徐 岷(綜述),蔣 健(審校)
(江蘇大學附屬醫(yī)院消化內(nèi)科,江蘇 鎮(zhèn)江 212001)
髓源抑制細胞參與腫瘤免疫逃逸的研究進展
徐岷※(綜述),蔣健(審校)
(江蘇大學附屬醫(yī)院消化內(nèi)科,江蘇 鎮(zhèn)江 212001)
機體的免疫系統(tǒng)具有識別和消滅腫瘤細胞的功能,但是腫瘤細胞能通過免疫逃逸和免疫抑制機制躲避機體的免疫反應(yīng),目前抗腫瘤免疫治療的方向主要集中在克服腫瘤介導的免疫無能以及激活細胞介導的免疫反應(yīng)。不同類型的腫瘤可通過不同的機制產(chǎn)生免疫耐受和免疫無能。在荷瘤小鼠的脾臟、血液及腫瘤組織,腫瘤患者外周血及腫瘤組織中聚集有大量的未成熟髓源抑制細胞(myeloid-derived suppressor cells,MDSC),它是一類髓系來源的免疫抑制性細胞亞群,活化后的MDSC通過各種免疫機制逃避機體的免疫監(jiān)視和攻擊,促進腫瘤發(fā)展[1]?,F(xiàn)就MDSC介導的免疫逃逸機制及靶向性抗腫瘤治療等方面的研究進展予以綜述。
1MDSC的表面標志分子
在荷瘤小鼠體內(nèi),MDSC共表達髓系分化抗原Gr1和CD11b(即Grl+CD11b+細胞),Gr1抗原包括單核細胞(Ly6C)和中性粒細胞形態(tài)(Ly6G)兩種表面標志。根據(jù)Gr1抗原的不同,MDSC分為兩個亞型:粒細胞樣MDSC(表型為CD11b+Ly6G+)和單核細胞樣MDSC(表型為CD11b+Ly6Chi)[2]。MDSC尚表達一些其他表面分子,如CD115人巨噬細胞集落刺激因子受體或集落刺激因子1受體和CD124(IL-4Rα),CD11b+CD115+MDSC通過一氧化氮直接抑制淋巴細胞,CD11b+CD124+MDSC分泌白細胞介素13(interleukin-13,IL-13)和γ干擾素(interferon-γ,IFN-γ)抑制細胞毒性T細胞的活化增殖[3-4]。人類MDSC的表型被定義為CD11b+CD14-CD33+或LinHLA-DR-CD33+,在結(jié)腸癌和黑色素瘤患者體內(nèi),單核細胞CD124的高表達與MDSC的免疫抑制作用有關(guān)[3]。腎癌患者體內(nèi)的CD66b來源于癌胚抗原糖蛋白家族,出現(xiàn)在粒細胞樣MDSC細胞表面,表型為CD11b+CD14-CD33+CD66b+[5]。
鈣黏蛋白家族成員S100A8、S100A9和S100A12在CD14+HLA-DR-/lowMDSC中特異性表達,在結(jié)腸癌患者的外周血中檢測到CD14+S100A9highMDSC的數(shù)量較健康人明顯增加,這種細胞經(jīng)脂多糖或IFN-γ的誘導可產(chǎn)生誘導型一氧化氮合酶(inducible nitric oxide synthase,iNOS),S100蛋白可作為有效的標志物進一步分析和鑒定人類的MDSC[6]。
2MDSC的募集和活化
在荷瘤小鼠體內(nèi),腫瘤引起的相關(guān)炎癥反應(yīng)所釋放的促炎性細胞因子(IL-1β、IL-6)誘導MDSC擴增,促進腫瘤生長[7]。Tu等[8]發(fā)現(xiàn),無論是在體內(nèi)還是在體外,IL-1β均可經(jīng)IL-1RI/核因子κΒ(nuclear factor-κΒ,NF-κΒ)途徑激活MDSC,T、B淋巴細胞缺陷的IL-1β轉(zhuǎn)基因小鼠的胃黏膜上皮細胞異型增生并伴有MDSC的大量擴增,而IL-1β受體拮抗劑可抑制MDSC的聚集增殖。