鄭雪欽
(廈門理工學(xué)院電氣工程與自動(dòng)化學(xué)院,福建 廈門361024)
在高性能的步進(jìn)電機(jī)控制系統(tǒng)中,要求其驅(qū)動(dòng)控制系統(tǒng)具有更好的控制性能和更高的精度,這對(duì)步進(jìn)電機(jī)驅(qū)動(dòng)控制系統(tǒng)提出高精度的控制策略要求.步進(jìn)電機(jī)驅(qū)動(dòng)控制過程要求具備精確的系統(tǒng)參數(shù),便于對(duì)控制規(guī)律進(jìn)行整定,但是在實(shí)際運(yùn)行過程中,系統(tǒng)參數(shù)是變化的,要得到優(yōu)良的系統(tǒng)性能,需要對(duì)驅(qū)動(dòng)控制器進(jìn)行相應(yīng)的調(diào)整[1].目前用于實(shí)現(xiàn)高精度步進(jìn)電機(jī)控制的方法通常是采用適用于線性控制系統(tǒng)[2]的傳統(tǒng) PID控制方法[3],且實(shí)現(xiàn)簡(jiǎn)單、性能穩(wěn)定,但對(duì)于環(huán)境多變、非線性動(dòng)態(tài)系統(tǒng),卻難以實(shí)現(xiàn)對(duì)步進(jìn)電機(jī)的在線實(shí)時(shí)高精度控制[4].為了實(shí)現(xiàn)對(duì)步進(jìn)電機(jī)的在線實(shí)時(shí)自適應(yīng)控制,在傳統(tǒng)PID控制方法的基礎(chǔ)上,人們引入了一些智能算法,如:神經(jīng)網(wǎng)絡(luò)[5-6]、模糊控制[1]、遺傳算法[7]等來改變 PID控制參數(shù),以提高步進(jìn)電機(jī)控制的魯棒性,但這些智能控制算法較復(fù)雜,存在動(dòng)態(tài)響應(yīng)時(shí)間較長(zhǎng),影響系統(tǒng)的響應(yīng)速度的問題.為了提高步進(jìn)電機(jī)的定位精度、響應(yīng)速度和抗負(fù)載干擾能力,本文在分析計(jì)算動(dòng)詞PID控制的基礎(chǔ)上,設(shè)計(jì)和構(gòu)建了步進(jìn)電機(jī)定位控制系統(tǒng),通過系統(tǒng)仿真和實(shí)驗(yàn)驗(yàn)證,實(shí)現(xiàn)了系統(tǒng)的高精度定位和快速響應(yīng).
計(jì)算動(dòng)詞理論由旅美學(xué)者楊濤教授提出,是運(yùn)用進(jìn)化函數(shù)對(duì)人類思維動(dòng)態(tài)建模,將人類專家用動(dòng)詞描述或執(zhí)行的動(dòng)態(tài)知識(shí)經(jīng)驗(yàn)嵌入到機(jī)器智能中,是人工智能發(fā)展的一個(gè)新的系統(tǒng)框架.計(jì)算動(dòng)詞PID控制器結(jié)構(gòu)如圖1所示,結(jié)構(gòu)類似于模糊PID控制器的結(jié)構(gòu).雖然這兩種控制器結(jié)構(gòu)很類似,但兩者的設(shè)計(jì)方法大大不同,計(jì)算動(dòng)詞PID控制器中的解動(dòng)詞化模塊的輸出是動(dòng)詞“observe”的結(jié)果[9].
式中:u(t)為控制器的輸出;e(t)為控制器的輸入,它是期望值和被控對(duì)象輸出值的差;Kp為控制器的比例系數(shù);Ti是控制器的積分時(shí)間常數(shù);Td是控制器的微分時(shí)間常數(shù);r(t)是系統(tǒng)期望值.
步進(jìn)電機(jī)電壓方程、轉(zhuǎn)矩方程和運(yùn)動(dòng)方程如下[10]:
圖1 計(jì)算動(dòng)詞PID控制器結(jié)構(gòu)圖Fig.1 Block diagram of a computational verb PID controller
式中,uA(t)、uB(t)為定子兩相電壓;iA(t)、iB(t)為定子兩相繞組電流;r為A相電阻;Zr為轉(zhuǎn)子齒數(shù);Te為電磁轉(zhuǎn)矩,是兩個(gè)單相繞組產(chǎn)生的電磁轉(zhuǎn)矩TeA(t)、TeB(t)之和;β為粘滯系數(shù);J為轉(zhuǎn)動(dòng)慣量;θ為轉(zhuǎn)子位置角;L0為自感的恒定分量;L1為自感的基波分量;ω為轉(zhuǎn)子角速度;Tl為負(fù)載轉(zhuǎn)矩.
