林榕 左偉敏 祝玲 王瑾 路君 黃梁滸 王慶華 譚建明 王水良
·論著·
人腫瘤壞死因子相關(guān)凋亡誘導配體穩(wěn)定過表達基因工程修飾人臍帶間充質(zhì)干細胞亞細胞系的建立
林榕 左偉敏 祝玲 王瑾 路君 黃梁滸 王慶華 譚建明 王水良
目的 通過基因工程修飾法建立腫瘤壞死因子相關(guān)凋亡誘導配體(TRAIL)穩(wěn)定過表達的人臍帶間充質(zhì)干細胞亞系(hUC-MSC_TRAIL)。方法 人TRAIL全長蛋白編碼序列(CDS)由PCR法擴增而得,PCR產(chǎn)物經(jīng)NotⅠ和MluⅠ雙酶切并純化后,亞克隆至經(jīng)同樣雙酶切的慢病毒表達載體pLEX-MCS。重組載體經(jīng)PCR法和限制性內(nèi)切酶酶切法鑒定,再行DNA直接測序驗證后命名為人TRAIL表達慢病毒載體pLEX-hTRAIL。pLEX-hTRAIL與相應(yīng)包裝質(zhì)粒psPAX2和pMD2.G經(jīng)聚乙烯亞胺介導共轉(zhuǎn)染HEK293T細胞以包裝慢病毒。P4代hUC-MSC經(jīng)慢病毒感染24 h,再行嘌呤霉素篩選2周后,抽提細胞基因組DNA,行PCR法鑒定hTRAIL cDNA在hUC-MSC基因組中的整合情況;同時抽提細胞總RNA,并行RT-PCR法檢測外源hTRAIL在hUC-MSC中的mRNA表達水平,以及實時定量RT-PCR法檢測周期調(diào)控相關(guān)蛋白Cyclin D1、Cyclin E1、p21WAF1/CIP1和p27的表達,采用方差分析和t檢驗進行統(tǒng)計學分析。結(jié)果 PCR法和限制性內(nèi)切酶酶切法鑒定結(jié)果表明,本研究已成功構(gòu)建人TRAIL慢病毒表達載體pLEX-hTRAIL,直接DNA測序結(jié)果證實克隆得到的人TRAIL蛋白編碼序列準確無誤;病毒包裝及細胞感染的鑒定結(jié)果說明,慢病毒感染法可成功介導外源人TRAIL在hUC-MSC的穩(wěn)定整合和高表達;實時定量RT-PCR法檢測結(jié)果則顯示,與對照慢病毒感染后的細胞相比,hTRAIL表達慢病毒感染后其細胞周期調(diào)控相關(guān)蛋白Cyclin D1、Cyclin E1、p21WAF1/CIP1和p27的mRNA表達水平分別是對照組的1.19倍(P = 0.141)、0.94倍(P = 0.745)、0.95倍(P = 0.047)和1.01倍(P = 0.567),表明外源TRAIL高表達對體外培養(yǎng)的hUC-MSC生長增殖等表型無顯著影響。結(jié)論 本研究經(jīng)基因工程修飾法成功構(gòu)建了具外源TRAIL穩(wěn)定高表達的hUC-MSC亞細胞系,該亞細胞系的建立為后續(xù)靶向攻擊TRAIL敏感腫瘤細胞的細胞治療的探索奠定了基礎(chǔ)。
基因修飾; 臍帶; 間質(zhì)干細胞; TRAIL; 細胞系,腫瘤
間充質(zhì)干細胞(mesenchymal stem cell, MSC)因其高度自我更新和增殖能力、以及多向分化潛能而在退行性疾病以及老年相關(guān)性疾病的細胞治療中得以廣泛應(yīng)用[1]。眾多研究早已表明,MSC也能靶向遷移至腫瘤組織,從而成為腫瘤微環(huán)境中重要的組成成分[2-3]。迄今,盡管MSC在腫瘤發(fā)生發(fā)展過程中的確切作用尚存爭論,可能因腫瘤的組織類型和發(fā)生發(fā)展階段的不同而各異,但其富集至腫瘤組織這一特性使其成為向腫瘤靶向運送特異性抗癌活性分子的合適載體細胞而備受關(guān)注[4-7]。
