于楓 侯增謙 趙志丹 鄭遠川 段連峰
1.中國地質(zhì)大學(xué)地球科學(xué)與資源學(xué)院,北京 100083
2.中國地質(zhì)科學(xué)院地質(zhì)研究所,北京 100037
青藏高原南部拉薩地塊是新特提斯洋俯沖于亞洲板塊之下形成的安第斯型活動大陸邊緣的重要部分,廣泛發(fā)育著漸新世-中新生代巖漿巖,并孕育了大量的金屬礦產(chǎn)(Zhu et al.,2012;莫宣學(xué),2009;Ji et al.,2009;Hou et al.,2004,2009,2013;Yang et al.,2009;Zheng et al.,2012;張松等,2012;劉云飛等,2012)。其中中新世斑巖系統(tǒng)作為大型超大型斑巖礦床的賦存體,受到了廣泛的關(guān)注(Hou et al.,2013;Gao et al.,2010a;Xu et al.,2010;Li et al.,2011)。Hou et al.(2013)在對比拉薩地塊東西部成礦與不成礦斑巖之后,對其成巖、成礦原因做出了深入的探討,得出東部含礦斑巖是由增生的新生鎂鐵質(zhì)下地殼部分熔融形成,西部不含礦的斑巖則源于古老地殼的重熔。然而,由于拉薩地塊西部(E87°以西)已報道的中新世巖體數(shù)據(jù)有限(Gao et al.,2010a),缺乏完整的地質(zhì)學(xué)、同位素年代學(xué)、地球化學(xué)報道,這對西部不含礦斑巖的已有成因認識能否得到廣泛認可造成了障礙。本文在區(qū)域地質(zhì)調(diào)查及前人的基礎(chǔ)上,對可能出露中新世不含礦斑巖的亞熱南復(fù)式巖體進行了較為詳細的野外觀察和采樣,查明了亞熱南復(fù)式巖體的巖性構(gòu)成,通過鋯石原位LA-ICP-MS U-Pb 定年獲得了其中中新世花崗斑巖始新世黑云母二長花崗巖年齡。本研究亦對該巖體進行了地球化學(xué)和巖石成因?qū)W的探討,這為進一步了解拉薩地塊不同中新世斑巖系統(tǒng)及成礦規(guī)律、印證拉薩地塊西部不含礦斑巖的成因提供了重要的資料。
雅魯藏布縫合帶(IYZSZ)和班公湖怒江縫合帶(BNSZ)作為南-北構(gòu)造邊界,共同限定了拉薩地塊,并使之與北面的羌塘地塊,以及南邊的喜馬拉雅帶分隔開。洛巴堆-米拉山斷裂(LMF)及獅泉河-納木錯蛇綠混雜巖帶(SNMZ)又將拉薩地塊進一步分解為由南至北的三個次級構(gòu)造單元,即南部拉薩地塊、中部拉薩地塊和北部拉薩地塊(圖1a;Zhu et al.,2012)。研究區(qū)亞熱南復(fù)式巖體位于拉薩地塊西部,處于中部拉薩地塊最南端與南部拉薩地塊相接(圖1a,b)。亞熱南復(fù)式巖體圍巖主要是始新世林子宗火山巖地層(典中組和帕那組),巖體南部與白堊紀二長花崗巖呈侵入接觸關(guān)系,局部被第四季沉積物覆蓋(圖1b)。該復(fù)式巖體出露面積約為20km2。亞熱南復(fù)式巖體巖性并不均一,其中發(fā)育了黑云母二長花崗巖、花崗斑巖、閃長玢巖巖脈和流紋巖巖脈等多種巖性,本文對其中黑云母二長花崗巖和花崗斑巖占主要地位。在野外露頭上來看,復(fù)式巖體主要以黑云母二長花崗巖為主,花崗斑巖以多巖株形式穿插于黑云母二長花崗巖內(nèi)。黑云母二長花崗巖具有中粒似斑狀結(jié)構(gòu),少數(shù)可見基性包體,塊狀構(gòu)造,主要礦物可見鉀長石、斜長石、石英及黑云母,礦物多自形至半自形。斜長石成板狀,含量約為含40%~45%,粒度約為2~5mm,聚片雙晶發(fā)育,亦可見卡鈉復(fù)合雙晶;鉀長石粒度約為2~5mm,含量為30%~35%,可見卡氏雙晶;石英為他形粒狀,含量5%~10%,填充裂隙狀分布;黑云母直約為0.2~2mm,含量約為5%,零散狀分布,局部被綠泥石交代?;◢彴邘r則具有典型的斑狀結(jié)構(gòu),塊狀構(gòu)造,斑晶主要為斜長石和石英。斜長石為自形-半自形,粒徑一般1~2mm,少數(shù)2~5mm,含量約為20%;石英為半自形粒狀,粒徑2~4mm,含量10%~15%,常成熔圓狀;黑云母成零星分布,含量少;基質(zhì)為微晶結(jié)構(gòu),基質(zhì)為鉀長石、石英少見斜長石及黑云母,粒度0.01~0.05mm,含量為鉀長石約50%、石英約20%,斜長石約為10%。
