邢峰 馬迅
[摘要] 目的 探討轉(zhuǎn)化生長(zhǎng)因子β1聯(lián)合生長(zhǎng)分化因子-5體外誘導(dǎo)骨髓間質(zhì)干細(xì)胞向類髓核細(xì)胞分化的可能性。 方法 取SD大鼠骨髓間質(zhì)干細(xì)胞,流式細(xì)胞儀檢測(cè)兩種干細(xì)胞CD105、CD90、CD44、CD29、CD45、CD34、CD24的表達(dá)。將增殖至第三代的BMSCs分為對(duì)照、TGF-β1、GDF-5、TGF-β1+ GDF-5四組,分別以含不同細(xì)胞因子誘導(dǎo)液培養(yǎng)14d后,采用RT-PCR檢測(cè)各組細(xì)胞Ⅱ型膠原、蛋白多糖、SOX-9基因的表達(dá)。 結(jié)果 兩種干細(xì)胞CD105、CD90、CD44、CD29表達(dá)陽(yáng)性; CD45、CD34、CD24表達(dá)陰性。向類髓核細(xì)胞誘導(dǎo)培養(yǎng)14d后,TGF-β1、GDF-5、TGF-β1與GDF-5三組的Collagen type Ⅱ、Aggrecan、SOX-9基因表達(dá)水平較對(duì)照組均有明顯升高,差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。聯(lián)合誘導(dǎo)組經(jīng)過(guò)誘導(dǎo)后的Collagen type Ⅱ、Aggrecan、SOX-9基因表達(dá)水平明顯高于TGF-β1組及GDF-5組,差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。 結(jié)論 GDF-5與TGF-β1都具有誘導(dǎo)BMSCs向類髓核細(xì)胞分化的能力,且二者之間具有協(xié)同作用,聯(lián)合應(yīng)用可以更好的誘導(dǎo)BMSCs向類髓核細(xì)胞分化。
[關(guān)鍵詞] 轉(zhuǎn)化生長(zhǎng)因子β1;生長(zhǎng)分化因子-5;骨髓間質(zhì)干細(xì)胞;類髓核細(xì)胞;椎間盤;Ⅱ型膠原
[中圖分類號(hào)] R329 [文獻(xiàn)標(biāo)識(shí)碼] B [文章編號(hào)] 2095-0616(2015)11-20-05
[Abstract] Objective To explore the possibility of transforming growthβ1 combined with growth differentiation factor-5 inducing bone marrow mesenchymal stem cells to differentiate into nucleus pulposus-like cells. Methods Bone marrow mesenchymal stem cells were taken from Sprague-Dawley rats and flow cytometer was used to detect the expression of CD105, CD90, CD44, CD29, CD45, CD34 and CD24 of two kinds of stem cells. BMSCs proliferating to the third generation were divided into control group, TGF-β1 group, GDF-5 group and TGF-β1+ GDF-5 group. After 14 days' cultivation of inducing medium of different cytokines, RT-PCR were used to detect the expression of collagen typeⅡ, proteoglycan and SOX-9 genes in every group. Results The CD105, CD90, CD44 and CD29 of two kinds of stem cells had positive expressions while CD45, CD34 and CD24 of two kinds of stem cells had negative expressions. After 14 days' inducing cultivation of bone marrow mesenchymal stem cells, gene expression levels of Collagen typeⅡ, Aggrecan and SOX-9 in TGF-β1 group、GDF-5 group and TGF-β1+ GDF-5 group were significantly increased than those in the control group. The difference was statistically significant (P<0.05). The gene expression level of Collagen type Ⅱ, Aggrecan and SOX-9 in TGF-β1+ GDF-5 group were significantly higher than that in TGF-β1 group and GDF-5 group. The difference was statistically significant (P<0.05). Conclusion TGF-β1 and GDF-5 both have the ability to induce bone marrow mesenchymal stem cells to differentiate into nucleus pulposus-like cells and there is synergistic effect between them. The combined application can better induce BMSCs to differentiate into nucleus pulposus-like cells.
