective than free oridonin on G2/M cell cycle arrest and apoptosis in the human pancreatic cancer PANC-1 cell line[J]. International Journal of Nanomedicine, 2012, 7: 1793-1804.
[16] ZHANG Yu, LI Hongjun, DOU Huating, et al. Optimization of nobiletin extraction assisted by microwave from orange byproduct using response surface methodology[J]. Food Science and Biotechnology, 2013, 22: 153-159.
[17] SHIMADA T, ENDO T, FUJII H, et al. Characterization of three linalool synthase genes from Citrus unshiu Marc. and analysis of linalool-mediated resistance against Xanthomonas citri subsp. citri and Penicilium italicum in citrus leaves and fruits[J]. Plant Science, 2014, 299: 154-166.
[18] KHOSHBAKHT D, GHORBANI A, BANINASAB B, et al. Effects of supplementary potassium nitrate on growth and gas-exchange characteristics of salt-stressed citrus seedlings[J]. Photosynthetica, 2014, 52(4): 589-596.
[19] HIASA S, IWAMOTO S, ENDO T, et al. Isolation of cellulose nanofibrils from mandarin (Citrus unshiu) peel waste[J]. Industrial Crops and Products, 2014, 62: 280-285.
[20] ARROO R R J, BERESFORD K, BHAMBRA A S, et al. Phytoestrogens as natural prodrugs in cancer prevention: towards a mechanistic model[J]. Phytochemistry Reviews, 2014, 13(4): 853-866.
[21] ZHANG Han, YANAGIHARA N, TOYOHIRA Y, et al. Stimulatory effect of nobiletin, a citrus polymethoxy flavone, on catecholamine synthesis through Ser(19) and Ser(40) phosphorylation of tyrosine hydroxylase in cultured bovine adrenal medullary cells[J]. Naunyn-Schmiedebergs Archives of Pharmacology, 2014, 387(1): 15-22.
[22] YANAGIHARA N, ZHANG Han, TOYOHIRA Y, et al. New insights into the pharmacological potential of plant fl avonoids in the catecholamine system[J]. Journal of Pharmacolgical Science, 2014, 124(2): 123-128.
[23] NAKAJIMA V M, MACEDO G A, MACEDO J A. Citrus bioactive phenolics: role in the obesity treatment[J]. LWT-food Science and Technology, 2014, 59(2): 1205-1212.
[24] ZHANG Yu, DOU Huating, LI Hongjun, et al. The citrus fl avonoid nobiletin inhibits proliferation and induces apoptosis in human pancreatic cancer cells in vitro[J]. Food Science and Biotechnology, 2014, 23: 225-229.
Antioxidant Activity in vitro of Nobiletin and Its Inhibitory Effect on the Proliferation of Tumor Cells
ZHANG Yu1,2, LI Hongjun1,*, DOU Huating3, HE Zhifei1
(1. College of Food Science, Southwest University, Chongqing 400715, China; 2. Chongqing Engineering Research Center of Regional Food, Chongqing 400715, China; 3. Citrus Research Institute, Southwest University, Chongqing 400712, China)
Objective: To investigate the antioxidant activity of nobiletin and its inhibitory capacity on the proliferation of cancer cells in vitro. Methods: The scavenging activities of nobiletin on DPPH, hydroxyl and superoxide anion radicals were detected. MTT assay was utilized to evaluate the effect of nobiletin on the growth of different tumor cells. The changes in organelles and cell morphology were observed through inverted microscope and transmission electron microscope. Results: Nobiletin had a strong ability to scavenge DPPH, hydroxyl and superoxide anion radicals, especially to remove hydroxyl radical. Nobiletin had a signifi cant inhibitory effect on the growth of PANC-1 cells. The viability and proliferation of PANC-1 cells were decreased in culture medium with nobiletin. As observed under inverted microscope and transmission electron microscope, nobiletin could result in disruption of the nuclear membrane, release of cytoplasmic contents and generation of apoptotic bodies. Conclusion: Nobiletin has excellent capability to scavenge free radicals and inhibit the proliferation of human PANC-1 cells.
nobiletin; antioxidant activity; cell prol iferation
R151
A
1002-6630(2015)19-0233-05
10.7506/spkx1002-6630-201519042
2014-11-12
中央高?;究蒲袠I(yè)務(wù)費(fèi)專(zhuān)項(xiàng)資金項(xiàng)目(XDJK2014C071);西南大學(xué)教育教學(xué)改革研究項(xiàng)目(2013JY062);
重慶市北碚區(qū)集成示范計(jì)劃項(xiàng)目(2014-68);重慶市特色食品工程技術(shù)研究中心能力提升項(xiàng)目(cstc2014pt-gc8001)
張玉(1984-),女,實(shí)驗(yàn)師,博士,研究方向?yàn)槭称房茖W(xué)。E-mail:zhangyu_512@sina.cn
*通信作者:李洪軍(1961-),男,教授,博士,研究方向?yàn)檗r(nóng)產(chǎn)加工及貯藏工程。E-mail:983362225@qq.com