国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

青藏高原拉薩地體北部早白堊世火山巖的成因及意義*

2015-07-21 08:51丁慧霞張澤明向華祁敏茍正彬雷恒聰
巖石學(xué)報(bào) 2015年5期
關(guān)鍵詞:安山玄武巖鋯石

丁慧霞 張澤明** 向華 祁敏 茍正彬 雷恒聰

1.中國(guó)地質(zhì)科學(xué)院地質(zhì)研究所,大陸構(gòu)造與動(dòng)力學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100037

2.中國(guó)地質(zhì)大學(xué)地球科學(xué)與資源學(xué)院,北京 100083

1 引言

喜馬拉雅-青藏高原造山帶作為世界上最年輕、最壯觀的大陸碰撞造山帶,受到了地質(zhì)學(xué)者的廣泛關(guān)注(Yin and Harrison,2000)。位于青藏高原南部的拉薩地體(圖1a),不僅經(jīng)歷了新生代印度與歐亞大陸的碰撞造山作用(Yin and Harrison,2000;Kapp et al.,2007;Mo et al.,2008;Chen et al.,2010;Tan et al.,2010;Hébert et al.,2012),還經(jīng)歷了與新特提斯洋俯沖有關(guān)的安第斯型造山作用(Maluski et al.,1982;Allègre et al.,1984;Coulon et al.,1986;Copeland et al.,1995;Yin and Harrison,2000;Zhu et al.,2009a),是研究大陸弧與大陸碰撞造山帶的典型地區(qū)?,F(xiàn)有拉薩地體的大多數(shù)研究多側(cè)重于新生代的變形、變質(zhì)、巖漿作用以及造山作用,為了解和認(rèn)識(shí)新生代的碰撞造山作用過(guò)程及青藏高原的隆升機(jī)制提供了重要信息。但其在印度與歐亞大陸碰撞之前的地質(zhì)演化歷史還沒(méi)有得到很好的約束。

圖1 青藏高原地質(zhì)簡(jiǎn)圖(a,據(jù)Zhu et al.,2008)和研究區(qū)地質(zhì)簡(jiǎn)圖(b)Fig.1 Simplified geological map of the Tibetan Plateau (a,after Zhu et al.,2008)and geological map of the studied area(b)

白堊紀(jì)時(shí)期的巖漿巖在拉薩地體廣泛分布(Zhu et al.,2009b,2011;Ma et al.,2013),了解它們的成因和地球動(dòng)力學(xué)背景可以為拉薩地體在新生代碰撞之前的演化歷史提供信息。但是它們的成因機(jī)制還存在爭(zhēng)議,主要有以下幾種模型:(1)新特提斯洋巖石圈板片北向俯沖(Coulon et al.,1986;Wen et al.,2008;Zhu et al.,2009a;Zhang et al.,2012;Jiang et al.,2012;Ma et al.,2013;Jiang et al.,2014)、(2)新特提斯洋脊俯沖(Zhang et al.,2010b;管琪等,2010;Guo et al.,2013)、(3)班公-怒江洋南向俯沖(Zhu et al.,2009b,2011;張亮亮等,2010;Sui et al.,2013;Chen et al.,2014;Wu et al.,2014,2015)、(4)新特提斯洋脊俯沖導(dǎo)致的弧后伸展(Meng et al.,2014)以及(5)拉薩地體與羌塘地體碰撞引起加厚地殼的熔融(Xu et al.,1985;Pearce and Houjun,1988;Chiu et al.,2009)。本文對(duì)拉薩地體北部早白堊世晚期的基性-酸性火山巖進(jìn)行了巖石學(xué)、鋯石U-Pb年代學(xué)以及Hf 同位素的研究,并探討了它們的成因和動(dòng)力學(xué)模式,其成果為拉薩地體在印度與歐亞大陸碰撞之前的構(gòu)造演化提供了制約。

2 區(qū)域地質(zhì)背景和樣品特征

青藏高原是由多塊體組成的(Yin and Harrison,2000;Tapponnier et al.,2001;莫宣學(xué)等,2006),從北到南依次為:松潘-甘孜雜巖,羌塘地體,拉薩地體和喜馬拉雅帶,它們之間分別為金沙江、班公湖-怒江和雅魯藏布江縫合帶(圖1a)。

作為青藏高原重要組成部分的拉薩地體,東西長(zhǎng)2500km,南北寬100~300km,并被分為北拉薩地體、中拉薩地體及南拉薩地體3 個(gè)部分(圖1a)(Pan et al.,2004;Zhu et al.,2012)。北拉薩地體由中三疊-白堊紀(jì)的沉積巖、大量早白堊世的火山巖和火山-沉積地層,以及白堊紀(jì)的花崗巖巖基組成(Pan et al.,2004;Zhu et al.,2011,2012)。中拉薩地體由前寒武紀(jì)的結(jié)晶基底(Lin et al.,2013;Xu et al.,2013)、寒武紀(jì)-二疊紀(jì)的沉積巖、晚侏羅世-早白堊世含豐富火山巖的沉積地層組成(Liu et al.,2004;Pan et al.,2004;Zhu et al.,2012;Chen et al.,2014),局部還有中、新生代的變質(zhì)巖(Kapp et al.,2005;Dong et al.,2011a,b)。南拉薩地體以存在新生地殼(Mo et al.,2008;Ji et al.,2009;Zhu et al.,2011)和少量前寒武紀(jì)的結(jié)晶基底(Zhu et al.,2012)為特征,主要由白堊紀(jì)-第三紀(jì)的岡底斯巖基、第三紀(jì)的林子宗火山巖及少量在東部地區(qū)出露的三疊紀(jì)-白堊紀(jì)的火山-沉積巖組成(Pan et al.,2004;Zhu et al.,2012)。

研究區(qū)位于申扎縣東約50km 的扎扛附近,構(gòu)造上位于中拉薩地體北部(圖1b)。研究區(qū)出露一套奧陶紀(jì)-早白堊世的地層,古生代地層為連續(xù)沉積地層,所研究的早白堊世地層與古生代石炭紀(jì)地層呈斷層接觸。區(qū)域上,白堊紀(jì)地層與晚古生代地層呈斷層或不整合接觸(Coulon et al.,1986;潘桂棠等,2006;朱弟成等,2008b;Chen et al.,2014)。研究區(qū)白堊紀(jì)地層由流紋巖、粗面英安巖、火山碎屑巖、砂巖及少量安山玄武巖組成。所研究的白堊紀(jì)火山巖包括安山玄武巖、粗面英安巖和流紋巖。安山玄武巖呈斑狀結(jié)構(gòu),斑晶為斜長(zhǎng)石和輝石,基質(zhì)呈間隱間粒結(jié)構(gòu),細(xì)小的板條狀斜長(zhǎng)石搭成格架、內(nèi)充填玻璃(已脫?;癁殚L(zhǎng)英質(zhì)礦物)及微粒狀礦物(輝石和磁鐵礦),基質(zhì)中的輝石已部分蝕變?yōu)榫G泥石(圖2a)。粗面英安巖為斑狀結(jié)構(gòu),斑晶為斜長(zhǎng)石,基質(zhì)為石英、黑云母及斜長(zhǎng)石,斜長(zhǎng)石無(wú)規(guī)則排列,可見雙晶及環(huán)帶結(jié)構(gòu)(圖2b)。流紋巖為斑狀結(jié)構(gòu),斑晶為石英和斜長(zhǎng)石,石英多被熔蝕,周圍常見球粒環(huán)繞,球粒由放射狀長(zhǎng)英質(zhì)礦物組成,基質(zhì)由細(xì)小的長(zhǎng)石、石英及少量由放射狀長(zhǎng)英質(zhì)礦物組成的球粒組成(圖2c,d)。

圖2 火山巖顯微鏡下照片(a)安山玄武巖樣品;(b)粗面英安巖樣品;(c、d)流紋巖Fig.2 Photomicrographs of the studied volcanics(a)andesitic basalt;(b)trachydacite;(c,d)rhyolite