[Key words] Transforming growth factor β1; Growth differentiation factor-5; Bone marrow mesenchymal stem cells; Nucleus pulposus-like cells; Intervertebral disk; Collagen type Ⅱ
脊柱退行性疾病是嚴(yán)重危害人類健康和生命
的重要疾病,椎間盤退變(intervertebral disc degenerative diseases,DDD)是其主要的病理改變。傳統(tǒng)保守治療和手術(shù)治療方法只然能緩解臨床癥狀,并不能從根本上緩解椎間盤的退變。近年來(lái)隨著生物技術(shù)的發(fā)展,以細(xì)胞治療為基礎(chǔ)的生物治療技術(shù)為椎間盤退變性疾病提供了一種新的治療策略。骨髓間充質(zhì)干細(xì)胞(bone marrow mesenchyme stem cells,BMSCs)具有向多種細(xì)胞分化的能力,合適的微環(huán)境及環(huán)境中相關(guān)細(xì)胞因子的存在是BMSCs定向分化的前提。轉(zhuǎn)化生長(zhǎng)因子β1(transforming growth factor beta 1,TGF-β1)是軟骨及髓核組織工程中常用的細(xì)胞因子,能夠誘導(dǎo)BMSCs 向類軟骨細(xì)胞和類髓核細(xì)胞分化,并且在軟骨形成過(guò)程中有著重要的作用。生長(zhǎng)分化因子-5(growth and differentiation factor-5)也稱為軟骨源性形態(tài)發(fā)生蛋白-1(cartilage-derived morphogenetic protein-1,CDMP-1)是骨形態(tài)發(fā)生蛋白家族中的一員,具有促進(jìn)軟骨形成和發(fā)育的能力。本實(shí)驗(yàn)旨在探討轉(zhuǎn)化生長(zhǎng)因子β1聯(lián)合生長(zhǎng)分化因子-5體外誘導(dǎo)骨髓間質(zhì)干細(xì)胞向類髓核細(xì)胞分化的可能性,為髓核組織工程研究提供相關(guān)理論與實(shí)驗(yàn)依據(jù)。
1 材料與方法
1.1 實(shí)驗(yàn)材料與儀器
SD大鼠骨髓間質(zhì)干細(xì)胞成軟骨誘導(dǎo)培養(yǎng)液(Cyagen,美國(guó));重組人TGF-beta1(PeproTech,美國(guó));重組人GDF-5(PeproTech,美國(guó));熒光定量試劑盒(TaKaRa,日本);7300熒光實(shí)時(shí)定量PCR擴(kuò)增儀(Applied Biosystems,美國(guó))。
1.2 BMSCs的分離與培養(yǎng)
無(wú)菌條件下,取SD大鼠股骨骨髓,200目濾網(wǎng)過(guò)濾去除殘留組織,PBS沖洗3次,加入20%胎牛血清的DMEM/F12培養(yǎng)液吹打均勻,計(jì)數(shù)后,按細(xì)胞密度為1×104/L接種于25cm2培養(yǎng)瓶中,置于37℃、5%CO2培養(yǎng)箱培養(yǎng)。每3天換液1次,倒置顯微鏡觀察細(xì)胞生長(zhǎng)情況。原代培養(yǎng)細(xì)胞達(dá)到80%~90%融合時(shí),加入質(zhì)量濃度為0.25%的胰蛋白酶消化,計(jì)數(shù)后按1∶2分瓶傳代。
1.3 流式細(xì)胞術(shù)進(jìn)行表面免疫表型鑒定
取第3代BMSCs,胰蛋白酶消化,每管取1mL濃度為1×105/mL的細(xì)胞,PBS洗滌,棄上清用于標(biāo)記。每種細(xì)胞均設(shè)同型對(duì)照(IgG1-PE抗體),其余測(cè)定管中分別加入熒光單克隆抗體CD105、CD90、CD29、CD45、CD44、CD34、CD24(熒光染料均為PE),混勻后室溫避光孵育30min, PBS清洗,重懸于500μL PBS(含質(zhì)量濃度為1%的多聚甲醛),BACKMAN FC500型流式細(xì)胞儀檢測(cè)。根據(jù)同型對(duì)照的熒光強(qiáng)度設(shè)定陰性細(xì)胞群閾值,觀察各組陽(yáng)性細(xì)胞表達(dá)率及熒光強(qiáng)度。