圖1 青藏高原構(gòu)造劃分簡圖(a,據(jù)Hou et al.,2013;Zhu et al.,2012 修改)及亞熱地區(qū)地質(zhì)簡圖(b,據(jù)張計東等,2006①張計東,魏文通,郭金城,張振利,李廣棟,馮桂星等.2006.中華人民共和國1∶250000 亞熱幅區(qū)域地質(zhì)調(diào)查報告;Hou et al.,2013 改繪)JSSZ-金沙江縫合帶;BNSZ-班公湖-怒江縫合帶;SNMZ-獅泉河-納木錯蛇綠混雜巖帶;LMF-洛巴堆-米拉山斷裂;IYZSZ-印度-雅魯藏布縫合帶Fig.1 Geological sketch map of tectonic outline of Tibetan Plateau (a,after Hou et al.,2013;Zhu et al.,2012)and simplified geological map of the Yare area (b,after Hou et al.,2013)JSSZ-Jinsha Suture Zone;BNSZ-Bangong Tso-Nujiang Suture Zone;SNMZ-Shiquan River-Nam Tso Ophiolitic Melange zone;LMFLuobadui-Mila Mountain Fault;IYZSZ-Indus-Yarlung Zangbo Suture Zone
表1 亞熱南復(fù)式巖體鋯石U-Pb 年齡數(shù)據(jù)Table1 U-Pb age data of zircons from southern Yare composite pluton
續(xù)表1Continued Table1
表2 亞熱南復(fù)式巖體巖石樣品主量元素(wt%)、CIPW 計算、微量元素及稀土元素(×10 -6)數(shù)據(jù)Table 2 Whole rock major element (wt%),CIPW,trace element (×10 -6)data for southern Yare composite pluton
續(xù)表2Continued Table 2
樣品的鋯石分選及無污染碎樣工作委托廊坊宇能巖石礦物分選技術(shù)服務(wù)有限公司完成。均選取新鮮樣品,去除風(fēng)化面和表面污物,剔除非同期包裹體,而后進行機械破碎,鋯石經(jīng)手工淘洗、強磁選、電磁選、重液分選和雙目鏡下手工挑選程序獲得;巖石粉末樣品則經(jīng)粗碎、細碎最終至小于200 目。
挑選出的鋯石經(jīng)粘貼注膠制成環(huán)氧樹脂樣品靶,經(jīng)過打磨拋光至使鋯石露出中心,隨后進行透射光、反射光及陰極發(fā)光(CL)顯微照相。陰極發(fā)光顯微照相在中國科學(xué)院地質(zhì)與地球物理研究所電子探針實驗室完成,掃描電鏡加速電壓為15kV。鋯石的U-Pb 同位素定年在中國地質(zhì)大學(xué)(武漢)地質(zhì)過程與礦產(chǎn)資源國家重點實驗室利用LA-ICP-MS 分析完成,激光剝蝕系統(tǒng)為GeoLas 2005,ICM-MS 為Agilent 7500a。激光束斑直徑32μm,He 為載氣、Ar 氣為補償氣,工作電壓為27.1kV,激光能量為29J/cm2。詳盡的儀器操作過程和數(shù)據(jù)處理方法見Liu et al.(2008a,2010)。實驗過程中采用91500 作為標樣,每隔5 個數(shù)據(jù)點采用兩個91500 點做為同位素分離校正。采用ICPMSDataCal 8.3 對獲得數(shù)據(jù)進行離線處理(Liu et al.,2008b,2010)。普通鉛校正采用Andersen (2002)進行校正。鋯石U-Pb 年齡協(xié)和圖的繪制及相關(guān)計算均采用Isoplot/Ex_ver3 (Ludwig,2003)。鋯石UPb 定年數(shù)據(jù)見表1。