腫瘤壞死因子相關(guān)凋亡誘導配體(tumor necrosis factor-related apoptosis-inducing ligand,TRAIL)可通過與細胞表面的跨膜死亡受體DR4和DR5結(jié)合而特異誘導特定腫瘤細胞的凋亡,TRAIL觸發(fā)的凋亡通路中關(guān)鍵分子也因而成為腫瘤靶向治療中良好的候選靶標,基于這些靶標的諸多腫瘤靶向治療策略如重組TRAIL或DR激動性抗體的導入在體外細胞水平、臨床前動物水平、以及一些臨床試驗中都顯示出較好的抗腫瘤效應(yīng)[8-9]。鑒于重組TRAIL在血清中的半衰期短,這在較大程度上限制了其臨床抗腫瘤的療效[10]。為探索人臍帶間充質(zhì)干細胞(human umbilical cord mesenchymal stem cell, hUC-MSC)是否可作為向腫瘤靶向遞送TRAIL的載體細胞,本研究中經(jīng)基因工程修飾法成功構(gòu)建了具外源TRAIL穩(wěn)定高表達的hUC-MSC亞細胞系,該亞細胞系的建立為后續(xù)靶向攻擊TRAIL敏感腫瘤細胞的細胞治療的探索奠定了基礎(chǔ)。
一、材料
1.細胞和質(zhì)粒:hUC-MSC來源于福州總醫(yī)院泌尿外科實驗室干細胞組,取P4代細胞。人胚腎上皮細胞系HEK293T購自美國典型培養(yǎng)物保藏中心(ATCC)。慢病毒表達載體pLEX-MCS購自美國Open Biosystem公司,慢病毒包裝質(zhì)粒psPAX2 和pMD2.G購自美國Addgene公司。
2.酶和試劑:PCR試劑盒及DNA marker購自日本TaKaRa公司;PCR引物由上海生工生物工程公司合成(序列見表1);PhusionTM高保真DNA聚合酶、限制性內(nèi)切酶NotⅠ和MluⅠ、快速連接試劑盒為New England BioLabs公司產(chǎn)品;胎牛血清、DMEM/F12培養(yǎng)基、低糖DMEM購自美國Hyclone公司;Polybrene和聚乙烯亞胺(PEI)購自美國Sigama公司;嘌呤霉素購自ACROS公司;MTS和PMS購自美國Promega公司;TRIzol購自美國Life technolgies公司;逆轉(zhuǎn)錄試劑盒購自美國Fermentas公司;質(zhì)粒小提試劑盒和基因組DNA抽提試劑盒購自美國TIANGEN公司;SYBR和質(zhì)粒大提試劑盒購自美國ROCHE公司。
二、方法
1.細胞培養(yǎng):人胚腎上皮細胞系HEK293T的培養(yǎng)使用含10%胎牛血清的DMEM/F12;hUC-MSC的培養(yǎng)使用含10%胎牛血清的低糖DMEM培養(yǎng)基,置于含5% CO2飽和濕度的37℃溫箱中。
2.人TRAIL慢病毒表達載體pLEX-hTRAIL的構(gòu)建:常規(guī)抽提hUC-MSC總RNA,并經(jīng)逆轉(zhuǎn)錄為總cDNAs,再以其為模板利用PhusionTM高保真DNA聚合酶通過常規(guī)的兩輪PCR法擴增得到人TRAIL的完整編碼區(qū)(hTRAIL-CDS),所用引物為:上游5'-ATAGCGGCCGCATGGCTAT GATGGAGGTCCA-3';下游5'-GCG ACGCGTTT AGCCAACTAAAAAGGCCCCA-3';上下游引物分別含NotⅠ和MluⅠ酶切位點(粗斜體下劃線所示),PCR擴增片段為866 bp。PCR產(chǎn)物純化后經(jīng)NotⅠ和MluⅠ雙酶切,重新膠回收純化并與同樣經(jīng)NotⅠ和MluⅠ雙酶切的慢病毒表達載體pLEX-MCS連接構(gòu)建成人TRAIL慢病毒表達載體pLEX-hTRAIL(質(zhì)粒構(gòu)建流程見圖1)。重組載體經(jīng)酶切和PCR法鑒定后再行測序(上海生工生物工程公司)以證實,正確的重組質(zhì)粒經(jīng)大量擴增后-20℃保存待用。人TRAIL慢病毒表達載體pLEX-hTRAIL的構(gòu)建流程見圖1所示。