3 分析方法

鋯石U-Pb 同位素定年在中國(guó)地質(zhì)大學(xué)(武漢)地質(zhì)過(guò)程與礦產(chǎn)資源國(guó)家重點(diǎn)實(shí)驗(yàn)室完成。測(cè)試儀器為L(zhǎng)A-ICP-MS,激光剝蝕系統(tǒng)為GeoLas 2005,ICP-MS 為Agilent 7500a。激光剝蝕斑束直徑為32μm,激光剝蝕深度為20~40μm。對(duì)分析數(shù)據(jù)的離線處理采用軟件ICPMSDataCal 完成。詳細(xì)的儀器操作條件見Liu et al.(2010),同位素?cái)?shù)據(jù)結(jié)果處理使用ISOPLOT 軟件(Ludwig,2003)完成。

鋯石Hf 同位素測(cè)試在中國(guó)地質(zhì)科學(xué)院礦產(chǎn)資源研究所國(guó)土資源部成礦作用與資源評(píng)價(jià)重點(diǎn)實(shí)驗(yàn)室Neptune 多接收等離子質(zhì)譜和Newwave UP213 紫外激光剝蝕系統(tǒng)LA-MCICP-MS 上進(jìn)行,分析采用的激光束斑直徑為55μm。實(shí)驗(yàn)過(guò)程中采用氦氣作為剝蝕物質(zhì)載氣,鋯石標(biāo)準(zhǔn)GJ-1 作為參考,鋯石Lu-Hf 同位素測(cè)試點(diǎn)位于鋯石U-Pb 年齡測(cè)試點(diǎn)附近,采樣方式為單點(diǎn)剝蝕。相關(guān)儀器運(yùn)行條件及詳細(xì)分析流程見侯可軍等(2007)。分析過(guò)程中鋯石標(biāo)準(zhǔn)GJ-1 的176Hf/177Hf 測(cè)試加權(quán)平均值為0.282008 ± 25,與Elhlou et al.(2006)及侯可軍等(2007)所報(bào)道的參考值在誤差范圍內(nèi)一致。

所選的地球化學(xué)樣品是在詳細(xì)的野外地質(zhì)研究的基礎(chǔ)上,選擇無(wú)脈體、無(wú)蝕變(或蝕變?nèi)?的樣品。樣品無(wú)污染地粉碎至200 目以下。全巖化學(xué)成分分析在國(guó)家地質(zhì)實(shí)驗(yàn)測(cè)試中心完成。主量元素分析采用X-ray 熒光光譜法(Rigaku-3080),分析精度優(yōu)于0.5%。微量元素Zr、Nb、V、Cr、Sr、Ba、Zn、Ni、Rb 和Y 使 用 與 測(cè) 試 主 量 元 素 不 同 的XRF 設(shè) 備(Rigaku-2100)進(jìn)行分析,分析精度優(yōu)于3%~5%。其他微量元素和稀土元素使用電感藕合等離子體質(zhì)譜進(jìn)行分析,當(dāng)元素含量大于1 ×10-6時(shí),分析精度優(yōu)于1%~5%,當(dāng)元素含量小于1 ×10-6時(shí),分析精度優(yōu)于5%~10%。

4 鋯石U-Pb 年代及Hf 同位素特征

4.1 鋯石U-Pb 年代

3 個(gè)粗面英安巖和7 個(gè)流紋巖的鋯石LA-ICP-MS 定年結(jié)果見表1,U-Pb 諧和圖和代表性鋯石的陰極發(fā)光圖像見圖3。

粗面英安巖中的鋯石為無(wú)色透明,自形-半自形短柱狀,長(zhǎng)約50~120μm,長(zhǎng)寬比約1∶1~2.2∶1。陰極發(fā)光圖像顯示,鋯石具典型的韻律環(huán)帶(圖3a-c),屬于巖漿結(jié)晶成因。鋯石的Th/U 比值為0.41~1.60(表1),也顯示出巖漿成因鋯石的特征(Hoskin and Schaltegger,2003;Corfu et al.,2003;吳元保和鄭永飛,2004)。3 個(gè)樣品獲得了近一致的鋯石U-Pb 年齡,分別為109.9 ±0.9Ma、110.2 ±1.1Ma 和109.2 ±0.9Ma(圖3a-c)。

圖3 粗面英安巖和流紋巖的鋯石U-Pb 諧和圖及代表性鋯石陰極發(fā)光圖像圓圈為U-Pb 年齡和Hf 同位素分析點(diǎn)Fig.3 Zircon U-Pb age concordia plots of the studied trachydacites and rhyolites,showing CL images of the representing zircon grainsThe circles indicate the locations of U-Pb dating and Hf isotopic analyses

表1 粗面英安巖與流紋巖LA-ICPMS 鋯石U-Pb 定年結(jié)果Table 1 LA-ICPMS zircon U-Pb data of the trachydacites and rhyolites

續(xù)表1Continued Table 1

續(xù)表1Continued Table 1

續(xù)表1Continued Table 1

圖4 粗面英安巖與流紋巖的鋯石εHf(t)與U-Pb 年齡圖Fig.4 Plots of εHf(t)versus zircon U-Pb ages of the studied trachydacites and rhyolites

圖5 巖石主量與微量元素成分圖(a)SiO2-Zr/TiO2圖(據(jù)Winchester and Floyd,1977);(b)Th-Co 圖(據(jù)Hastie et al.,2007);(c)Fe-number[Fe2O3T/(Fe2O3T +MgO)]-SiO2圖解(修改自Frost et al.,2001;Rajesh,2007);(d)(Na2O+K2O-CaO)-SiO2圖解(據(jù)Frost et al.,2001)Fig.5 Compositional variation diagrams of the studied rocks(a)SiO2 vs.Zr/TiO2(after Winchester and Floyd,1977);(b)Th vs.Co (after Hastie et al.,2007)diagrams;(c)Fe-number[Fe2O3T/(Fe2 O3T +MgO)]vs.SiO2(modified after Frost et al.,2001;Rajesh,2007);(d)modified alkali lime index (MALI)(Na2O+K2O-CaO)vs.SiO2 plots (after Frost et al.,2001)

流紋巖中的鋯石為淺黃色-無(wú)色,自形短柱-長(zhǎng)柱狀,長(zhǎng)約50~200μm,長(zhǎng)寬比約1∶1~4∶1,可見韻律環(huán)帶(圖3d-j),屬于巖漿結(jié)晶成因。鋯石的Th/U 比值為0.29~1.76(大多為0.45~0.90)(表1),也顯示出巖漿成因鋯石的特征。7個(gè)樣品獲得的鋯石U-Pb 年齡近于一致,分別為106.1 ±0.8Ma、107.9 ±0.8Ma、109.1 ±0.8Ma、108.3 ±0.4Ma、108.2±1.0Ma、107.7 ±0.7Ma 和109.6 ±0.9Ma(圖3d-j)。

4.2 Hf 同位素特征

粗面英安巖和流紋巖中代表性鋯石原位Hf 同位素分析結(jié)果見表2。3 個(gè)粗面英安巖中鋯石的34 個(gè)分析點(diǎn)獲得的(176Hf/177Hf)i值為0.282422~0.282812,εHf(t)為-10.2~+3.7(圖4),相對(duì)應(yīng)的Hf 二階段模式年齡(tDM2)為923~1799Ma。7 個(gè)流紋巖中鋯石的108 個(gè)分析點(diǎn)獲得的(176Hf/177Hf)i值為0.282465~0.282908,εHf(t)為-8.7~+6.7(圖4),相應(yīng)的Hf 二階段模式年齡(tDM2)為708~1702Ma。

5 巖石化學(xué)