1.4 BMSCs向類髓核細(xì)胞誘導(dǎo)分化
1.4.1 實(shí)驗(yàn)分組 (1)對(duì)照組;(2)TGF-β1組;(3)GDF-5組;(4)TGF-β1+ GDF-5組。
1.4.2 培養(yǎng)基配置 (1)無(wú)血清低糖DMEM、1mM丙酮酸鈉、0.1mM維生素C、10-7M地塞米松;(2)(1)+10ng/mL重組人TGF-β1;(3)(1)+100ng/mL重組人GDF-5;(4)(1)+10ng/mL重組人TGF-β1+100ng/mL重組人GDF-5。
1.4.3 向類髓核細(xì)胞誘導(dǎo)分化方法 分別取脂肪、髓核來(lái)源第3代間充質(zhì)干細(xì)胞,胰蛋白酶消化制成單細(xì)胞懸液,細(xì)胞計(jì)數(shù)板計(jì)數(shù),轉(zhuǎn)移到15mL離心管中,1000rpm離心5min,棄上清,每7.5×105個(gè)細(xì)胞用1mL不完全誘導(dǎo)液重懸,1000rpm離心5min,棄上清,用完全誘導(dǎo)液以5×105/mL的濃度重懸,每0.5毫升細(xì)胞懸液分裝入15mL離心管中,1000rpm離心5min,將離心管蓋擰緊后松開(kāi)半圈,置 37℃、5%CO2、飽和濕度培養(yǎng)箱中靜置24h。每2~3天完全換液,換液后輕彈離心管底部,使細(xì)胞球懸浮。每2~3d換液1次,按照時(shí)間分組連續(xù)誘導(dǎo)14d。
1.5 SYBR green法熒光定量PCR分析
誘導(dǎo)完成后,以Trizol法提取各組細(xì)胞總RNA,測(cè)定RNA濃度,按照RT試劑盒說(shuō)明書(shū)將RNA逆轉(zhuǎn)錄為cDNA,按照SYBR green熒光定量RT-PCR試劑盒說(shuō)明,反應(yīng)體系為:2×SYBR Premix Ex Taq 10μL,Rox DyeⅡ 0.4μL,上游引物 0.8μL,下游引物 0.8μL,cDNA 2μL,去離子水:6μL。反應(yīng)條件:90℃預(yù)變性10s,隨后90℃變性5s,60℃延伸40s,共40個(gè)循環(huán)。采用ΔΔCt法,即以β-actin為內(nèi)參照基因,計(jì)算各樣品ΔCt(目的基因 Ct-內(nèi)參基因Ct),設(shè)定某一正常對(duì)照ΔCt值為校正樣品,計(jì)算ΔΔCt(各樣品ΔCt-校正品ΔCt),某樣品的目的基因mRNA相對(duì)表達(dá)量(RQ)可用如下公式計(jì)算:RQ=2-ΔΔCt每一樣品均設(shè)2個(gè)重復(fù)孔,計(jì)算其均值作為RQ值。每次PCR反應(yīng)后均進(jìn)行熔解曲線分析以確認(rèn)擴(kuò)增產(chǎn)物的特異性。
目的基因和內(nèi)參照基因的引物序列如下: Aggrecan(ACAN)引物序列如下:上游引物5′-CCACTGGAGAGGACTGCGTAG-3′,下游引物5′- GGTCTGTGCAAGTGATTCGAG -3′。Type II collagen_1(COL2A1)引物序列如下:上游引物5′-GGAAGAGTGGAGACTACTGGATTGAC-3′,下游引物5′-TCCATGTTGCAGAAAACCTTCA-3′。Sex-determining region Y box 9 (SOX-9)引物序列如下:上游引物5′- AGGAAGCTGGCAGACCAGTACC-3′,下游引物5′- GGGTCTCTTCTCGCTCTCGTTCA-3′。內(nèi)參基因b-actin引物序列如下:上游引物:5′- TCCTAGCACCATGAAGATC-3′,下游引物:5′-AAACGCAGCTCAGTAACAG-3′。
1.6 統(tǒng)計(jì)學(xué)處理