圖1 人hTRAIL 慢病毒表達載體pLEX-hTRAIL 的構(gòu)建流程
表1 RT-PCR擴增引物序列、擴增片段及退火溫度
3.慢病毒的包裝:正常培養(yǎng)的HEK293T細胞傳入100 mm培養(yǎng)皿后,待細胞長至80%匯合度時,以聚乙烯亞胺(PEI)為介導,將pLEX-hTRAIL(或空載體pLEX-MCS)連同兩個包裝質(zhì)粒psPAX2和pMD2.G行共轉(zhuǎn)染;轉(zhuǎn)染12 h后吸去轉(zhuǎn)染液,換正常培養(yǎng)基并置回溫箱培養(yǎng),每隔24 h后收集含慢病毒的培養(yǎng)液,經(jīng)過濾(0.45 μm濾器)后分裝,-80℃保存待用。
4.慢病毒的感染:正常培養(yǎng)的P4代hUCMSC接種至100 mm培養(yǎng)皿,待細胞長至80%匯合度時吸去培養(yǎng)基,將適量慢病毒稀釋入含Polybrene(終濃度8 μg/ml)的常規(guī)培養(yǎng)基后加至培養(yǎng)皿中。感染24 h后,棄去感染液,換含嘌呤霉素(終濃度1 μg/ml)的新鮮培養(yǎng)基篩選;此后細胞正常傳代培養(yǎng),并維持嘌呤霉素篩選兩周。
5.外源hTRAIL-CDS在hUC-MSC基因組整合的鑒定:常規(guī)法抽提細胞基因組DNA,行PCR法鑒定外源hTRAIL-CDS在hUC-MSC基因組中的整合情況,所用引物為人TRAIL表達鑒定的RT-PCR引物(表1),PCR體系同后述常規(guī)PCR擴增體系。
6.RT-PCR:依TRIzol法抽提培養(yǎng)細胞的總RNA;取各樣本2 μg總RNA,經(jīng)逆轉(zhuǎn)錄制備cDNA。以β-actin為內(nèi)參,行常規(guī)及實時定量RT-PCR法分析TRAIL、Cyclin D1、Cyclin E1、p21和p27基因mRNA在對照和TRAIL表達慢病毒感染后hUC-MSC中的表達情況。各基因RT-PCR擴增引物及PCR退火溫度見表1,常規(guī)PCR擴增體系含:2.5 μl 10 × buffer、上下游引物各100 pmol、1.5 μl dNTP(2.5 mmol/L each)、Taq酶1.25 U、cDNA 1 μl,ddH2O補足至25 μl。PCR反應(yīng)條件,94℃預(yù)變性3 min;94℃變性30 s,特定溫度退火30 s,72℃延伸30 s的條件下循環(huán)30次;最后72℃延伸5 min。PCR產(chǎn)物1.5%瓊脂糖凝膠電泳鑒定,凝膠成像儀成像。實時定量RT-PCR反應(yīng)體系為:10 μl 2 × SYBR混合物、上下游引物各100 pmol、cDNA 1 μl,ddH2O補足至20 μl;PCR循環(huán)條件同上,反應(yīng)于ABI 7900HT Fast PCR儀上完成。基因表達的相對定量方法為:以β-actin基因mRNA的表達為內(nèi)對照,首先依據(jù)公式ΔCt = Ct靶基因- Ct β-actin,分別計算實驗組和對照組的ΔCt;再依公式ΔΔCt = ΔCt實驗組-ΔCt對照組計算出ΔΔCt值;最后計算相對表達量的差值即2-ΔΔCt。
三、統(tǒng)計學分析方法
采用SPSS 13.0統(tǒng)計軟件進行統(tǒng)計學處理,實時定量RT-PCR實驗重復3次,每次做3個重復孔,取各次實驗的±s為最后結(jié)果,并以t檢驗行差異顯著性分析。以P < 0.05為差異有統(tǒng)計學意義。
一、人TRAIL蛋白編碼序列全長的獲得