所研究的安山玄武巖樣品及1 個(gè)粗面英安巖樣品具有高的CO2和H2O 含量(表3),表明這些樣品很可能經(jīng)歷了蝕變作用。因此在對(duì)這些樣品進(jìn)行巖石分類和成因討論中沒(méi)有使用易活動(dòng)元素(如Rb、Ba、Sr、Na、K 等),并將主量元素含量去CO2和H2O 后換算到100%。在SiO2-Zr/TiO2圖上,所研究的巖石分別落入安山巖、英安巖與粗面巖和堿性流紋巖過(guò)渡區(qū)、以及流紋巖區(qū)(圖5a)。綜合顯微鏡下觀察結(jié)果,我們認(rèn)為所研究的巖石應(yīng)分別為安山玄武巖、粗面英安巖和流紋巖。

續(xù)表2Continued Table 2

表3 全巖化學(xué)成分分析結(jié)果表(主量元素:wt%;稀土和微量元素:×10 -6)Table 3 Chemical compositions of the studied rocks (major elements:wt%;trace elements:×10 -6)

圖6 巖石原始地幔標(biāo)準(zhǔn)化微量元素蛛網(wǎng)圖(a、c、e)和球粒隕石標(biāo)準(zhǔn)化稀土元素模式圖(b、d、f)(標(biāo)準(zhǔn)化值據(jù)Sun and McDonough,1989)Fig.6 Primitive mantle-normalized trace element patterns (a,c,e)and chondrite-normalized REE patterns (b,d,f)of the studied rocks (normalized values after Sun and McDonough,1989)

安山玄武巖的SiO2、TiO2、Al2O3、MgO、Cr 和Ni 含量以及Mg#分別為51.42%、1.40%、16.33%、5.67%、87.4 ×10-6、38.5 ×10-6和57,為鈣堿性巖石(圖5b)。在微量元素原始地幔標(biāo)準(zhǔn)化模式圖上,安山玄武巖富集Th、U 和Pb,且具有Nb 和Ta 負(fù)異常的特征(圖6a)。在稀土元素球粒隕石標(biāo)準(zhǔn)化模式圖上,安山玄武巖的稀土元素配分曲線表現(xiàn)為較緩的右傾曲線(圖6b),輕重稀土元素分餾不明顯((La/Yb)N=3.17),Eu 負(fù)異常不明顯(δEu 為0.93)。

粗面英安巖的SiO2、TiO2和Al2O3含量分別為62.56%~67.92%、0.41%~0.63%、14.66%~15.13%,具有較低的MgO(0.33%~0.61%)、Cr(1.44 ×10-6~10.1 ×10-6)和Ni(0.35 ×10-6~2.50 ×10-6)含量及Mg#(13~14),較高的K2O(3.15%~4.79%)和Zr 含量(365 ×10-6~567 ×10-6)。巖石的鋁飽和指數(shù)(A/CNK)為0.95~1.13,為偏鋁-過(guò)鋁質(zhì)巖石。在Frost et al.(2001)提出的花崗質(zhì)巖石分類圖解上,巖石為鐵質(zhì)(圖5c)和堿鈣性-堿性巖石(圖5d)。在微量元素原始地幔標(biāo)準(zhǔn)化模式圖上,粗面英安巖富集Th、U、Pb、Zr和Hf,且具有Nb、Ta、P 和Ti 負(fù)異常的特征(圖6c)。在稀土元素球粒隕石標(biāo)準(zhǔn)化模式圖上,所研究巖石的輕重稀土元素分餾明顯((La/Yb)N=7.11~9.41),表現(xiàn)為明顯富集輕稀土,重稀土相對(duì)平坦,具弱的正Eu 異常(δEu 為1.11~1.19)(圖6d)。

流紋巖具有較高的SiO2(75.19%~77.87%)和K2O(3.93%~5.26%)含量及高的K2O/Na2O(0.91~1.58)、分異指數(shù)(DI 為96~98)和鋁飽和指數(shù)(A/CNK 為0.99~1.19),為高分異的偏鋁-過(guò)鋁質(zhì)巖石?;贔rost et al.(2001)提出的花崗質(zhì)巖石分類圖解,所研究的巖石為鐵質(zhì)(除1 個(gè)樣品為鎂質(zhì))(圖5c)和鈣堿性-堿鈣性巖石(圖5d)。在微量元素原始地幔標(biāo)準(zhǔn)化模式圖上,流紋巖樣品富集Rb、Th、U、K、Pb、Zr 和Hf,且具有強(qiáng)烈Ba、Nb、Ta、Sr、P、Eu 和Ti負(fù)異常的特征(圖6e)。在稀土元素球粒隕石標(biāo)準(zhǔn)化模式圖上,流紋巖具有弱-明顯的輕重稀土元素分餾特征((La/Yb)N=2.39~6.83),Eu 負(fù)異常明顯(δEu 為0.02~0.08;圖6f)。

6 巖石成因

6.1 安山玄武巖

由于研究區(qū)多為第四紀(jì)覆蓋,致使在野外調(diào)查時(shí)難以觀察到不同巖石之間的相互關(guān)系。但Zhu et al.(2009b)對(duì)區(qū)域上白堊紀(jì)火山巖的研究表明,酸性巖產(chǎn)于上部,而基性巖產(chǎn)于下部。Chen et al.(2014)認(rèn)為研究區(qū)附近的玄武巖具有與同時(shí)期中、酸性巖相似的年齡。因此,我們推測(cè)所研究的安山玄武巖與粗面英安巖和流紋巖也應(yīng)具有相同的結(jié)晶年齡,為早白堊世晚期。所研究的安山玄武巖與Chen et al.(2014)所報(bào)道的研究區(qū)附近同時(shí)期的玄武巖具有相似的地球化學(xué)特征(圖5b、圖6a,b),表明它們可能具有相似的源區(qū),因此將其與所研究的安山玄武巖一并討論。

所研究的安山玄武巖和同時(shí)代的鄰區(qū)玄武巖具有較高的Sm/Yb 和La/Sm 值,明顯高于地幔值(Aldanmaz et al.,2000),且與石榴石+ 尖晶石二輝橄欖巖源區(qū)低-中等程度(~5%~30%)的部分熔融一致(圖7)。此外,這些巖石具有較低的Mg#(44~66),以及低的Cr(27.2 ×10-6~529 ×10-6,僅有兩個(gè)樣品大于400 ×10-6)和Ni(14.9 ×10-6~152×10-6)含量,明顯偏離原生玄武質(zhì)巖漿范圍(Cr:300 ×10-6~500 ×10-6,Ni:300 ×10-6~400 ×10-6;Frey et al.,1978;Hess,1992),表明它們的母巖漿經(jīng)歷了明顯的鎂鐵質(zhì)礦物的分離結(jié)晶作用。從Cr 與Ni 和V 圖解上可以看出,這些巖石的母巖漿經(jīng)歷了以斜方輝石為主的分離結(jié)晶作用(圖8a,b)。

研究區(qū)巖石具有島弧巖漿的性質(zhì)(圖6a),且具有較高的Th/Ce(0.14)和Th/Nb 值(0.60),與Sui et al.(2013)所報(bào)道的北拉薩地體玄武巖的特征一致。并且Sui et al.(2013)認(rèn)為這些巖石來(lái)自于受俯沖沉積物交代的地幔源區(qū)。在(Hf/Sm)PM-(Ta/La)PM圖解上(圖9),所研究的巖石具有從OIB 到含水地幔來(lái)源的火山弧玄武巖的演變趨勢(shì),也表明其源區(qū)與俯沖流體的交代作用有關(guān)(La Flèche et al.,1998;Li et al.,2009)。因此,我們認(rèn)為所研究的安山玄武巖很可能來(lái)源于交代巖石圈地幔源區(qū)(石榴石+尖晶石二輝橄欖巖)中等程度的部分熔融,并經(jīng)歷了以斜方輝石為主的分離結(jié)晶作用。

圖7 Sm/Yb 與La/Sm 圖解(據(jù)朱弟成等,2008a)Fig.7 Plot of Sm/Yb versus La/Sm (after Zhu et al.,2008a)