全巖主量元素測試是在中國科學(xué)院廣州地球化學(xué)研究所采用Rigaku 公司ZSX100e 型X 射線熒光光譜儀(XRF)進行測定,測定經(jīng)度優(yōu)于5%,具體操作方法見Li et al.(2006)和Li et al.(2013)。全巖微量元素在中國地質(zhì)大學(xué)(武漢)地質(zhì)過程與礦產(chǎn)資源國家重點實驗室利用溶解稀釋法利用ICP-MS(Agilent 7500a)進行測定,精度優(yōu)于5%~10%。測試中采用空白樣(Blank)、USGS 國際標準物質(zhì)AGV-2,BHVO-2,BCR-2 和GSR-1 作為校正及參考樣品。詳細的樣品消解處理過程、分析精密度和準確度同Liu et al.(2008b)。巖石全巖主、微量元素測試結(jié)果見表2。
圖2 亞熱南復(fù)式巖體鋯石U-Pb 年齡及CL 圖像圓圈代表U-Pb 激光束斑位置,直徑為32μmFig.2 U-Pb ages of zircons and CL images of southern Yare composite plutonThe circles refers to the locations of the laser ablation for zircon U-Pb analyses,diameter is 32μm
本文選擇對亞熱南部復(fù)式巖體選取出露最多的兩類花崗巖類巖石作為定年對象,分別是黑云母二長花崗巖(11YR19)和花崗斑巖(11YR25、11YR35)。兩類鋯石陰極發(fā)光(CL)圖像顯示出相似的形態(tài)特征(圖2b,d,f):均為自形長柱狀鋯石,粒徑約為250~300μm,長寬比為2∶1~3∶1,并具有明顯的同心振蕩環(huán)帶。黑云母二長花崗巖(11YR19)鋯石未見明顯的核部,花崗斑巖(11YR25、11YR35)有少量的鋯石存在核部。兩種巖性的鋯石232Th、238U 含量變化范圍較大,對應(yīng)的Th/U 比值范圍分別為0.77~3.49 和0.06~1.59。這些特征均表明兩種巖性的鋯石均為典型的巖漿鋯石(Hoskin and Schaltegeer,2003)。
圖3 亞熱南復(fù)式巖體巖石分類圖解(a)-TAS 圖解(據(jù)Wilson,2001);(b)-K2O-Na2O 分類圖解;(c)-A/NK-A/CNK 分類圖(據(jù)Maniar and Piccoli,1989);(d)-K2O-SiO2圖解(據(jù)Rickwood,1989).拉薩地塊含礦斑巖與不含礦斑巖數(shù)據(jù)來自Hou et al.(2004,2013);Li et al.(2011);Xu et al.(2010);拉薩地塊鉀質(zhì)火山巖數(shù)據(jù)來自Zhao et al.(2009);Chen et al.(2010a);Turner et al.(1996);Gao et al.(2010b);Ding et al.(2003)Fig.3 Diagram of southern Yare composite pluton(a)-TAS diagram (after Wilson,2001);(b)-K2O-Na2O diagram;(c)-A/NK-A/CNK diagram (after Maniar and Piccoli,1989);(d)-K2O-SiO2(after Rickwood,1989)
黑云母二長花崗巖(11YR19)鋯石在經(jīng)過剔除不協(xié)和年齡后,取得的206Pb/238U 加權(quán)平均年齡值為49.4 ± 0.9Ma(2σ,n=8;MSWD=1.03);花崗斑巖11YR25 及11YR35 經(jīng)過同樣處理后得到206Pb/238U 加權(quán)平均年齡的結(jié)果分別為16.5 ±1.0Ma(2σ,n =13,MSWD =2.50)和16.3 ±0.4Ma(2σ,n=12,MSWD=1.17)。