鑒于hUC-MSC中TRAIL呈低表達,故本研究采取同樣引物行兩輪PCR擴增法以獲得足夠量的hTRAIL-CDS,即第一輪PCR以hUCMSC的總cDNAs為模板,第二輪PCR以第一輪PCR的產(chǎn)物經(jīng)1:100稀釋后作模板再行擴增。人TRAIL蛋白編碼序列全長共846 bp,上、下游擴增引物另含酶切位點及保護堿基20 bp,故PCR擴增產(chǎn)物總大小為866 bp,如圖2所示,二輪PCR產(chǎn)物與預(yù)期相符,且產(chǎn)物量豐富。
圖2 人hTRAIL 蛋白編碼區(qū)CDS 的PCR 擴增結(jié)果
二、重組人TRAIL慢病毒表達載體pLEX-hTRAIL的鑒定
重組慢病毒表達載體pLEX-hTRAIL初步以酶切和PCR法鑒定。依酶切圖譜分析,正確的重組載體經(jīng)NotⅠ單酶切后線性化,大小為11 528 bp(圖3a泳道1);而經(jīng)NotⅠ和MluⅠ雙酶切后應(yīng)可見一大小為846 bp的小片段即人TRAIL蛋白編碼序列,另一大片段為骨架質(zhì)粒10 682 bp(圖3a泳道2)。同時,PCR法也證實重組載體含人TRAIL完整編碼區(qū)(圖3b);重組質(zhì)粒還經(jīng)直接測序,并與GenBank中的參考序列(NCBI序列號:NM_003810)比對后,證實重組載體中的hTRAIL-CDS序列準確無誤(結(jié)果未顯示)。
三、外源hTRAIL-CDS在hUC-MSC基因組中整合及穩(wěn)定表達
hUC-MSC經(jīng)對照或hTRAIL表達慢病毒感染并篩選兩周后,抽提基因組DNA并行PCR法鑒定,結(jié)果表明:外源hTRAIL-CDS已整合入經(jīng)hTRAIL表達慢病毒感染的hUC-MSC基因組中(圖4)。同時,普通以及實時定量RT-PCR鑒定結(jié)果也證實,外源hTRAIL在hUC-MSC中得以成功高表達(表2,圖5)。
圖3 重組人TRAIL 慢病毒表達載體pLEXhTRAIL的鑒定
四、外源人TRAIL過表達對體外培養(yǎng)hUCMSC生長增殖調(diào)控相關(guān)蛋白的表達無顯著影響
經(jīng)初步觀察,與對照病毒感染的hUCMSC_CV相比,TRAIL過表達hUC-MSC_TRAIL其形態(tài)以及細胞生長增殖速率并無明顯改變。普通和實時定量RT-PCR法檢測結(jié)果則顯示,與對照慢病毒感染相比,TRAIL過表達hUCMSC_TRAIL細胞周期調(diào)控相關(guān)蛋白Cyclin D1、Cyclin E1、p21WAF1/CIP1和p27 mRNA表達水平分別是對照組的1.19倍(P = 0.141)、0.94倍(P = 0.745)、0.95倍(P = 0.047)和1.01倍(P = 0.567)(表2,圖6,7)。依實時定量RT-PCR結(jié)果的判定標準,通常認為相對表達倍數(shù)> 2或< 0.25為差異具有統(tǒng)計學意義;據(jù)此,RT-PCR分析結(jié)果表明外源TRAIL高表達對體外培養(yǎng)的hUC-MSC生長增殖等表型無顯著影響。
表2 hUC-MSC細胞TRAIL及細胞周期調(diào)控相關(guān)蛋白mRNA表達水平的實時定量RT-PCR結(jié)果
圖4 外源hTRAIL-CDS 在hUC-MSC 基因組中整合的鑒定
圖5 外源hTRAIL 在hUC-MSC 中表達的RT-PCR 鑒定
細胞治療作為一種新的治療手段,迄今已在包括腫瘤在內(nèi)的多種疾病中得以廣為應(yīng)用[1,11]。在細胞的選擇中,MSC作為成體干細胞的一種,因其自我更新和增殖能力強、并具多向分化潛能和體內(nèi)輸注后定向遷移至受損傷或腫瘤部位等特點而成為細胞治療良好的候選細胞[12]。依其來源不同,MSC有骨髓MSC、脂肪MSC和UCMSC之分;其中UC-MSC以其低免疫原性和來源豐富而成為眾多臨床細胞治療的首選[13]。