腫瘤來源的粒細胞集落刺激因子(granulocyte colony-stimulating factor, G-CSF)是導致粒細胞樣MDSC聚集的關(guān)鍵起始因子,荷瘤小鼠體內(nèi)G-CSF的過表達可誘導粒細胞樣MDSC聚集,促進腫瘤生長;消除G-CSF可明顯減少粒細胞樣MDSC的聚集、抑制腫瘤生長[9]。研究表明,IL-17可抑制CD8+T細胞浸潤,并誘導MDSC在腫瘤組織擴增,而IL-17R缺失能增強CD8+T細胞的浸潤、抑制MDSC在腫瘤組織的浸潤及腫瘤生長,IL-17通過調(diào)控MDSC促進腫瘤生長[10]。Yang等[11]發(fā)現(xiàn),肥大細胞動員MDSC向腫瘤部位浸潤,并誘導其分泌IL-17,IL-17直接作用于調(diào)節(jié)性T細胞(regulatory T cells,Treg),增強其免疫抑制功能,并誘導Treg釋放IL-9,而IL-9可以進一步激活肥大細胞,并增強對其MDSC細胞的趨化作用。
Obermajer和Kalinski[12]研究發(fā)現(xiàn),腫瘤來源的轉(zhuǎn)化生長因子β(transforming growth factor β, TGF-β)誘導miR-494的表達,并通過下調(diào)抑癌基因PTEN誘導的蛋白激酶B通路的激活,上調(diào)基質(zhì)金屬蛋白酶的表達,進而調(diào)控MDSC的聚集和激活,TGF-β還可增強CXC家族趨化因子受體4介導的MDSC趨化作用,促進腫瘤細胞的侵襲和轉(zhuǎn)移。S100A8/S100A9是由中性粒細胞釋放的鈣黏蛋白家族成員,S100A9通過信號轉(zhuǎn)導蛋白和轉(zhuǎn)錄激活因子3(signal transducers and activators of transcription 3, STAT3)信號通路阻斷髓系祖細胞分化為功能性的樹突細胞和巨噬細胞,S100A8/S100A9復合體通過NF-κB依賴途徑募集MDSC至腫瘤部位,由于MDSC自身也可產(chǎn)生S100A8/S100A9蛋白,因此S100A8/S100A9通過正反饋誘導MDSC募集至腫瘤部位,并在MDSC的擴增中起關(guān)鍵作用,其可能是腫瘤中連接炎癥和免疫抑制的紐帶[13]。
3MDSC誘導腫瘤免疫逃避機制
在腫瘤宿主體內(nèi),腫瘤部位被激活的MDSC通過高表達精氨酸酶1(arginase 1, ARG1)、iNOS、活性氧類等分泌經(jīng)典的免疫抑制因子(IL-10、TGF-β)及誘導產(chǎn)生Treg等方式抑制腫瘤先天性和獲得性抗腫瘤免疫,從而促進腫瘤發(fā)生、發(fā)展[14]。
MDSC通過表達高水平的ARG-1、iNOS和活性氧類抑制T細胞介導的抗腫瘤免疫。MDSC表達高水平的ARG1,消耗微環(huán)境中的L-精氨酸,下調(diào)T細胞CD3ζ鏈的表達,進而抑制T細胞受體的正常表達,導致T細胞活化受阻[15]。MDSC表達的iNOS主要通過一氧化氮抑制主要組織相容性復合體Ⅱ分子的表達以及誘導T細胞凋亡來抑制T細胞的活化及增殖[16]。荷瘤小鼠和腫瘤患者體內(nèi)高表達的活性氧類上調(diào)尼克酰胺腺嘌呤二核苷酸磷酸氧化酶亞基的表達,由STAT3信號通路抑制MDSC的成熟[17]。研究表明,MDSC產(chǎn)生的活性氧類主要有以下3方面作用:①誘導腫瘤微環(huán)境中免疫細胞的DNA損傷;②抑制MDSC分化為成熟的樹突細胞;③募集MDSC至腫瘤部位[18]。胞外的活性氧類催化T細胞受體硝基化,抑制T細胞與主要組織相容性復合體-抗原肽的接觸,抑制T細胞反應(yīng)[19]。MDSC還可通過消耗環(huán)境中T細胞活化所必需的半胱氨酸,阻斷T細胞的活化。