6.2 粗面英安巖和流紋巖

所研究的粗面英安巖和流紋巖為鐵質(zhì)(除1 個(gè)流紋巖樣品為鎂質(zhì))、鈣堿性-堿性巖石,與A 型花崗質(zhì)巖石特征一致(圖5c,d;Frost et al.,2001;Frost and Frost,2010)。而且它們富集高場(chǎng)強(qiáng)元素(如Zr),在10000Ga/Al 與(Zr +Nb +Ce+Y)和Zr 圖解上落入A 型花崗質(zhì)巖石區(qū)域(圖10a,b;Whalen et al.,1987)。

地殼物質(zhì)的熔融是產(chǎn)生A 型花崗巖的一個(gè)重要方式,如英云閃長(zhǎng)巖和花崗質(zhì)巖石的部分熔融(Creaser et al.,1991;Pati?o Douce,1997;Frost and Frost,1997)或堿交代地殼物質(zhì)的部分熔融(Martin,2006)。Eyb(1992)根據(jù)A 型花崗巖的源區(qū)和構(gòu)造環(huán)境特征把它們分成2 種類型(A1和A2),認(rèn)為A1型來(lái)自洋島玄武巖(OIB-like)源區(qū),A2型由大陸地殼熔融產(chǎn)生。在Yb/Ta-Y/Nb 及Ce/Nb-Y/Nb 圖解上,研究區(qū)樣品均落入A2型巖石區(qū)域(圖10c,d)。而且,所研究的粗面英安巖和流紋巖具有較低的Nb/Ta(分別為13~14 和12~13)和較高的Th/U 值(分別為4 和5~7),與大陸地殼值相近(Nb/Ta=12~13,Barth et al.,2000 和Th/U=6,Rudnick and Gao,2003),表明這些巖石是殼源巖石部分熔融的產(chǎn)物。

粗面英安巖和流紋巖的εHf(t)值分別為-10.2~+3.7和-8.7~+6.7,相對(duì)應(yīng)的Hf 二階段模式年齡(tDM2)為923~1799Ma 和708~1702Ma,表明源區(qū)為古老的地殼巖石。所研究的巖石均為準(zhǔn)鋁質(zhì)-過(guò)鋁質(zhì)的鈣堿性-堿鈣性巖石(除1個(gè)英安巖樣品為堿性,圖5d),F(xiàn)rost and Frost (2010)通過(guò)總結(jié)前人的巖石學(xué)實(shí)驗(yàn)成果認(rèn)為,具有該特征的A 型花崗質(zhì)巖石可以由英云閃長(zhǎng)巖和花崗閃長(zhǎng)巖部分熔融產(chǎn)生。因此我們認(rèn)為所研究的粗面英安巖和流紋巖的源巖應(yīng)為英云閃長(zhǎng)質(zhì)和花崗閃長(zhǎng)質(zhì)的巖石。另外,這些巖石的εHf(t)變化范圍較大,很可能是幔源巖漿加入的結(jié)果。

圖8 安山玄武巖和流紋巖的分離結(jié)晶圖解(a)Ni-Cr 圖解和(b)V-Cr 圖解(據(jù)Chen et al.,2014);(c)Ba-Eu/Eu* 圖解(據(jù)Ding et al.,2014)Fig.8 Plots showing crystal fractionation trends in the petrogenesis of andesitic basalt and andesitic basalt and rhyolites(a)Ni vs.Cr and (b)V vs.Cr (after Chen et al.,2014);(c)Ba vs.Eu/Eu* (after Ding et al.,2014)

圖9 安山玄武巖的(Hf/Sm)PM與(Ta/La)PM圖解(據(jù)La Flèche et al.,1998;標(biāo)準(zhǔn)化值據(jù)Sun and McDonough,1989)Fig.9 Plot of (Hf/Sm)PM vs.(Ta/La)PM(after La Flèche et al.,1998;normalized values after Sun and McDonough,1989)of the andesitic basalt and basalt

另外,所研究的流紋巖具有較高的SiO2(75.19%~77.87%)含量和DI(96~98),以及極低的δEu(0.02~0.08),在微量元素和稀土元素模式圖上,顯示出明顯Ba、Nb、Ta、Sr、P、Eu 和Ti 的負(fù)異常(圖6e,f)以及在δEu-Ba 圖上,樣品點(diǎn)呈水平展布的特征(圖8c),表明研究區(qū)的流紋巖為高分異的A 型花崗質(zhì)巖石,經(jīng)歷了斜長(zhǎng)石、含Ti 礦物(鈦鐵礦和金紅石等)和磷灰石的分離結(jié)晶作用。

總之,我們認(rèn)為所研究的粗面英安巖和流紋巖來(lái)源于古老基底巖石(英云閃長(zhǎng)質(zhì)和花崗閃長(zhǎng)質(zhì)巖石)的部分熔融并有幔源巖漿的注入,流紋巖母巖漿形成后又經(jīng)歷了強(qiáng)烈分離結(jié)晶作用。

7 構(gòu)造背景

所研究的安山玄武巖與拉薩地體同時(shí)期的玄武巖(康志強(qiáng)等,2008;Sui et al.,2013;Chen et al.,2014;隋清霖,2014)富集Th、U 和Pb,具有Nb 和Ta 的負(fù)異常(圖6a),顯示出島弧巖漿巖的特征(McCullochet and Gamble,1991;Pearce and Peate,1995;Tatsumi and Eggins,1995)。而且,這些巖石均具有較高的(La/Nb)PM(1.84~4.93),也與島弧玄武巖特征一致(>1;Kerr et al.,2000)。此外,在拉薩地體發(fā)育有早白堊世晚期鈣堿性的火山巖組合,包括玄武巖(康志強(qiáng)等,2010;Chen et al.,2014;本文),安山巖(康志強(qiáng)等,2008,2010;隋清霖,2014),英安巖(Zhu et al.,2011;Chen et al.,2014;本文)和流紋巖(Chen et al.,2014;本文)?,F(xiàn)有研究認(rèn)為這種鈣堿性火山巖組合一般形成在匯聚板塊邊界(路鳳香和桑隆康,2002)。

圖10 A 型花崗巖判別圖解(a、b,據(jù)Whalen et al.,1987;c、d,據(jù)Eby,1992)Fig.10 Discrimination diagrams of A-type granites (a,b,after Whalen et al.,1987;c,d,after Eby,1992)

圖11 構(gòu)造環(huán)境判別圖解(a)Zr/Y 與Zr 判別圖解(據(jù)Pearce and Norry,1979),IAB-島弧玄武巖,MORB-洋中脊玄武巖,WPB-板內(nèi)玄武巖;(b)Ta/Hf 與Th/Hf 圖解(據(jù)汪云亮等,2001),Ⅱ-板塊匯聚邊緣(Ⅱ1-大洋島弧玄武巖,Ⅱ2-陸緣島弧及陸緣火山弧玄武巖區(qū)),Ⅲ-大洋板內(nèi)玄武巖(洋島、海山玄武巖區(qū)及T-MORB、E-MORB 區(qū)),Ⅳ-大陸板內(nèi)玄武巖(Ⅳ1-陸內(nèi)裂谷及陸緣裂谷拉斑玄武巖區(qū),Ⅳ2-陸內(nèi)裂谷堿性玄武巖區(qū),Ⅳ3-大陸拉張或初始裂谷玄武巖區(qū)),Ⅴ-地幔柱玄武巖區(qū)Fig.11 Discrimination diagram for tectonic(a)Zr/Y vs.Zr discrimination diagram (after Pearce and Norry,1979):IAB =island-arc basalts;MORB =mid-ocean ridge basalts;and WPB =within-plate basalts;(b)Ta/Hf vs.Th/Hf diagram (after Wang et al.,2001):Ⅱ= Plate convergent margin basalts (Ⅱ1 = ocean island-arc basalts;Ⅱ2 = Continental margin island-arc + continental margin volcanic-arc basalts);Ⅲ= Oceanic within-plate basalts (oceanic island + sea mountain basalt+T-MORB+E-MORB);Ⅳ=Continental within-plate basalts (Ⅳ1 =Intracontinental rift+continental margin rift tholeiites;Ⅳ2 =Intracontinental rift alkali basalts;Ⅳ3 =Continental extensional zone/initial rift basalts);and Ⅴ=Mantle plume basalts