中新世花崗斑巖SiO2含量為62.2%~65.2%,始新世二長花崗巖SiO2含量為65.4%~69.5%。兩種巖石總體顯示出了富堿特征,其中中新世花崗斑巖K2O+Na2O 介于8.1%~9.2%之間,而始新世黑云母二長花崗巖分布介于8.2%~10.2%。兩類巖石的TAS 圖解(圖3a)中,中新世花崗斑巖和始新世黑云母二長花崗巖投點大多落在了花崗巖-正長巖分區(qū),絕大多數(shù)屬于亞堿性系列但均接近于堿性-亞堿性系列分界線(Irvine and Baragar,1971)。兩類巖石在K2O-Na2O圖解(圖3b)中均屬于鉀玄質(zhì)巖石。在A/NK-A/CNK 圖解(圖3c)中顯示,中新世斑巖主要屬于準鋁質(zhì)(A/CNK <1),而始新世黑云二長花崗巖屬于準鋁質(zhì)-弱過鋁質(zhì)范圍(A/CNK <1.1)。在K2O-SiO2關(guān)系圖解(圖3d)中,兩種巖石均屬于鉀玄巖系列。
綜合如上圖解及野外定名,亞熱南復(fù)式巖體中主要的兩類侵入巖定名為(1)鉀玄巖系列、準鋁質(zhì)花崗斑巖(中新世);(2)鉀玄巖系列準鋁質(zhì)-弱過鋁質(zhì)黑云二長花崗巖。其中與拉薩地塊中新世含礦、不含礦斑巖(Hou et al.,2013;Hou et al.,2004;Li et al.,2011;Xu et al.,2010)做對比,亞熱復(fù)式巖體的中新世花崗斑巖與拉薩地塊其他不含礦斑巖有一定的相關(guān)性,但顯示出更低的SiO2含量,與近同時代的鉀質(zhì)火山巖(Zhao et al.,2009;Chen et al.,2010a;Turner et al.,1996;Gao et al.,2010b;Ding et al.,2003)有著較為相近的分布,同時與前人報道的該地巖體的樣品有著較高的一致性(Gao et al.,2010a)。
圖4 亞熱南復(fù)式巖體稀土元素球粒隕石標準化配分曲線圖(a,標準化值據(jù)Boynton,1984)和微量元素原始地幔標準化配分曲線圖(b,標準化值據(jù)Sun and McDonough,1989)數(shù)據(jù)來源及圖例同圖3Fig.4 Chondrite-normalized REE patterns (a,normalization values after Boynton,1984)and primitive mantle-normalized trace element patterns (b,normalization values after Sun and McDonough,1989)for southern Yare composite plutonSymbols and data sources are in Fig.3
全巖球粒隕石標準化稀土元素配分圖解詳見圖4a,花崗斑巖和黑云母二長花崗巖均有著輕稀土(LREE)富集,重稀土(HREE)相對虧損的特點,稀土元素配分曲線成右傾狀。兩種巖性均存在Eu 負異常,花崗斑巖具有相對弱的Eu 負異常(δEu=0.79~0.86),黑云母二長花崗巖有比較強的Eu 負異常(δEu=0.61~0.78)。兩種巖性的輕稀土(LREE)分異較為明顯,輕稀土(LREE)的總量基本保持一致,而重稀土(HREE)分異程度相差較大,黑云母二長花崗巖的稀土配分虛線重稀土部分更趨于平緩,而花崗斑巖仍有較大程度分異(圖4a)。對比拉薩地塊其他中新世不含礦斑巖的球粒隕石標準化區(qū)域,亞熱南復(fù)式巖體中中新世花崗斑巖的稀土總量(ΣREE)較高,均位于該區(qū)域的上部(圖4a),配分模式基本一致,而相比含礦斑巖區(qū)域,則顯示出相對的富集重稀土(HREE)元素(圖4a)。
在原始地幔標準化圖解(圖4b)中,亞熱南復(fù)式巖體的兩種主要巖性均顯示出富集Th、U、Pb 等元素,相對虧損Nb、Ta 和Ti 等高場強元素(HFSE)。二者區(qū)別在于黑云母二長花崗巖顯示出更虧損Zr 和Hf,而花崗斑巖則相對富集Sr。中新世花崗斑巖與拉薩地塊其他地區(qū)中新世不含礦巖體對比可發(fā)現(xiàn),二者具有一致的分配模式。