隨著腫瘤細胞和分子生物學研究的不斷深入,MSC在腫瘤發(fā)生發(fā)展過程中的作用日益凸顯;但在不同腫瘤以及同一腫瘤發(fā)生發(fā)展的不同階段,MSC所起的作用卻大相徑庭,其作用機理也各異。例如,Zhu等[14]曾報道人MSC可通過分泌DKK-1而抑制腫瘤細胞的增殖;但同時,諸多研究也證實MSC有助于腫瘤細胞逃避化療藥物所誘導的凋亡以及促進腫瘤轉(zhuǎn)移,從而發(fā)揮促進腫瘤發(fā)展的“助紂為虐”性作用[15-17]。鑒于此,在充分闡明MSC在某一特定腫瘤發(fā)生發(fā)展的特定階段所起作用的確切分子機理的基礎(chǔ)上,如何通過藥物(或生物活性分子)處理和/或基因工程修飾等手段,以期“趨利避害”,將MSC最終改造成為能靶向攻擊特定腫瘤的載體細胞,這對其臨床療效的取得將至關(guān)重要。
圖6 TRAIL 過表達hUC-MSC 細胞周期調(diào)控相關(guān)蛋白mRNA 表達水平RT-PCR 分析結(jié)果
圖7 普通RT-PCR 的瓊脂糖凝膠電泳結(jié)果
在通過基因工程修飾定向改造腫瘤靶向MSC的探索中,較早納入研究的有包括NK4[5]和CX3CL1[7]等多種基因;近年來,TRAIL則因其高效介導多種腫瘤細胞的凋亡效應(yīng)而備受關(guān)注[8-10]。2012年,Lee等[18]的研究發(fā)現(xiàn),通過TNF-α預(yù)處理的MSC其TRAIL的表達顯著增高,并可高效誘導MDA-MB-231等TRAIL敏感腫瘤細胞的凋亡。鑒于經(jīng)預(yù)處理的MSC其TRAIL的高表達仍為瞬時效應(yīng),細胞輸注至體內(nèi)后其TRAIL的高表達及其抗癌活性所維系的時間也勢必有限。在本研究中,基于前期工作基礎(chǔ)[19],為建立TRAIL穩(wěn)定高表達hUC-MSC亞系,本研究首先經(jīng)分子克隆法成功地構(gòu)建了人TRAI表達慢病毒載體pLEX-hTRAIL;隨之,通過慢病毒包裝及細胞感染和鑒定,結(jié)果表明慢病毒感染法可成功介導外源人TRAIL在hUC-MSC的穩(wěn)定整合和高表達。同時,初步的表型觀察表明,TRAIL過表達并不會造成體外培養(yǎng)的hUC-MSC形態(tài)的明顯改變;細胞周期調(diào)控相關(guān)蛋白表達的分析結(jié)果則顯示,與對照慢病毒感染后的細胞相比,hTRAIL表達慢病毒感染后其Cyclin D1、Cyclin E1、p21WAF1/CIP1和p27的mRNA表達水平與對照組無顯著差別,表明外源TRAIL高表達對體外培養(yǎng)的hUC-MSC生長增殖等表型無明顯的影響。
綜上,盡管其體外和體內(nèi)抗腫瘤的效應(yīng)性仍有待進一步的研究證實,但本研究建立的外源TRAIL穩(wěn)定高表達的hUC-MSC亞細胞系無疑為后續(xù)靶向攻擊TRAIL敏感腫瘤細胞的細胞治療的探索奠定了基礎(chǔ)。誠然,隨著MSC靶向遷移至腫瘤部位分子機理的深入闡明[20-21],如何通過基因工程修飾等方法進一步修飾TRAIL高表達MSC,以期實現(xiàn)其體內(nèi)輸注后更加高效地富集至腫瘤部位以發(fā)揮其抗癌效應(yīng)將是下一步努力的方向。
1 Wang J, Liao L, Wang S, et al. Cell therapy with autologous mesenchymal stem cells—how the disease process impacts clinical considerations[J]. Cytotherapy, 2013,15(8):893-904.