應(yīng)用SPSS 17.0統(tǒng)計(jì)軟件進(jìn)行統(tǒng)計(jì)分析,結(jié)果以()表示。多個(gè)樣本均數(shù)比較采用單因素方差分析,兩組均數(shù)比較采用LSD-t檢驗(yàn)。檢驗(yàn)水準(zhǔn)為α=0.05。
2 結(jié)果
2.1 干細(xì)胞的分離與培養(yǎng)
原代細(xì)胞3~4d貼壁,細(xì)胞形態(tài)以短梭形居多,少量為三角形及多邊形,形態(tài)飽滿,胞核明顯,折光性好;15~20d達(dá)到90%融合,傳至第3代,細(xì)胞形態(tài)均一、排列緊密,呈螺旋狀生長(zhǎng)。
2.2 干細(xì)胞的鑒定
流式細(xì)胞術(shù)檢測(cè)BMSCs結(jié)果顯示CD105、CD90、CD44、CD29均為陽(yáng)性;造血干細(xì)胞標(biāo)志CD45、CD34均為陰性;成熟髓核細(xì)胞標(biāo)志物CD24均為陰性。
2.3 細(xì)胞外基質(zhì)相關(guān)基因的表達(dá)
各組誘導(dǎo)14d后,采用Realtime PCR對(duì)各組Collagen type Ⅱ、Aggrecan、SOX-9基因進(jìn)行定量檢測(cè),結(jié)果顯示,TGF-β1(2)、GDF-5(3)、TGF-β1與GDF-5(4)三組的Collagen type Ⅱ、Aggrecan、SOX-9基因表達(dá)水平較對(duì)照組均有明顯升高,差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。聯(lián)合誘導(dǎo)(4)組經(jīng)過(guò)誘導(dǎo)后的Collagen type Ⅱ、Aggrecan、SOX-9基因表達(dá)水平明顯高于TGF-β1(2)組及GDF-5(3) 組,差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。TGF-β1(2)組與GDF-5(3)組Collagen type Ⅱ、Aggrecan、SOX-9基因表達(dá)水平無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)。
3 討論
椎間盤退行性病變引起的頸肩、腰腿痛在臨床骨科十分常見(jiàn)[1]。造成椎間盤退行性變的主要原因通常認(rèn)為是中央髓核的退變所致,細(xì)胞減少且功能退化,髓核脫水,合成蛋白聚糖和Ⅱ型膠原蛋白能力減弱,且難以自行逆轉(zhuǎn)[2-3]。目前臨床常規(guī)手術(shù)如髓核摘除、人工椎間盤置換等雖然可以緩解病痛,卻難以完全模擬和替代髓核復(fù)雜的生物力學(xué)功能,同時(shí)還存在并發(fā)癥和遠(yuǎn)期療效不佳的問(wèn)題,故更不宜應(yīng)用于椎間盤退變的早期治療。組織工程技術(shù)的日益發(fā)展和成熟,為解決上述難題帶來(lái)了希望。研究表明轉(zhuǎn)化生長(zhǎng)因子β1與生長(zhǎng)分化因子-5均具有體外促進(jìn)骨髓間質(zhì)干細(xì)胞向類髓核細(xì)胞分化的能力,然而二者聯(lián)合誘導(dǎo)骨髓間質(zhì)干細(xì)胞向類髓核細(xì)胞分化效果如何目前未見(jiàn)相關(guān)報(bào)道。因此,本實(shí)驗(yàn)通過(guò)探討轉(zhuǎn)化生長(zhǎng)因子β1聯(lián)合生長(zhǎng)分化因子-5體外誘導(dǎo)骨髓間質(zhì)干細(xì)胞向類髓核細(xì)胞分化的可能性,為髓核組織工程研究提供相關(guān)理論與實(shí)驗(yàn)依據(jù)。
2004年,Risbud等[4]首次以包含TGF-β1的培養(yǎng)基在低氧條件下將BMSCs在體外誘導(dǎo)分化為類髓核細(xì)胞表型,使其髓核細(xì)胞轉(zhuǎn)錄產(chǎn)物蛋白多糖、Ⅱ型膠原及SOX9表達(dá)均顯著增高[5],證實(shí)了TGF-β具有在體外誘導(dǎo)干細(xì)胞向類髓核細(xì)胞分化的能力,如今TGF-β的利用已成為體外誘導(dǎo)干細(xì)胞向類髓核細(xì)胞分化最常使用的方法之一[6-9]。