亞熱南復(fù)式巖體從巖性組成上看,是以始新世黑云母二長花崗巖為主,其中穿插多株中新世花崗斑巖。始新世黑云母二長花崗巖為一套準鋁質(zhì)-弱過鋁質(zhì)亞堿性鉀玄巖系列花崗巖,稀土元素配分圖解(圖4a)顯示出弱的Eu 負異常,重稀土分異不明顯的特征,其微量元素原始地幔標準化圖解顯示出其顯著的Nb、Ta、Ti 的負異常,結(jié)合Sr/Y-Y 圖解(圖5a)和(La/Yb)N-YbN圖解(圖5b)中,黑云母二長花崗巖顯示出的明顯的島弧巖漿巖性質(zhì)可以判斷此巖漿源區(qū)與俯沖環(huán)境有著明顯關(guān)系,這與在巖體內(nèi)可采集到的近同期中性巖脈所指示的環(huán)境相同(于楓等,未發(fā)表數(shù)據(jù));結(jié)合主量元素中富含K 的特征,可能預(yù)示著該巖石起源于經(jīng)俯沖過程形成的地幔楔混染后的中下地殼,后受熱事件的影響而誘發(fā)部分熔融,并經(jīng)歷一定的結(jié)晶分異作用后形成。
中新世花崗斑巖顯示出了具有較高(La/Yb)N值和較低的YbN、Sr/Y 比值特征,同時有較低的Al(≤16%),這與前人報道過的西藏甲馬地區(qū)低Sr 埃達克質(zhì)巖石特征類似(Chung et al.,2003)。其稀土配分圖解中輕重稀土分異較為明顯((La/Yb)N=23.4~34.9),重稀土(HREE)虧損,并沒有明顯的Eu 負異常(圖4a、表2)。稀土配分曲線的中-重稀土分布平坦,可能暗示了該組巖石的巖漿源區(qū)為角閃巖相-榴輝巖相過度的深度,后期并未經(jīng)歷明顯的結(jié)晶分異過程。結(jié)合如上特征,該套類埃達克質(zhì)花崗斑巖可能起源于角閃石-石榴子石殘留的加厚下地殼。
圖5 亞熱南復(fù)式巖體Sr/Y-Y 圖解(a,據(jù)Defant and Drummond,1990)和(La/Yb)N-YbN圖解(b,據(jù)Martin et al.,2005)Fig.5 Sr/Y vs.Y diagram (a,after Defant and Drummond,1990)and (La/Yb)N vs.YbN diagram (b,after Martin et al.,2005)of southern Yare composite pluton
黑云母石英二長花崗巖LA-ICP-MS 鋯石原位定年206Pb/238U 加權(quán)平均年齡為49.4 ±1.0Ma,限定了該巖體的構(gòu)造背景處于新特提斯洋北向歐亞大陸俯沖及之后的印度-亞洲大陸的陸-陸碰撞的大背景之下(Yin and Harrison,2000;Mo et al.,2008),對比侯增謙等(2006a-c)對青藏高原碰撞造山過程的劃分,將黑云母二長花崗巖成巖時代分入主碰撞大陸陸匯聚階段。這與南拉薩地塊已經(jīng)報道的新生代大規(guī)模巖漿事件時間相一致(即~50Ma),現(xiàn)有觀點認為這種大規(guī)模巖漿活動與俯沖的新特提斯板片斷離有關(guān)(Wen et al.,2008;Chung et al.,2009;Lee et al.,2009;董國臣等,2008)。同時期也存在著林子宗火山巖的大面積活動(莫宣學(xué),2009;李皓揚,2007;Chen et al.,2010b)。對拉薩地塊東部典型林子宗火山巖的研究已經(jīng)顯示出從下部典中組(~65Ma)鈣堿性安山質(zhì)到中部年波組(~54Ma)鈣堿性-高鉀鈣堿性系列酸性質(zhì)巖石再到上部帕那組(~50Ma)的高鉀鈣堿性-鉀玄質(zhì)巖石系列的這一朝向更加酸性、更加富堿的方向演化進程,及從早期明顯陸緣弧火山向陸內(nèi)典型后碰撞鉀質(zhì)火山演化的過程(莫宣學(xué),2009)。而亞熱南復(fù)式巖體中黑云母二長花崗巖的富K 特征,似乎也預(yù)示著該巖石成因環(huán)境可能是一種陸陸碰撞匯聚階段的某次應(yīng)力釋放旋回的環(huán)境。結(jié)合巖漿源區(qū)的討論,新特提斯洋板片斷離引發(fā)軟流圈上涌致使被地幔楔混染過的中下地殼重熔,隨之經(jīng)歷了斜長石的分離結(jié)晶作用,是形成該套始新世黑云母二長花崗巖的可能巖石成因。