MDSC可表達Xc轉(zhuǎn)運蛋白,但不表達中性氨基酸轉(zhuǎn)運蛋白,因此MDSC只消耗胱氨酸但不輸出半胱氨酸。腫瘤部位聚集的MDSC和抗原呈遞細胞競爭胞外的胱氨酸,導致細胞外半胱氨酸量顯著減少,T細胞的激活和增殖受到顯著抑制[20]。在腫瘤微環(huán)境中,MDSC也可通過誘導Treg的產(chǎn)生,間接發(fā)揮免疫抑制作用。Pan等[21]發(fā)現(xiàn),MDSC表面的免疫刺激受體CD40的表達可促進Treg的增殖,抑制免疫應(yīng)答;阻斷小鼠體內(nèi)MDSC與Treg表面CD40-CD40L的結(jié)合可抑制Treg細胞增殖,促進免疫應(yīng)答。在A20B細胞淋巴瘤模型中,MDSC可作為免疫耐受型抗原呈遞細胞攝取抗原并遞呈給腫瘤特異性Treg,其過程需要TGF-β和ARG參與[22]。MDSC還可通過上調(diào)IL-4Rα的表達促進Treg增殖,增強其自身的免疫抑制活性[18]。在小鼠卵巢癌模型中,MDSC表達CD80分子,其能明顯增加周圍淋巴結(jié)中表達CD152的Treg的數(shù)量,阻斷或消除MDSC表面的CD80分子,Treg的免疫抑制功能大幅度減弱,因此MDSC與Treg可能通過CD80/CD152途徑誘導腫瘤免疫耐受[23]。
檢測從乳腺癌患者的腫瘤細胞和外周血中分離出的MDSC發(fā)現(xiàn),吲哚氨2,3-雙加氧酶(indoleamine 2,3-dioxygenase, IDO)的表達明顯升高,同時伴有腫瘤部位和淋巴結(jié)內(nèi)Treg細胞數(shù)量的增多,STAT3的磷酸化能上調(diào)MDSC中IDO的表達,MDSC通過IDO依賴途徑抑制IL-2和CD3/CD28抗體誘導的T細胞增殖,誘導T細胞凋亡。用IDO抑制劑或STAT3抑制劑可阻斷IDO介導的免疫耐受效應(yīng)[24]。
4靶向MDSC的腫瘤免疫治療
腫瘤宿主體內(nèi)的MDSC通過誘導免疫耐受、逃避機體的免疫監(jiān)視和攻擊等途徑躲避機體的免疫反應(yīng)。因此,抗腫瘤免疫治療方法主要為促進MDSC的分化、減少MDSC的產(chǎn)生和聚集、逆轉(zhuǎn)腫瘤誘導的MDSC免疫抑制功能。
4.1促進MDSC分化成熟全反式維甲酸通過上調(diào)谷胱甘肽合成酶的表達,有效清除MDSC產(chǎn)生的活性氧類,誘導MDSC分化為成熟的樹突細胞和巨噬細胞,刺激效應(yīng)T細胞增強抗腫瘤免疫反應(yīng)[25]。給予頭頸部鱗狀細胞癌患者口服維生素D3治療,能夠促進MDSC分化,顯著減少腫瘤患者體內(nèi)MDSC的數(shù)量,提高血漿中IL-12和IFN-γ水平,增強抗腫瘤免疫反應(yīng)[26]。
4.2抑制MDSC的活化用抗N-聚糖羧化物的特異性抗體阻斷S100A8和S100A9與其受體結(jié)合,能顯著降低荷瘤小鼠血液和次級淋巴器官中MDSC的數(shù)量[13]。研究發(fā)現(xiàn),聯(lián)合羅格列酮和吉西他濱治療具有免疫力的胰腺癌移植瘤小鼠,可明顯減緩腫瘤的進展和轉(zhuǎn)移[27]。羅格列酮和吉西他濱聯(lián)合治療可通過增加外周血CD8+T細胞、腫瘤部位的CD4+、CD8+T細胞以及抑制調(diào)節(jié)性T細胞功能來調(diào)節(jié)T細胞亞群,通過抑制MDSC的聚集和腫瘤部位的Treg來消除其介導的腫瘤相關(guān)的免疫抑制作用。