所研究的安山玄武巖具有較高的Zr/Y,與板內(nèi)玄武巖特征相似(圖11a)。從Th/Hf-Ta/Hf 圖解上可以看出,這些巖石形成于伸展環(huán)境(圖11b)。而且,所研究的粗面英安巖和流紋巖具有A 型花崗巖的特征,盡管研究表明A 型花崗巖可以形成于多種構(gòu)造環(huán)境中,但是現(xiàn)今普遍認(rèn)為在匯聚板塊邊緣出現(xiàn)的A 型花崗質(zhì)巖石形成于安第斯型造山作用過(guò)程中的伸展機(jī)制下(如,Smith et al.,1977;Stein et al.,1992;Bonin,2007;Zhao et al.,2008;Chen et al.,2014;Ding et al.,2014)。結(jié)合拉薩地體中北部地區(qū)出現(xiàn)的大量早白堊世晚期的巖漿巖以及有相關(guān)幔源物質(zhì)加入(Zhu et al.,2009b,2011)等事實(shí),很可能說(shuō)明在早白堊世晚期存在與板片斷離、回轉(zhuǎn)、或拆沉有關(guān)的地幔熱異常事件(Kay and Mahlburg Kay,1993;隋清霖,2014)。

早白堊世時(shí)期,在拉薩地體的南北兩側(cè)分別有新特提斯洋和班公-怒江洋存在(Yin and Harrison,2000)。現(xiàn)有研究表明,新特提斯洋在侏羅紀(jì)時(shí)期已開始沿拉薩地體南緣北向俯沖(Yin and Harrison,2000;Chu et al.,2006;Zhang et al.,2012),Zhang et al.(2012)認(rèn)為拉薩地體普遍發(fā)育的早白堊世-晚白堊世早期(135~100Ma)的巖漿作用與新特提斯洋板片回轉(zhuǎn)、斷離以及巖石圈拆沉作用有關(guān)。最近,Sui et al.(2013)和Chen et al.(2014)基于北拉薩地體和中拉薩地體早白堊世巖漿巖的εHf(t)值從北向南變小的趨勢(shì)(Zhu et al.,2011),以及結(jié)合拉薩地體與羌塘地體碰撞時(shí)間與板片斷離的時(shí)空聯(lián)系,認(rèn)為拉薩地體中北部早白堊世晚期的巖漿作用與班公-怒江大洋巖石圈板片南向俯沖過(guò)程中發(fā)生的板片斷離有關(guān)。兩種模型均可以導(dǎo)致軟流圈物質(zhì)上涌和巖石圈伸展,誘發(fā)被交代的巖石圈地幔部分熔融形成玄武巖,同時(shí)幔源巖漿底侵造成古老地殼的熔融形成中酸性巖漿巖。

總之,我們認(rèn)為拉薩地體中北部的早白堊世巖漿巖形成在安第斯型造山作用過(guò)程中的伸展機(jī)制下,可能與新特提斯洋巖石圈板片沿拉薩地體南緣北向俯沖過(guò)程中發(fā)生的板片回轉(zhuǎn)、斷離以及巖石圈拆沉作用有關(guān),也可能與班公-怒江大洋板片沿拉薩地體北緣南向俯沖過(guò)程中發(fā)生的板片斷離有關(guān)。

8 結(jié)論

(1)拉薩地體北部普遍發(fā)育早白堊世的安山玄武巖、粗面英安巖和流紋巖,其結(jié)晶年齡為106~113Ma。

(2)安山玄武巖為鈣堿性巖石,具有島弧玄武巖的特征。大部分粗面英安巖和流紋巖具有A 型花崗巖特征。粗面巖和流紋巖的鋯石εHf(t)分別為-10.2~+3.7 和-8.7~+6.7,相對(duì)應(yīng)的Hf 二階段模式年齡(tDM2)分別為923~1799Ma 和708~1702Ma。

(3)安山玄武巖為交代巖石圈地幔源區(qū)中等程度的部分熔融的產(chǎn)物,并經(jīng)歷了以斜長(zhǎng)輝石為主的結(jié)晶分離作用。粗面英安巖和流紋巖來(lái)源于古老基底巖石的部分熔融,并且有幔源巖漿的注入。流紋巖母巖漿形成后又經(jīng)歷了強(qiáng)烈分離結(jié)晶作用。

(4)拉薩地體中北部早白堊世巖漿巖形成于安第斯型造山作用過(guò)程中的伸展機(jī)制下,可能與新特提斯洋巖石圈板片沿拉薩地體南緣北向俯沖過(guò)程中發(fā)生的板片回轉(zhuǎn)、斷離以及巖石圈拆沉作用有關(guān),也可能與班公-怒江洋巖石圈板片沿拉薩地體北緣南向俯沖過(guò)程中發(fā)生的板片斷離有關(guān)。

致謝 郭亮講師和馬緒宣博士對(duì)本文提出了寶貴意見;中國(guó)科學(xué)技術(shù)大學(xué)中國(guó)科學(xué)院殼幔物質(zhì)與環(huán)境重點(diǎn)實(shí)驗(yàn)室侯振輝老師在鋯石U-Pb 定年測(cè)試及分析過(guò)程中提供了幫助;姜洪穎、李旺超參與了鋯石U-Pb 定年和Hf 同位素分析測(cè)試工作;在此一并感謝!

Aldanmaz E,Pearce JA,Thirlwall MF and Mitchell JG.2000.Petrogenetic evolution of Late Cenozoic,post-collision volcanism in western Anatolia,Turkey.Journal of Volcanology and Geothermal Research,102(1-2):67-95

Allègre CJ,Courtillot V,Tapponnier P et al.1984.Structure and evolution of the Himalaya-Tibet orogenic belt.Nature,307(5946):17-22

Barth MG,McDonough WF and Rudnick RL.2000.Tracking the budget of Nb and Ta in the continental crust.Chemical Geology,165(3-4):197-213

Bonin B.2007.A-type granites and related rocks:Evolution of a concept,problems and prospects.Lithos,97(1-2):1-29

Chen JS,Huang BC and Sun LS.2010.New constraints to the onset of the India-Asia collision: Paleomagnetic reconnaissance on the Linzizong Group in the Lhasa Block,China.Tectonophysics,489(1-4):189-209

Chen Y,Zhu DC,Zhao ZD,Meng FY,Wang Q,Santosh M,Wang LQ,Dong GC and Mo XX.2014.Slab break off triggered ca.113Ma magmatism around Xainza area of the Lhasa Terrane,Tibet.Gondwana Research,26(2):449-463

Chiu HY,Chung SL,Wu FY,Liu DY,Liang YH,Lin IJ,Iizuka Y,Xie LW,Wang YB and Chu MF.2009.Zircon U-Pb and Hf isotopic constraints from eastern Transhimalayan batholiths on the precollisional magmatic and tectonic evolution in southern Tibet.Tectonophysics,477(1-2):3-19

Chu MF,Chung SL,Song B,Liu DY,O’Reilly YS,Pearson NJ,Ji JQ and Wen DJ.2006.Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet.Geology,34(9):745-748

Copeland P,Harrison TM,Pan Y,Kidd WSF,Roden M and Zhang YQ.1995.Thermal evolution of the Gangdese batholith,southern Tibet:A history of episodic unroofing.Tectonics,14(2):223-236

Corfu F,Hanchar JM,Hoskin PWO and Kinny P.2003.Atlas of zircon textures.Reviews in Mineralogy and Geochemistry,53(1):469-500

Coulon C,Maluski H,Bollinger C and Wang S.1986.Mesozoic and Cenozoic volcanic rocks from central and southern Tibet:39Ar/40Ar dating,petrological characteristics and geodynamical significance.Earth and Planetary Science Letters,79(3-4):281-302