根據(jù)誤差變化曲線在不同時(shí)間段上所對(duì)應(yīng)曲線的相似性,以及模糊集區(qū)間的對(duì)稱性,對(duì)誤差e(t)的模糊集定義可轉(zhuǎn)化為對(duì)誤差絕對(duì)值|e|的模糊集定義,定義為{ZO,PS,PM,PB}.當(dāng)e(t)成指數(shù)穩(wěn)定地接近0時(shí),由于軌跡在這些區(qū)域的時(shí)間更長(zhǎng),所以必須更關(guān)注接近0的區(qū)域.同時(shí)把誤差變化規(guī)范在[-1,1]內(nèi),動(dòng)詞規(guī)則的隸屬度函數(shù)和模糊規(guī)則的隸屬度函數(shù)有所不同,其數(shù)學(xué)表達(dá)式為[9];
根據(jù)步進(jìn)電機(jī)定位控制過程、誤差變化情況、PID參數(shù)整定規(guī)則,計(jì)算動(dòng)詞規(guī)則對(duì)模糊控制規(guī)則進(jìn)行提取和濃縮,把相同的變化趨勢(shì)合并,減少規(guī)則數(shù)目,用7條計(jì)算動(dòng)詞規(guī)則涵蓋了49條模糊控制規(guī)則,并應(yīng)用于控制系統(tǒng)的各個(gè)階段.建立如下7條動(dòng)詞控制規(guī)則:
在控制過程中,e(t)的變化大部分時(shí)間并不是完全等同于控制規(guī)則中的前件條件;但反過來說,任一時(shí)刻,肯定能在控制規(guī)則的前件條件中,找到一個(gè)和e的變化趨勢(shì)最相似的become.用“動(dòng)詞相似度”來恒量各個(gè)動(dòng)詞之間的關(guān)系,是一個(gè)數(shù)值,取值范圍[0,1],相似度越接近1,表示這兩個(gè)動(dòng)詞相似的程度越大;相似度越接近0,則表示越不相像.在動(dòng)詞控制規(guī)則里,可以把前件條件里的7個(gè)動(dòng)詞定義為7個(gè)標(biāo)準(zhǔn)動(dòng)詞,控制過程中觀察到的動(dòng)詞都和這些標(biāo)準(zhǔn)動(dòng)詞做比較.所有動(dòng)詞都可以用become來進(jìn)行規(guī)范化,become的進(jìn)化函數(shù)可表示為
become(state 1,state 2)的時(shí)間跨度取Tw,x(t)是觀察到的波形,一個(gè)被觀察的動(dòng)詞的進(jìn)化函數(shù)為
求 “observed”這 個(gè) 動(dòng) 詞 和 become(state 1,state 2)的相似度過程中,首先將Tw分成state 1和state 2兩個(gè)區(qū)間:
1)在前半個(gè)區(qū)間求出a1和b1
2)在后半個(gè)區(qū)間求出a2和b2
4)在整個(gè)Tw范圍內(nèi)求相似度
計(jì)算動(dòng)詞規(guī)則的推理建立在動(dòng)詞相似度的基礎(chǔ)上,在控制過程中,觀察控制誤差e的變化趨勢(shì),求出e和標(biāo)準(zhǔn)動(dòng)詞的相似度.控制器的輸入和輸出都是動(dòng)詞形式.輸出的動(dòng)詞Vy是標(biāo)準(zhǔn)輸出動(dòng)詞以相似度為權(quán)的加權(quán)平均量.
若x(t)becomexi,則y(t)becomeyi,i=1,…,n,
在MATLAB中分別建立傳統(tǒng)PID控制器、模糊PID控制器、計(jì)算動(dòng)詞PID控制器步進(jìn)電機(jī)定位控制系統(tǒng)(圖2),由式(1)~(3)建立圖2中“步進(jìn)電機(jī)”模型,3種控制方法結(jié)果比較如表1所示.本文所采用步進(jìn)電機(jī)的參數(shù)分別為:定子電阻R=35Ω,定子電感L=35mH,轉(zhuǎn)子齒數(shù)Zr=80,轉(zhuǎn)動(dòng)慣量J=0.025kg·m2,阻尼系數(shù)Bm=0.002 5,負(fù)載mr=0~2.5N·m,步進(jìn)電機(jī)功率為0~1W.計(jì)算動(dòng)詞參數(shù):Kp=0.005,Ki=0.78,Kd=0.45;Kp取 值 范 圍:0.004 98~0.005,Ki取值范圍:0.78~0.80,Kd取值范圍:0.45~0.47,仿真結(jié)果如圖3所示.