拉薩地塊中新世斑巖系統(tǒng)與大陸碰撞成礦系統(tǒng)中的斑巖型Cu-Mo 礦床有著密切關(guān)系(Hou et al.,2001,2009;Qu et al.,2009;Yang et al.,2009)。亞熱南復(fù)式巖體中中新世花崗斑巖處于后碰撞伸展動力背景(侯增謙等,2006c)之下,沒有礦化痕跡,形成年代與驅(qū)龍(Yang et al.,2009)、甲馬(Hou et al.,2004)等大型超大型礦床含礦斑巖成巖年代一致。這些斑巖體均受到南北向斷裂帶的控制(Hou et al.,2004)。成礦斑巖與不成礦斑巖均顯示出了高(La/Yb)N比值和低YbN、Y 的特征(圖5),但可見含礦斑巖有這更高的Sr/Y 及更低Y,比不含礦斑巖顯示出更強列的埃達克性質(zhì)。Hou et al.(2013)在對含礦斑巖與不含礦斑巖的主量元素、微量元素及Sr-Nd-Hf 同位素的基礎(chǔ)上,得出含礦斑巖是由增生的新生鎂鐵質(zhì)下地殼部分熔融形成,而不含礦的斑巖巖漿則形成于古老地殼。在區(qū)域上,相鄰的雄巴-邦巴-賽利普地區(qū)廣泛出露了同時代鉀質(zhì)-超鉀質(zhì)火山巖(Miller et al.,1999;Zhao et al.,2009;Nomade et al.,2004;王保弟等,2008;劉棟等,2011);前人綜合多種證據(jù)認為,拉薩地塊西部的具有埃達克特征鉀質(zhì)火山巖應(yīng)源于加厚下地殼的部分熔融。亞熱南復(fù)式巖體中花崗斑巖的地球化學(xué)特征與同期同地區(qū)鉀質(zhì)火山巖性質(zhì)相似,可能體現(xiàn)了從源區(qū)到動力學(xué)機制二者都有著密切的相關(guān)。綜合如上所述,亞熱南復(fù)式巖體中中新世花崗斑巖應(yīng)形成于在印度-亞洲大陸陸陸碰撞所導(dǎo)致的地殼增厚后,某種動力學(xué)機制所引發(fā)的源于角閃-榴輝巖相的古老下地殼熔融,經(jīng)斷裂所致的應(yīng)力減弱帶侵入,而后在上地殼賦存固結(jié)成巖;這一觀點與前人的觀點(Hou et al.,2013)相一致。
(1)本文首次報道了亞熱南復(fù)式巖體中的黑云母二長花崗巖,花崗斑巖的巖石地球化學(xué)和鋯石原位U-Pb 年代學(xué)數(shù)據(jù)。其中黑云二長花崗巖成巖年齡為約為49.4Ma,花崗斑巖的年齡約為16.4Ma。中新世類埃達克質(zhì)斑巖的深入報道為進行拉薩地塊東西部含礦、不含礦斑巖的對比及預(yù)示找礦規(guī)律提供了重要的資料。
(2)根據(jù)巖石地球化學(xué)分析,認為始新世黑云母二長花崗巖巖漿源區(qū)為曾被俯沖流體交代的地幔楔混染的中下地殼,而中新世花崗斑巖巖漿源區(qū)為古老地殼。
(3)結(jié)合年代學(xué)數(shù)據(jù)和區(qū)域動力學(xué)背景,限定了始新世黑云母二長花崗巖的巖石成因為新特提斯洋板片斷離引發(fā)混染過的中下地殼發(fā)生熔融并結(jié)晶分異形成;而中新世花崗斑巖則由形成于某種動力學(xué)機制引發(fā)的古老下地殼熔融,而后侵位于上地殼。
Andersen T.2002.Correction of common lead in U-Pb analyses that do not report204Pb.Chemical Geology,192(1-2):59-79
Boynton WV.1984.Geochemistry of the rare earth elements:Meteorite studies.In: Henderson P (ed.).Rare Earth Element Geochemistry.Amsterdam:Elsevier,63-114
Chen J,Huang B and Sun L.2010b.New constraints to the onset of the India-Asia collision:Paleomagnetic reconnaissance on the Linzizong Group in the Lhasa Block,China.Tectonophysics,489(1):189-209