Creaser RA,Price RC and Wormald RJ.1991.A-type granites:Assessment of a residual source model.Geology,19(2):163-166 Ding HX,Zhang ZM,Dong X,Yan R,Lin YH and Jiang HY.2014.Cambrian ultrapotassic rhyolites from the Lhasa terrane,south Tibet:Evidence for Andean-type magmatism along the northern active margin of Gondwana.Gondwana Research,doi:10.1016/j.gr.2014.02.003

Dong X,Zhang ZM,Santosh M,Wang W,Yu F and Liu F.2011a.Late Neoproterozoic thermal events in the northern Lhasa terrane,south Tibet:Zircon chronology and tectonic implications.Journal of Geodynamics,52(5):389-405

Dong X,Zhang ZM,Liu F,Wang W,Yu F and Shen K.2011b.Zircon U-Pb geochronology of the Nyainqêntanglha Group from the Lhasa terrane:New constraints on the Triassic orogeny of the south Tibet.Journal of Asian Earth Sciences,42(4):732-739

Eby GN.1992.Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications.Geology,20(7):641-644

Elhlou S,Belousova E,Griffin WL,Pearson NJ and O’Reilly SY.2006.Trace element and isotopic composition of GJ red zircon standard by laser ablation.Geochimica et Cosmochimica Acta,70(18):A158

Frey FA,Green DH and Roy SD.1978.Integrated models of basalt petrogenesis:A study of quartz tholeiites to olivine melilitites from south eastern Australia utilizing geochemical and experimental petrological data.Journal of Petrology,19(3):463-513

Frost BR,Arculus RJ,Barnes CG,Collins WJ,Ellis DJ and Frost CD.2001.A geochemical classification for granitic rocks.Journal of Petrology,42(1):2033-2048

Frost CD and Frost BR.1997.Reduced rapakivi-type granites:The tholeiite connection.Geology,25(7):647-650

Frost CD and Frost BR.2010.On ferroan (A-type)granitoids:Their compositional variability and modes of origin.Journal of Petrology,52:39-53

Guan Q,Zhu DC,Zhao ZD,Zhang LL,Liu M,Li XW,Yu F,Liu MH and Mo XX.2010.Late Cretaceous adakites from the eastern segment of the Gangdese Belt,Southern Tibet:Products of Neo-Tethyan mid-ocean ridge subduction?Acta Petrologica Sinica,26(7):2165-2179 (in Chinese with English abstract)

Guo L,Zhang HF,Harris N,Pan FB and Xu WC.2013.Late Cretaceous (~81Ma) high-temperature metamorphism in the southeastern Lhasa terrane:Implication for the Neo-Tethys ocean ridge subduction.Tectonophysics,608:112-126

Hastie AR,Kerr AC,Pearce JA and Mitchell SF.2007.Classification of altered volcanic island arc rocks using immobile trace elements:Development of the Th-Co discrimination diagram.Journal of Petrology,48(12):2341-2357

Hébert R,Bezard R,Guilmette C,Dostal J,Wang CS and Liu ZF.2012.The Indus-Yarlung Zangbo ophiolites from Nanga Parbat to Namche Barwa syntaxes, southern Tibet: First synthesis of petrology,geochemistry,and geochronology with incidences on geodynamic reconstructions of Neo-Tethys.Gondwana Research,22(2):377-397

Hess PC.1992.Phase Equilibria Constraints on the Origin of Ocean Floor Basalts.In:Morgan JP,Blackman DK and Sinton JM (eds.).Mantle Flow and Melt Generation at Mid-Ocean Ridges.American Geophysical Union,Geophysical Monograph,71:67-102

Hoskin PWO and Schaltegger U.2003.The composition of zircon and igneous and metamorphic petrogenesis.In:Manchar JM and Hoskin PWO (eds.).Zircon.Reviews of Mineralogy and Geochemistry,53(1):27-62

Hou KJ,Li YH,Zou TR,Qu XM,Shi YR and Xie GQ.2007.Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications.Acta Petrologica Sinica,23(10):2595-2604 (in Chinese with English abstract)

Ji WQ,Wu FY,Chung SL,Li JX and Liu CZ.2009.Zircon U-Pb chronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith,southern Tibet.Chemical Geology,262(3-4):229-245

Jiang ZQ,Wang Q,Li ZX,Wyman DA,Tang GJ,Jia XH and Yang YH.2012.Late Cretaceous (ca.90Ma)adakitic intrusive rocks in the Kelu area,Gangdese Belt (southern Tibet):Slab melting and implications for Cu-Au mineralization.Journal of Asian Earth Sciences,53:67-81

Jiang ZQ,Wang Q,Wyman DA,Li ZX,Yang JH,Shi XB,Ma L,Tang GJ,Gou GN,Jia XH and Guo HF.2014.Transition from oceanic to continental lithosphere subduction in southern Tibet:Evidence from the Late Cretaceous-Early Oligocene (ca.91~30Ma)intrusive rocks in the Chanang-Zedong area,southern Gangdese.Lithos,196-197:213-231

Kang ZQ,Xu JF,Dong YH and Wang BQ.2008.Cretaceous volcanic rocks of Zenong Group in north-middle Lhasa Block:Products of southward subducting of the Slainajap ocean?Acta Petrologica Sinica,24(2):303-314 (in Chinese with English abstract)

Kang ZQ,Xu JF,Wang BD and Chen JL.2010.Qushenla formation volcanic rocks in north Lhasa block:Products of Bangong Co-Nujiang Tethys southward subduction.Acta Petrologica Sinica,26(10):3106-3116 (in Chinese with English abstract)

Kapp JLD,Harrison TM,Kapp P,Grove M,Lovera OM and Ding L.2005.Nyainqêntanglha Shan:A window into the tectonic,thermal,and geochemical evolution of the Lhasa block,southern Tibet.Journal of Geophysical Research,110 (B8):B08413

Kapp P,DeCelles PG,Gehrels GE,Heizier M and Ding L.2007.Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet.Geological Society of America Bulletin,119(7-8):917-933

Kay RW and Mahlburg Kay S.1993.Delamination and delamination magmatism.Tectonophysics,219(1-3):177-189

Kerr AC,White RV and Saunders AD.2000.LIP reading:Recognizing oceanic plateau in the geological record.Journal of Petrology,41(7):1041-1056

La Flèche MR,Camiré G and Jenner GA.1998.Geochemistry of post-Acadian,Carboniferous continental intraplate basalts from the Maritimes Basin,Magdalen islands,Québec,Canada.Chemical Geology,148(3-4):115-136

Li XH,Li WX,Li ZX,Lo CH,Wang J,Ye MF and Yang YH.2009.Amalgamation between the Yangtze and Cathaysia blocks in South China:Constraints from SHRIMP U-Pb zircon ages,geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks.Precambrian Research,174(1-2):117-128

Lin YH,Zhang ZM,Dong X,Shen K and Lu X.2013.Precambrian evolution of the Lhasa terrane,Tibet:Constraint from the zircon UPb geochronology of the gneisses.Precambrian Research,237:64-77

Liu QS,Wu ZH,Hu DG,Ye PS,Jiang W,Wang YB and Zhang HC.2004.SHRIMP U-Pb zircon dating on Nyainqentanglha granite in central Lhasa block.Chinese Science Bulletin,49(1):76-82

Liu YS,Hu ZC,Zong KQ,Gao CG,Gao S,Xu J and Chen HH.2010.Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS.Chinese Science Bulletin,55(15):1535-1546

Lu FX and Sang KL.2002.Petrology.Beijing:Geological Publishing House,1-399 (in Chinese)

Ludwig KR.2003.Isoplot/Ex Version 3.00:A Geochronological Toolkit for Microsoft Excel.Berkeley:Berkeley Geochronology Center Special Publications,1-73