由仿真結(jié)果可知,在步進(jìn)電機(jī)定位控制中,采用新型的計(jì)算動(dòng)詞PID控制器,響應(yīng)曲線優(yōu)于傳統(tǒng)PID控制器和模糊PID控制器,而且運(yùn)算速度與傳統(tǒng)PID控制器相當(dāng),體現(xiàn)了很好的控制性能.
表1 3種PID控制方法比較Tab.1 Comparison of performance time of the three PID
圖2 基于計(jì)算動(dòng)詞PID步進(jìn)電機(jī)定位控制系統(tǒng)仿真模型Fig.2 Simulation model of CVC stepping motor position control system
圖3 控制位置響應(yīng)曲線Fig.3 Rotor position curve
圖4 步進(jìn)電機(jī)定位驅(qū)動(dòng)控制系統(tǒng)Fig.4 Position drive system of stepping motor
圖5 計(jì)算動(dòng)詞PID控制位置響應(yīng)曲線Fig.5 Rotor position of computational verb PID
為研究混合步進(jìn)電機(jī)高精度定位系統(tǒng),測(cè)試實(shí)際裝置具體性能,驗(yàn)證本文控制算法實(shí)現(xiàn)的可能性,本文完成了基于TMS320LF2812A步進(jìn)電機(jī)定位驅(qū)動(dòng)控制系統(tǒng)的設(shè)計(jì),如圖4所示.計(jì)算動(dòng)詞PID控制步進(jìn)電機(jī)位置信號(hào)(流程圖如圖5),分別給二相電機(jī)繞組通入相應(yīng)的脈沖寬度調(diào)制(PWM)控制信號(hào),實(shí)現(xiàn)步進(jìn)電機(jī)的高精度定位控制.步進(jìn)電機(jī)位置響應(yīng)結(jié)果如圖6所示,可以看出實(shí)驗(yàn)結(jié)果與仿真結(jié)果相一致.
圖6 步進(jìn)電機(jī)定位驅(qū)動(dòng)控制系統(tǒng)Fig.6 Position drive system of stepping motor
本文研究基于計(jì)算動(dòng)詞PID控制器的步進(jìn)電機(jī)智能驅(qū)動(dòng)控制系統(tǒng),分析了計(jì)算動(dòng)詞PID控制算法的實(shí)現(xiàn),建立了系統(tǒng)的仿真模型和基于TMS320LF2812A步進(jìn)電機(jī)驅(qū)動(dòng)控制系統(tǒng),仿真和實(shí)驗(yàn)結(jié)果表明,在步進(jìn)電機(jī)定位控制系統(tǒng)中,采用計(jì)算動(dòng)詞PID控制,運(yùn)算時(shí)間短、動(dòng)態(tài)響應(yīng)快、定位精度高,可以保證系統(tǒng)運(yùn)行的實(shí)時(shí)性和穩(wěn)定性.
[1]Betin F,Pinchon D,Capolino G A.Fuzzy logic applied to speed control of a stepping motor drive[J].IEEE Transactions on Industrial Electronics,2000,47(3):610-622.
[2]陶永華.新型PID控制及其應(yīng)用[M].北京:機(jī)械工業(yè)出版社,2002:11-15.
[3]史敬灼.步進(jìn)電機(jī)伺服控制技術(shù)[M].北京:科學(xué)出版社,2006:24-31.
[4]Wale J,Pollock D.Hybrid stepping motors and drives[J].Power Engineering Journal,2001,15(1):5-12.
[5]Shi J Z,Xu D G,Wang Z P.A Novel hybrid stepping motor-neural position servo system[C]∥Industrial Electronics Society.Denver,USA:IEEE,2001:948-952.
[6]王泮海,徐殿國(guó),史敬灼.基于模糊神經(jīng)網(wǎng)絡(luò)控制的混合式步進(jìn)電機(jī)伺服系統(tǒng)研究[J].高技術(shù)通訊,2004,10(5):60-63.
[7]Miura T,Taniguchi T.Open-loop control of a stepping motor using oscillation-suppressive exciting sequence tuned by genetic algorithm[J].IEEE Trans Industry E-lectron,1999,46(6):1192-1198.
[8]Yang T.Architectures of computational verb controllers:towards a new paradigm of intelligent control[J].International Journal of Computational Cognition,2005,3(2):74-101.
[9]Yang T.Simple computational verb PID controllers[J].International Journal of Computational Cognition,2009,7(1):61-73.
[10]Zheng X Q,Guo D H.Study on driving control of twophase stepping motor based on mixing mode PWM[J].Journal of System Simulation,2012,24(2):456-461.