4.3清除腫瘤環(huán)境中的MDSC在荷瘤小鼠體內(nèi)清除MDSC可消除免疫耐受,增強抗腫瘤的治療效果。Tu等[28]發(fā)現(xiàn),姜黃素口服或腹膜內(nèi)注射能明顯抑制腫瘤的發(fā)生、發(fā)展,降低外周血、脾臟以及腫瘤組織中MDSC的比例,降低血清和腫瘤組織中IL-6水平,抑制STAT3和NF-κΒ信號通路的激活,同時還可促使MDSC向M1型轉(zhuǎn)變,上調(diào)CCR7的表達,下調(diào)樹突狀細胞相關(guān)C型凝集素1的表達。給胰腺癌荷瘤小鼠及胰腺癌患者吉西他濱后發(fā)現(xiàn),小鼠脾臟中MDSC顯著減少,胰腺癌患者外周血中MDSC的數(shù)量也明顯減少[29]。給予乳腺癌患者抗腫瘤藥物后,體內(nèi)Lin-HLA-DR-CD33+CD11b+MDSC的數(shù)量明顯增加[30]。在荷瘤小鼠模型中,用5-氟尿嘧啶與吉西他濱聯(lián)合治療能減少脾臟和腫瘤部位MDSC的數(shù)量,5-氟尿嘧啶可通過增加腫瘤部位腫瘤特異性CD8+T細胞的數(shù)量、選擇性誘導MDSC凋亡、減少MDSC的數(shù)量,提高IFN-γ的表達水平,促進T細胞介導的抗腫瘤效應(yīng)[31]。
4.4抑制MDSC的功能MDSC主要通過表達活性氧類、ARG1、iNOS和過氧亞硝酸鹽等發(fā)揮免疫抑制功能。三萜系化合物(The synthetic triterpenoid methyl-2-cyano-3,12-dioxoolean-1,9-dien-28-oate,CDDO-ME)是核因子E2相關(guān)因子2(nuclear factor erythroid-2 related factor 2, NRF-2)轉(zhuǎn)錄因子的強效激活劑,它能上調(diào)還原型煙酰胺腺嘌呤二核苷酸磷酸、醌氧化還原酶等抗氧化基因的表達,減少活性氧類的產(chǎn)生,但不影響ARG1和iNOS的活性。Nagaraj等[32]用CDDO-ME治療荷瘤小鼠和胰腺癌患者,其可消除或減弱MDSC的免疫抑制功能,促進免疫應(yīng)答,增強抗腫瘤免疫治療。在黑色素瘤移植瘤小鼠體內(nèi)可檢測到MDSC的大量聚集和擴增,MDSC的聚集與T細胞表面TCR-ζ鏈表達下調(diào)有關(guān),用5型磷酸二酯酶抑制劑治療能降低MDSC的數(shù)量,部分恢復TCR-ζ鏈的表達,削弱免疫抑制功能,明顯延長荷瘤小鼠的生存期[33]。Vasquez-Dunddel等[34]發(fā)現(xiàn),頭頸部鱗狀細胞癌的腫瘤組織、淋巴結(jié)及外周血中的MDSC通過不同機制抑制自體腫瘤特異性T細胞增殖,磷酸化的STAT3易結(jié)合到ARG1的啟動子上,來自以上3個部位的MDSC的STAT3磷酸化水平與ARG1的表達水平和活性有關(guān),用STAT3的特異性抑制劑或靶向STAT3的干攏小RNA可消除MDSC的免疫抑制作用。
5結(jié)語
MDSC在腫瘤免疫逃避中起重要的作用?,F(xiàn)有的、針對MDSC靶向治療的研究大多數(shù)局限于小鼠模型和體外實驗,臨床研究較少,且僅限于少數(shù)幾種腫瘤類型,不同來源的腫瘤組織中MDSC亞群的表型也較難鑒別。相信隨著研究的深入,靶向MDSC的腫瘤免疫治療將會為惡性腫瘤的臨床治療帶來新的希望。
參考文獻
[1]Ko JS,Bukowski RM,Fincke JH.Myeloid-derived suppressor cells:a novel therapeutic target[J].Curr Oncol Rep,2009,11(2):87-93.
[2]Youn JI,Nagaraj S,Collazo M,etal.Subsets of myeloid-derived suppressor cells in tumor-bearing mice[J].J Immunol,2008,181(8):5791-5802.