Ma L,Wang Q,Li ZX,Wymand DA,Jiang ZQ,Yang JH,Gou GN and Guo HF.2013.Early Late Cretaceous (ca.93Ma)norites and hornblendites in the Milin area,eastern Gangdese:Lithosphereasthenosphere interaction during slab roll-back and an insight into early Late Cretaceous (ca.100~80Ma)magmatic“flare-up”in southern Lhasa (Tibet).Lithos,172-173:17-30

Maluski H,Proust F and Xiao XC.1982.39Ar/40Ar dating of the trans-Himalayan calc-alkaline magmatism of southern Tibet.Nature,298(5870):152-154

Martin RF.2006.A-type granites of crustal origin ultimately result from open system fenitization-type reactions in an extensional environment.Lithos,91(1-4):125-136

McCullochet MT and Gamble JA.1991.Geochemical and geodynamical constraints on subduction zone magmatism.Earth and Planetary Science Letters,102(3-4):358-374

Meng FY,Zhao ZD,Zhu DC,Mo XX,Guan Q,Huang Y,Dong GC,Zhou S,DePaolo DJ,Harrisone TM,Zhang ZC,Liu JL,Liu YS,Hu ZC and Yuan HL.2014.Late Cretaceous magmatism in Mamba area,central Lhasa subterrane:Products of back-arc extension of Neo-Tethyan Ocean?Gondwana Research,26(2):505-520

Mo XX,Zhao ZD,DePaolo DJ,Zhou S and Dong GC.2006.Three types of collisional and post-collisional magmatism in the Lhasa block,Tibet and implications for India intra-continental subduction and mineralization:Evidence from Sr-Nd isotopes.Acta Petrologica Sinica,22(4):795-803 (in Chinese with English abstract)

Mo XX,Niu YL,Dong GC,Zhao ZD,Hou ZQ,Zhou S and Ke S.2008.Contribution of syncollisional felsic magmatism to continenta

l crust growth:A case study of the Paleogene Linzizong volcanic succession in southern Tibet.Chemical Geology,250(1-4):49-67

Pan GT,Ding J and Yao DS.2004.Guidebook of 1∶1500000 Geologic Map of the Qinghai-Xizang (Tibet)Plateau and Adjacent Areas.Chengdu:Chengdu Cartographic Publishing House,1-48

Pan GT,Mo XX,Hou ZQ,Zhu DC,Wang LQ,Li GM,Zhao ZD,Geng QR and Liao ZL.2006.Spatial-temporal framework of the Gangdese Orogenic Belt and its evolution.Acta Petrologica Sinica,22(3):521-533 (in Chinese with English abstract)

Pati?o Douce AE.1997.Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids.Geology,25(8):743-746

Pearce JA and Norry MJ.1979.Petrogenetic implications of Ti,Zr,Y and Nb variations in volcanic rocks.Contributions to Mineralogy and Petrology,69(1):33-47

Pearce JA and Houjun M.1988.Volcanic Rocks of the 1985 Tibet Geotraverse:Lhasa to Golmud.Philosophical Transact ions of the Royal Society of London,Series A,Mathematical and Physical Sciences,327(1594):169-201

Pearce JA and Peate DW.1995.Tectonic implications of the composition of volcanic arc magmas.Annual Review of Earth and Planetary Sciences,23:251-286

Rajesh HM.2007.The petrogenetic characterization of intermediate and silicic charnockites in high-grade terrains:A case study from southern India.Contributions to Mineralogy and Petrology,154(5):591-606

Rudnick RL and Gao S.2003.Composition of the continental crust.In:Rudnick RL (ed.).The Crust:Treaties on Geochemistry.Oxford:Elsevier Pergamon,1-64

Smith IEM, Chappell BW, Ward GK and Freeman RS.1977.Peralkaline rhyolites associated with andesitic arcs of the Southwest Pacific.Earth and Planetary Science Letters,37(2):230-236

Stein G,Lapierre H and Charvet J.1992.Magmatisme alcalin“intraplaque”en contexte d’arc insulaire:Le massif plutonique d’Ashizuri (Japon SO).Comptes Rendus des Séances de l’Académie des Sciences,Paris,315(12):1501-1508

Sui QL,Wang Q,Zhu DC,Zhao ZD,Chen Y,Santosh M,Hu ZC,Yuan HL and Mo XX.2013.Compositional diversity of ca.110Ma magmatism in the northern Lhasa Terrane,Tibet:Implications for the magmatic origin and crustal growth in a continent-continent collision zone.Lithos,168-169:144-159

Sui QL.2014.The Geochronology,petrogenesis and tectonic significance of the Early Cretaceous magmatic rocks from Yanhu,the Lhasa terrane,Tibet.Master Degree Thesis.Beijing:China University of Geosciences

Sun SS and McDonough WF.1989.Chemical and isotopic systematics of oceanic basalts:Implication for mantle composition and process.In:Saunders AD and Norry MJ (eds.).Magmatism in Ocean Basins.Geological Society of London,Special Publication,42(1):313-345

Tan XD,Gilder S,Kodama KP,Jiang W,Han YL,Zhang H,Xu HH and Zhou D.2010.New paleomagnetic results from the Lhasa block:Revised estimation of latitudinal shortening across Tibet and implications for dating the India-Asia collision.Earth and Planetary Science Letters,293(3-4):396-404

Tapponnier P,Xu ZQ,Rogers F,Meyer B,Arnaud N,Wittlinger G and Yang JS.2001.Oblique stepwise rise and growth of the Tibet Plateau.Science,294(5547):1671-1677

Tatsumi Y and Eggins S.1995.Subduction Zone Magmatism.Cambridge:Blackwell,1-200

Wang YL,Zhang CJ and Xiu SZ.2001.Th/Hf-Ta/Hf identification of tectonic setting of basalts.Acta Petrologica Sinica,17(3):413-421 (in Chinese with English abstract)

Wen DR,Liu DY,Chung SL,Chu MF,Ji JQ,Zhang Q,Song B,Lee TY,Yeh MW and Lo CH.2008.Zircon SHRIMP U-Pb ages of the Gangdese batholith and implications for Neotethyan subduction in southern Tibet.Chemical Geology,252(3-4):191-201

Whalen JB,Currie KL and Chappell BW.1987.A-type granites:Geochemical characteristics, discrimination and petrogenesis.Contributions to Mineralogy and Petrology,95(4):407-419

Winchester JA and Floyd PA.1977.Geochemical discrimination of different magma series and their differentiation products using immobile elements.Chemical Geology,20:325-343

Wu H,Li C,Hu PY and Li XK.2014.Early Cretaceous (100~105Ma)Adakitic magmatism in the Dachagou area,northern Lhasa terrane, Tibet: Implications for the Bangong-Nujiang Ocean subduction and slab break-off.International Geology Review,doi:10.1080/00206814.2014.886152

Wu H,Li C,Xu MJ and Li XK.2015.Early Cretaceous adakitic magmatism in the Dachagou area,northern Lhasa terrane,Tibet:Implications for slab roll-back and subsequent slab break-off of the lithosphere of the Bangong-Nujiang Ocean.Journal of Asian Earth Sciences,97A:51-66

Wu YB and Zheng YF.2004.Genesis of zircon and its constraints on interpretation of U-Pb age.Chinese Science Bulletin,49(15):1554-1569

Xu RH,Sch?rer U and Allègre CJ.1985.Magmatism and metamorphism in the Lhasa block (Tibet):A geochronological study.Journal of Geology,93(1):41-57

Xu WC,Zhang HF,Harris N,Guo L,Pan FB and Wang S.2013.Geochronology and geochemistry of Mesoproterozoic granitoids in the Lhasa terrane,South Tibet:Implications for the early evolution of Lhasa terrane.Precambrian Research,236:46-58

Yin A and Harrison TM.2000.Geologic evolution of the Himalayan-Tibetan orogeny.Annual Review of Earth and Planetary Sciences,28:211-280

Zhang KJ,Zhang YX,Tang XC and Xia B.2012.Late Mesozoic tectonic evolution and growth of the Tibetan Plateau prior to the Indo-Asian collision.Earth-Science Reviews,114(3-4):236-249