生長(zhǎng)分化因子-5也稱為軟骨源性形態(tài)發(fā)生蛋白-1是骨形態(tài)發(fā)生蛋白家族中的一員, 作用于骨骼系統(tǒng),具有促進(jìn)軟骨形成和發(fā)育的能力。其具有多種調(diào)節(jié)功能,可用于軟骨、骨、關(guān)節(jié)、肌腱、韌帶、椎間盤等的組織工程研究與治療。Wang 等[10]將帶有CDMP-1及TGF-β的腺病毒分別轉(zhuǎn)染到兔和人椎間盤細(xì)胞中,結(jié)果顯示CDMP-1與TGF-β過(guò)表達(dá)可以促進(jìn)椎間盤細(xì)胞的增殖以及細(xì)胞外基質(zhì)的合成。Maitre等[11]的研究發(fā)現(xiàn),退變?nèi)怂韬思?xì)胞在包含GDF-5的誘導(dǎo)液培養(yǎng)后蛋白多糖與Ⅱ型膠原基因表達(dá)增高,且蛋白多糖產(chǎn)物增多。
髓核細(xì)胞外基質(zhì)主要由膠原纖維和蛋白聚糖構(gòu)成, 髓核細(xì)胞的主要功能是分泌膠原蛋白和酸性粘多糖[12],其中Ⅱ型膠原占大部分,它和聚集蛋白聚糖、SOX-9被認(rèn)為是髓核細(xì)胞的特征性標(biāo)志[5],且在國(guó)內(nèi)外眾多學(xué)者的研究當(dāng)中作為干細(xì)胞向類髓核細(xì)胞誘導(dǎo)分化的評(píng)定標(biāo)準(zhǔn)[7-8,13-15]。本實(shí)驗(yàn)分別用包含TGF-β1、GDF-5、TGF-β1與GDF-5,及無(wú)細(xì)胞因子4種誘導(dǎo)液誘導(dǎo)BMSCs向類髓核細(xì)胞分化,大體觀察誘導(dǎo)48h后,TGF-β1、GDF-5、TGF-β1與GDF-5三組離心管中的細(xì)胞均形成細(xì)胞球,第一次換液后輕彈離心管底部,細(xì)胞球懸浮于誘導(dǎo)液中,而對(duì)照組離心管中無(wú)細(xì)胞球形成。熒光定量PCR測(cè)定細(xì)胞外基質(zhì)相關(guān)基因蛋白多糖、Ⅱ型膠原及SOX-9的表達(dá),采用SPSS13.0軟件進(jìn)行統(tǒng)計(jì)學(xué)處理,單因素方差分析結(jié)果顯示, TGF-β1(2)、GDF-5(3)、TGF-β1與GDF-5(4)三組的Collagen type Ⅱ、Aggrecan、SOX-9基因表達(dá)水平較對(duì)照組均有明顯升高,聯(lián)合誘導(dǎo)(4)組經(jīng)過(guò)誘導(dǎo)后的Collagen type Ⅱ、Aggrecan、SOX-9基因表達(dá)水平明顯高于TGF-β1(2)組及GDF-5(3)組,表明GDF-5與TGF-β1都具有誘導(dǎo)BMSCs向類髓核細(xì)胞分化的能力,且二者之間具有協(xié)同作用,聯(lián)合應(yīng)用可以更好的誘導(dǎo)BMSCs向類髓核細(xì)胞分化。
體外誘導(dǎo)BMSCs向類髓核細(xì)胞表型分化是一個(gè)復(fù)雜的過(guò)程,適宜的微環(huán)境、細(xì)胞因子以及誘導(dǎo)方法是其分化的必要條件。因此,需探索合適的細(xì)胞因子組合及其濃度才能達(dá)到最佳的誘導(dǎo)分化效果,以構(gòu)建更加優(yōu)質(zhì)的組織工程化髓核。另外,有必要從分子水平進(jìn)一步探索BMSCs向類髓核細(xì)胞誘導(dǎo)分化的信號(hào)傳導(dǎo)和分化機(jī)制, 以及如何長(zhǎng)期維持誘導(dǎo)后的髓核細(xì)胞表型,在低氧、低糖、低PH、高滲透壓為特點(diǎn)的椎間盤內(nèi)環(huán)境下其生存、增值,以及向類髓核細(xì)胞誘導(dǎo)分化的能力如何,這些都有待于進(jìn)一步的研究。
[參考文獻(xiàn)]
[1] van Tulder MW, Koes BW, Bouter LM. A cost-of-illness study of back pain in The Netherlands[J]. Pain, 1995, 62(2): 233-240.