[3]Sinha P,Parker KH,Horn L,etal.Tumor-induced myeloid-derived suppressor cell function is independent of IFN-γ and IL-4Rα[J].Eur J Immunol,2012,42(8):2052-2059.
[4]Huang B,Pan PY,LI Q,etal.Gr-1+CD115+immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell energy in tumor-bearing host[J].Cancer Res,2006,66(2):1123-1131.
[5]Rodriguez PC,Ernstoff MS,Hernandez C,etal.Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes[J].Cancer Res,2009,69(4):1553-1560.
[6]Zhao F,Hoechst B,Duffy A,etal.S100A9 a new marker for monocytic human myeloid-derived suppressor cells[J].Immunology,2012,136(2):176-183.
[7]Meyer C,Sevko A,Ramacher M,etal.Chronic inflammation promotes myeloid-derived suppressor cell activation blocking antitumor immunity in transgenic mouse melanoma model[J].Proc Natl Acad Sci U S A,2011,108(41):17111-17116.
[8]Tu S,Bhagat G,Cui G,etal.Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice[J].Cancer Cell,2008,14(5):408-419.
[9]Waight JD,Hu Q,Miller A,etal.Tumor-derived G-CSF facilitates neoplastic growth through a granulocytic myeloid-derived suppressor cell-dependent mechanism[J].PLoS One,2011,6(11):e27690.
[10]He D,Li H,Yusuf N,etal.IL-17 promotes tumor development through the induction of tumor promoting microenvironments at tumor sites and myeloid-derived suppressor cells[J].J Immunol,2010,184(5):2281-2288.
[11]Yang Z,Zhang B,Li D,etal.Mast cells mobilize myeloid-derived suppressor cells and Treg cells in tumor microenvironment via IL-17 pathway in murine hepatocarcinoma model[J].PLoS One,2010,5(1):e8922.
[12]Obermajer N,Kalinski P.Key role of the positive feedback between PGE(2) and COX2 in the biology of myeloid-derived suppressor cells[J].Oncoimmunology,2012,1(5):762-764.
[13]Sinha P,Okoro C,Foell D,etal.Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells[J].J Immunol,2008,181(7):4666-4675.
[14]Kotamraju S,Williams CL,Kalyanaraman B.Statin-induced breast cancer cell death:role of inducible nitric oxide and arginase-dependent pathways[J].Cancer Res,2007,67(15):7386-7394.
[15]Rodriguez PC,Quiceno DG,Ochoa AC.L-arginine availability regulates T-lymphocyte cell-cycle progression[J].Blood,2007,109(4):1568-1573.
[16]Harari O,Liao JK.Inhibition of MHC II gene transcription by nitric oxide and antioxidants[J].Curr Pharm Des,2004,10(8):893-898.
[17]Ostrand-Rosenberg S.Myeloid-derived suppressor cells:more mech- anisms for inhibiting antitumor immunity[J].Cancer Immunol Immunother,2010,59(10):1593-1600.
[18]Gabrilovich DI,Nagaraj S.Myeloid-derived suppressor cells as regulators of the immune system[J].Nat Rev Immunol,2009,9(3):162-174.
[19]Delano MJ,Scumpia PO,Weinstein JS,etal.MyD88-dependent expansion of an immature GR-1+CD11b+population induces T cell suppression and Th2 polarization in sepsis[J].J Exp Med,2007,204(6):1463-1474.
[20]Srivastava MK,Sinha P,Clements VK,etal.Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine[J].Cancer Res,2010,70(1):68-77.
[21]Pan PY,Ma G,Weber KJ,etal.Immune stimulatory receptor CD40is required for T-cell suppression and T regulatory cell activation mediated by myeloid-derived suppressor cells in cancer[J].Cancer Res,2010,70(1):99-108.
[22]Serafini P,Mgebroff S,Noonan K,etal.Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells[J].Cancer Res,2008,68(13):5439-5449.
[23]Yang R,Cai Z,Zhang Y,etal.CD80in immune suppression by mouse ovarian carcinoma-associated Gr-1+CD11b+myeloid cells[J].Cancer Res,2006,66(13):6807-6815.
[24]Yu J,Du W,Yan F,etal.Myeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancer[J].J Immunol,2013,190(7):3783-3797.