Zhang LL,Zhu DC,Zhao ZD,Dong GC,Mo XX,Guan X,Liu M and Liu MH.2010.Petrogenesis of magmatism in the Baerda region of northern Gangdese, Tibet: Constraints from geochemistry,geochronology and Sr-Nd-Hf isotopes.Acta Petrologica Sinica,26(6):1871-1888 (in Chinese with English abstract)

Zhang ZM,Zhao GC,Santosh M,Wang JL,Dong X and Shen K.2010.Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith,southeastern Tibet:Evidence for Neo-Tethyan mid-ocean ridge subduction?Gondwana Research,17 (4):615-631

Zhao XF,Zhou MF,Li JW and Wu FY.2008.Association of Neoproterozoic A-and I-type granites in South China:Implications for generation of A-type granites in a subduction-related environment.Chemical Geology,257(1-2):1-15

Zhu DC,Pan GT,Chun SL,Liao ZL,Wang LQ and Li GM.2008.SHRIMP zircon age and geochemical constraints on the origin of Early Jurassic volcanic rocks from the Yeba Formation,southern Gangdese in south Tibet.International Geology Review,50(5):442-471

Zhu DC,Mo XX,Wang LQ,Zhao ZD and Liao ZL.2008a.Hotspotridge interaction for the evolution of Neo-Tethys:Insights from the Late Jurassic-Early Cretaceous magmatism in southern Tibet.Acta Petrologica Sinica,24(2):225- 237 (in Chinese with English abstract)

Zhu DC,Mo XX,Zhao ZD,Xu JF,Zhou CY,Sun CG,Wang LQ,Chen HH, Dong GC and Zhou S.2008b.Zircon U-Pb geochronology of Zenong Group volcanic rocks in Coqen area of the Gangdese,Tibet and tectonic significance.Acta Petrologica Sinica,24 (3):401-412 (in Chinese with English abstract)

Zhu DC,Pan GT,Zhao ZD,Lee HY,Kang ZQ,Liao ZL,Wang LQ,Li GM,Dong GC and Liu B.2009a.Early Cretaceous subductionrelated adakite-like rocks in the Gangdese,South Tibet:Products of slab melting and subsequent melt-peridotite interaction?Journal of Asian Earth Sciences,34(3):298-309

Zhu DC,Mo XX,Niu Y,Zhao ZD,Wang LQ,Liu YS and Wu FY.2009b.Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane,Tibet.Chemical Geology,268(3-4):298-312

Zhu DC,Zhao ZD,Niu YL,Mo XX,Chung SL,Hou ZQ,Wang LQ and Wu FY.2011.The Lhasa Terrane:Record of a microcontinent and its histories of drift and growth.Earth and Planetary Science Letters,301(1-2):241-255

Zhu DC,Zhao ZD,Niu YL,Dilek Y,Wang Q,Ji WH,Dong GC,Sui QL,Liu YS,Yuan HL and Mo XX.2012.Cambrian bimodal volcanism in the Lhasa Terrane,southern Tibet:Record of an Early Paleozoic Andean-type magmatic arc in the Australian proto-Tethyan margin.Chemical Geology,328:290-308

附中文參考文獻(xiàn)

管琪,朱弟成,趙志丹,張亮亮,劉敏,李小偉,于楓,莫宣學(xué).2010.西藏南部岡底斯帶東段晚白堊世埃達(dá)克巖:新特提斯洋脊俯沖的產(chǎn)物?巖石學(xué)報(bào),26(7):2165-2179

侯可軍,李延河,鄒天人,曲曉明,石玉若,謝桂青.2007.LA-MCICP-MS 鋯石Hf 同位素的分析方法及地質(zhì)應(yīng)用.巖石學(xué)報(bào),23(10):2595-2604

康志強(qiáng),許繼峰,董彥輝,王保弟.2008.拉薩地塊中北部白堊紀(jì)則弄群火山巖:Slainajap 洋南向俯沖的產(chǎn)物?巖石學(xué)報(bào),24(2):303-314

康志強(qiáng),許繼峰,王保弟,陳建林.2010.拉薩地塊北部去申拉組火山巖:班公湖-怒江特提斯洋南向俯沖的產(chǎn)物?巖石學(xué)報(bào),26(10):3106-3116

路鳳香,桑隆康.2002.巖石學(xué).北京:地質(zhì)出版社,1-399

莫宣學(xué),趙志丹,Depaolo DJ,周肅,董國(guó)臣.2006.青藏高原拉薩地塊碰撞-后碰撞巖漿作用的三種類型及其對(duì)大陸俯沖和成礦作用的啟示:Sr-Nd 同位素證據(jù).巖石學(xué)報(bào),22(4):795-803

潘桂棠,莫宣學(xué),侯增謙,朱弟成,王立全,李光明,趙志丹,耿全如,廖忠禮.2006.岡底斯造山帶的時(shí)空結(jié)構(gòu)及演化.巖石學(xué)報(bào),22(3):521-533

隋清霖.2014.西藏拉薩地塊鹽湖地區(qū)早白堊世巖漿巖年代學(xué)、巖石成因及構(gòu)造意義.碩士學(xué)位論文.北京:中國(guó)地質(zhì)大學(xué)

汪云亮,張成江,修淑芝.2001.玄武巖類形成的大地構(gòu)造環(huán)境的Th/Hf-Ta/Hf 圖解判別.巖石學(xué)報(bào),17(3):413-421

吳元保,鄭永飛.2004.鋯石成因礦物學(xué)研究及其對(duì)U-Pb 年齡解釋的制約.科學(xué)通報(bào),49(16):1589-1604

張亮亮,朱弟成,趙志丹,董國(guó)臣,莫宣學(xué),管琪,劉敏,劉美華.2010.西藏北岡底斯巴爾達(dá)地區(qū)巖漿作用的成因:地球化學(xué)、年代學(xué)及Sr-Nd-Hf 同位素約束.巖石學(xué)報(bào),26(6):1871-1888

朱弟成,莫宣學(xué),王立全,趙志丹,廖忠禮.2008a.新特提斯新特提斯演化的熱點(diǎn)與洋脊相互作用:西藏南部晚侏羅世-早白堊世巖漿作用推論.巖石學(xué)報(bào),24(2):225-237

朱弟成,莫宣學(xué),趙志丹,許繼峰,周長(zhǎng)勇,孫晨光,王立全,陳海紅,董國(guó)臣,周肅.2008b.西藏岡底斯帶措勤地區(qū)則弄群火山巖鋯石U-Pb 年代學(xué)格架及構(gòu)造意義.巖石學(xué)報(bào),24(3):401-412

猜你喜歡
安山玄武巖鋯石
玄武巖纖維微表處在高速公路預(yù)養(yǎng)護(hù)中的應(yīng)用
鋯石的成因類型及其地質(zhì)應(yīng)用
玄武巖纖維長(zhǎng)徑比對(duì)混凝土力學(xué)性能的影響
玄武巖纖維可用于海水淡化領(lǐng)域
河北承德玄武巖綠色礦山典型——承德市圍場(chǎng)縣舍土溝玄武巖礦調(diào)研報(bào)告
疫情下的筆試
俄成功試射“鋯石”高超音速巡航導(dǎo)彈
鋯石 誰(shuí)說(shuō)我是假寶石
“紅爺”魏安山
“紅爺”魏安山
陕西省| 成都市| 呼伦贝尔市| 汝南县| 安徽省| 沧源| 历史| 广安市| 江华| 定州市| 黄石市| 措勤县| 阿合奇县| 枝江市| 伊川县| 莱州市| 漠河县| 锡林郭勒盟| 泗阳县| 天津市| 芷江| 囊谦县| 隆回县| 怀远县| 板桥市| 永兴县| 黄骅市| 德州市| 桦南县| 西安市| 苏尼特右旗| 刚察县| 北安市| 德格县| 灵寿县| 会昌县| 三台县| 延安市| 玉溪市| 长寿区| 汝阳县|