2 Reagan MR, Kaplan DL. Concise review. Mesenchymal stem cell tumor homing: detection methods in disease model systems[J]. Stem Cells, 2011, 29(6):920-927.
3 Goldstein RH, Reagan MR, Anderson K, et al. Human bone marrow-derived MSCs can home to orthotopic breast cancer tumors and promote bone metastasis[J]. Cancer Res,2010, 70(24):10044-10050.
4 Studeny M, Marini FC, Dembinski JL, et al. Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents[J]. J Natl Cancer Inst, 2004, 96(21):1593-1603.
5 Kanehira M, Xin H, Hoshino K, et al. Targeted delivery of NK4 to multiple lung tumors by bone marrow-derived mesenchymal stem cells[J]. Cancer Gene Ther, 2007,14(11): 894-903.
6 Kucerova L, Altanerova V, Matuskova M, et al. Adipose tissue-derived human mesenchymal stem cells mediated prodrug cancer gene therapy[J]. Cancer Res, 2007, 67(13):6304-6313.
7 Xin H, Kanehira M, Mizuguchi H, et al. Targeted delivery of CX3CL1 to multiple lung tumors by mesenchymal stem cells[J]. Stem Cells, 2007, 25(7):1618-1626.
8 Ashkenazi A. Targeting the extrinsic apoptosis pathway in cancer[J]. Cytokine Growth Factor Rev, 2008,19(3-4):325-331.
9 Johnstone RW, Frew AJ, Smyth MJ. The TRAIL apoptotic pathway in cancer onset, progression and therapy[J]. Nat Rev Cancer, 2008, 8(10):782-798.
10 Kelley SK, Harris LA, Xie D, et al. Preclinical studies to predict the disposition of Apo2L/tumor necrosis factor-related apoptosis-inducing ligand in humans: characterization of in vivo effi cacy, pharmacokinetics, and safety[J]. J Pharmacol Exp Ther, 2001, 299(1):31-38.
11 Ramdasi S, Sarang S, Viswanathan C. Potential of Mesenchymal Stem Cell based application in Cancer[J]. Int J Hematol Oncol Stem Cell Res, 2015, 9(2):95-103.
12 Chen JR, Cheng CC. Sheu GF, et al. Transplanted bone marrow stromal cells migrate, differentiate and improve motor function in rats with experimentally induced cerebral stroke[J]. J Anat, 2008, 213(3):249-258.
13 Romanov YA, Svintsitskaya VA, Smirnov VN. Searching for alternative sources of postnatal human mesenchymal stem cells:candidate MSC-like cells from umbilical cord[J]. Stem Cells, 2003, 21(1):105-108.
14 Zhu Y, Sun Z, Han Q, et al. Human mesenchymal stem cells inhibit cancer cell proliferation by secreting DKK-1[J]. Leukemia, 2009, 23(5):925-933.
15 Kurtova AV, Balakrishnan K, Chen R, et al. Diverse marrow stromal cells protect CLL cells from spontaneous and drug-induced apoptosis: development of a reliable and reproducible system to assess stromal cell adhesion-mediated drug resistance[J]. Blood, 2009,114(20):4441-4450.
16 Patel SA, Meyer JR, Greco SJ, et al. Mesenchymal stem cells protect breast cancer cells through regulatory T cells:role of mesenchymal stem cell-derived TGF-beta[J]. J Immunol, 2010, 184(10):5885-5894.
17 Karnoub AE, Dash AB, Vo AP, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis[J]. Nature, 2007, 449(7162):557-563.
18 Lee RH, Yoon N, Reneau JC, et al. Preactivation of human MSCs with TNF-α enhances tumor-suppressive activity[J]. Cell Stem Cell, 2012, 11(6):825-835.