[2] Kepler CK, Ponnappan RK, Tannoury CA, et al. The molecular basis of intervertebral disc degeneration[J]. Spine J, 2013, 13(3): 318-330.
[3] Liebscher T, Haefeli M, Wuertz K, et al. Age-related variation in cell density of human lumbar intervertebral disc[J]. Spine (Phila Pa 1976), 2011, 36(2): 153-159.
[4] Risbud MV, Albert TJ, Guttapalli A, et al. Differentiation of mesenchymal stem cells towards a nucleus pulposus-like phenotype in vitro: implications for cell-based transplantation therapy[J]. Spine (Phila Pa 1976), 2004, 29(23): 2627-2632.
[5] Sive JI, Baird P, Jeziorsk M, et al. Expression of chondrocyte markers by cells of normal and degenerate intervertebral discs[J]. Mol Pathol, 2002, 55(2): 91-97.
[6] Feng G, Jin X, Hu J, et al. Effects of hypoxias and scaffold architecture on rabbit mesenchymal stem cell differentiation towards a nucleus pulposus-like phenotype[J]. Biomaterials, 2011, 32(32): 8182-8189.
[7] Clarke LE, McConnell JC, Sherratt MJ, et al. Growth differentiation factor 6 and transforming growth factor-beta differentially mediate mesenchymal stem cell differentiation, composition and micromechanical properties of nucleus pulposus constructs[J]. Arthritis Res Ther, 2014, 16(2): R67.
[8] Stoyanov JV, Gantenbein-Ritter B, Bertolo A, et al. Role of hypoxia and growth and differentiation factor-5 on differentiation of human mesenchymal stem cells towards intervertebral nucleus pulposus-like cells[J].Eur Cell Mater, 2011,20(21): 533-547.
[9] Tapp H, Deepe R, Ingram JA, et al. Adipose-derived mesenchymal stem cells from the sand rat: transforming growth factor beta and 3D co-culture with human disc cells stimulate proteoglycan and collagen type I rich extracellular matrix[J]. Arthritis Res Ther,2008,10(4):R89.
[10] Wang H, Kroeber M, Hanke M, et al. Release of active and depot GDF-5 after adenovirus-mediated overexpression stimulates rabbit and human intervertebral disc cells[J]. J Mol Med (Berl),2004, 82(2):126-134.
[11] Le Maitre CL, Freemont AJ, Hoyland JA. Expression of cartilage-derived morphogenetic protein in human intervertebral discs and its effect on matrix synthesis in degenerate human nucleus pulposus cells[J]. Arthritis Res Ther,2009,11(5):R137.
[12] Melrose J, Ghosh P, Taylor TK. A comparative analysis of the differential spatial and temporal distributions of the large(aggrecan, versican)and small (decorin,biglycan,fibromodulin)proteoglycans of the intervertebral disc[J]. J Anat,2001,198(Pt 1):3-15.
[13] Gantenbein-Ritter B, Benneker LM, Alini M, et al. Differential response of human bone marrow stromal cells to either TGF-beta(1)or rhGDF-5[J]. Eur Spine J, 2011, 20(6):962-971.
[14] Dai J, Wang H, Liu G, et al. Dynamic compression and co-culture with nucleus pulposus cells promotes proliferation and differentiation of adipose-derived mesenchymal stem cells[J]. J Biomech,2014,47(5):966-972.
[15] Sun Z, Liu ZH, Zhao XH, et al. Impact of direct cell co-cultures on human adipose-derived stromal cells and nucleus pulposus cells [J]. J Orthop Res,2013,31(11):1804-1813.
(收稿日期:2015-02-13)