[25]Nefedova Y,Fishman M,Sherman S,etal.Mechanism of all-trans retinoic acid effect on tumor-associated myeloid-derived suppressor cells[J].Cancer Res,2007,67(22):11021-11028.
[26]Ugel S,Delpozzo F,Desantis G,etal.Therapeutic targeting of myeloid-derived suppressor cells[J].Curr Opin Pharmacol,2009,9(4):470-481.
[27]Bunt SK,Mohr AM,Bailey JM,etal.Rosiglitazone and gemcitabine in combination reduces immune suppression and modulates T cell populations in pancreatic cancer[J].Cancer Immunol Immunother,2013,62(2):225-236.
[28]Tu SP,Jin H,Shi JD,etal.Curcumin induces the differentiation of myeloid-derived suppressor cells and inhibits their interaction with cancer cells and related tumor growth[J].Cancer Prev Res (Phila),2012,5(2):205-215.
[29]Ghansah T,Vohra N,Kinney K,etal.Dendritic cell immunotherapy combined with gemcitabine chemotherapy enhances survival in a murine model of pancreatic carcinoma[J].Cancer Immunol Immunother,2013,62(6):1083-1091.
[30]Diaz-Montero CM,Salem ML,Nishimura MI,etal.Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage,metastatic tumor burden,and doxorubicin-cyclophosphamide chemotherapy[J].Cancer Immunol Immunother,2009,58(1):49-59.
[31]Vincent J,Mignot G,Chalmin F,etal.5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity[J].Cancer Res,2010,70(8):3052-3061.
[32]Nagaraj S,Youn JI,Weber H,etal.Anti-inflammatory triterpenoid blocks immune suppressive function of MDSCs and improves immune response in cancer[J].Clin Cancer Res,2010,16(6):1812-1823.
[33]Umansky V,Sevko A.Overcoming immunosuppression in the melanoma microenvironment induced by chronic inflammation[J].Cancer Immunol Immunother,2012,61(2):275-282.
[34]Vasquez-Dunddel D,Pan F,Zeng Q,etal.STAT3 regulates arginase-I in myeloid-derived suppressor cells from cancer patients[J].J Clin Invest,2013,123(4):1580-1589.
摘要:腫瘤可以通過多種機制逃避機體的免疫識別,其中腫瘤誘導產(chǎn)生的髓源抑制細胞(MDSC)在腫瘤免疫逃逸中發(fā)揮著重要作用。MDSC是一群異質(zhì)性細胞,來源于骨髓祖細胞和未成熟的髓細胞,它可以通過多種機制抑制機體的先天性和獲得性抗腫瘤免疫,促進腫瘤發(fā)展。該文就MDSC的表面標志物、募集和活化、介導的免疫逃逸機制及當前靶向MDSC抗腫瘤治療策略等的研究進展作一綜述。
關(guān)鍵詞:腫瘤;髓源抑制細胞;免疫逃逸;免疫治療
Research Progress of Myeloid-derived Suppressor Cells Involved in Tumor Immune EscapeXUMin,JIANGJian.(DepartmentofGastroenterology,AffiliatedHospitalofJiangsuUniversity,Zhenjiang212001,China)
Abstract:Tumors escape immune recognition by several mechanisms, and myeloid derived suppressor cells(MDSCs) play a major role in tumor mediated immune evasion.MDSCs are a group of heterogeneous cell derived from myeloid progenitor cells and immature myeloid cells in bone marrow granulocytes. MDSCs promote tumors progression through inhibiting both innate and acquired immunity.Here is to make a review of the progress of MDSCs and its surface markers,the recruitment and activation,the MDSC-mediated immune escape mechanisms and antitumor treatment targeting at MDSC.
Key words:Neoplasms; Myeloid-derived suppressor cells; Immunity escape; Immunotherapy
收稿日期:2014-02-17修回日期:2014-09-28編輯:辛欣
基金項目:江蘇省衛(wèi)生廳面上科研項目(H201047);鎮(zhèn)江市科技支撐計劃項目(SH2010013)
doi:10.3969/j.issn.1006-2084.2015.06.016
中圖分類號:R730.3
文獻標識碼:A
文章編號:1006-2084(2015)06-1003-03