19 林鳳錦, 王水良, 黃粱滸, 等.慢病毒載體系統(tǒng)介導hUC-MSC綠熒光蛋白和熒光素酶共表達技術(shù)體系的建立[J/CD].中華細胞與干細胞雜志:電子版,2013,3(3):118-125.
20 Ho IA, Yulyana Y, Sia KC, et al. Matrix metalloproteinase-1-mediated mesenchymal stem cell tumor tropism is dependent on crosstalk with stromal derived growth factor 1/C-X-C chemokine receptor 4 axis[J]. FASEB J, 2014,28(10):4359-4368.
21 Lourenco S, Teixeira VH, Kalber T, et al. Macrophage migration inhibitory factor-CXCR4 is the dominant chemotactic axis in human mesenchymal stem cell recruitment to tumors[J]. J Immunol, 2015,194(7):3463-3474.
Genetically engineered human umbilical cord mesenchymal stem cells with stable overexpression of human tumor necrosis factor-related apoptosis-inducing ligand
Lin Rong,Zuo Weimin, Zhu Ling, Wang Jin, Lu Jun, Huang Lianghu, Wang Qinghua, Tan Jianming, Wang Shuiliang. Fujian Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou 350025, China
Wang Shuiliang, Email: shuiliang.wang@xmu.edu.cn
Objective To establish genetically engineered human umbilical cord mesenchymal stem cells (hUC-MSC) with overexpression of hTRAIL for cancer therapy. Methods The entire coding sequence (CDS) of human tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) was amplified from cDNAs of hUC-MSC cells. Theamplified fragments were purified and digested with Not I and Mlu I, and then inserted into the lentiviral expression vector LentiORF pLEX-MCS. The recombinant was identified with both PCR and restriction digestion. After verification by DNA sequencing, the recombinant (with accurate sequence of hTRAIL CDS) was nominated as pLEX-hTRAIL. The lentiviral expression vector pLEX-hTRAIL and lentivirus packaging plasmids psPAX2 and pMD2.G were cotransfected into virus packaging cell line HEK293T using PEI to produce lentiviruses. Human umbilical cord mesenchymal stem cells were infected with hTRAIL-expressing lentiviruses and then subjected to selection with puromycin. The integration of exogenous hTRAIL cDNA into the genome of hUC-MSCs was detected with PCR and overexpression of hTRAIL was analyzed with both regular and real-time qRT-PCR. Also, the same method was carried out to analyze the mRNA expression of cell cycle regulators Cyclin D1, Cyclin E1, p21WAF1/CIP1 and p27. Analysis of variance and t test was used for statistical analysis. Results The recombinant pLEX-hTRAIL with insert of human TRAIL cDNA was verified by PCR, restriction digestion,as well as direct DNA sequencing. After infection, the integration of exogenous hTRAIL cDNA in the genome of hUC-MSC was shown by PCR and the successful expression of exogenous hTRAIL in hUC-MSC was confirmed by both regular and real-time quantification RTPCR. In addition, the real-time RT-PCR results indicated that the lentiviral system mediated overexpression of exogenous hTRAIL in hUC-MSC did not cause any significant change of expression of cell cycle regulators Cyclin D1 (1.19 fold, P = 0.141), Cyclin E1 (0.94 fold,P = 0.745), p21WAF1/CIP1(0.95 fold, P = 0.047), and p27 (1.01 fold, P = 0.567) as compared with those of control viral infection. Conclusion We reported here an establishment of genetically engineered human umbilical cord mesenchymal stem cells with overexpression of hTRAIL. Its anti-cancer therapeutic potential in vitro and in vivo is awaiting further investigation.
Genetically modified; umbilical cord; mesenchymal stem cell; TRAIL; cell Line, tumor
2015-07-08)
(本文編輯:蔡曉珍)
10.3877/cma.j.issn.2095-1221.2015.04.002
國家自然科學基金面上項目(81272922);福建省科技計劃重大專項專題項目(2012YZ0001-1)
350025福州,南京軍區(qū)福州總醫(yī)院廈門大學附屬東方醫(yī)院福建省移植生物學重點實驗室
王水良,Email: shuiliang.wang@xmu.edu.cn