Chen JL,Xu JF,Wang BD,Kang ZQ and Jie L.2010a.Origin of Cenozoic alkaline potassic volcanic rocks at Konglongxiang,Lhasa terrane,Tibetan Plateau:Products of partial melting of a mafic lower-crustal source?Chemical Geology,273(3):286-299
Chung SL,Liu D,Ji JQ,Chu MF,Lee HY,Wen DJ,Lo CH,Lee TY,Qian Q and Zhang Q.2003.Adakites from continental collision zones:Melting of thickened lower crust beneath southern Tibet.Geology,31(11):1021-1024
Chung SL,Chu MF,Ji JQ,O’Reilly SY,Pearson NJ,Liu DY,Lee TY and Lo CH,2009.The nature and timing of crustal thickening in Southern Tibet:Geochemical and zircon Hf isotopic constraints from postcollisional adakites.Tectonophysics,477(1-2):36-48.
Defant MJ and Drummond MS.1990.Derivation of some modern arc magmas by melting of young subducted lithosphere.Nature,347(6294):662-665
Ding L,Kapp P,Zhong DL and Deng WM.2003.Cenozoic volcanism in Tibet: Evidence for a transition from oceanic to continental subduction.Journal of Petrology,44(10):1833-1865
Dong GC,Mo XX,Zhao ZD,Zhu DC,Song YT and Wang L.2008.Gabbros from southern Gangdese:Implication for mass exchange between mantle and crust.Acta Petrologica Sinica,24(2):203-210 (in Chinese with English abstract)
Gao YF,Yang ZS,Santosh M,Hou ZQ,Wei RH and Tian SH.2010a.Adakitic rocks from slab melt-modified mantle sources in the continental collision zone of southern Tibet.Lithos,119(3-4):651-663
Gao YF,Yang ZS,Hou ZQ,Wei RH,Meng XJ and Tian SH.2010b.Eocene potassic and ultrapotassic volcanism in south Tibet:New constraints on mantle source characteristics and geodynamic processes.Lithos,117(1-4):20-32
Hoskin PWO and Schaltegger U.2003.The composition of zircon and igneous and metamorphic petrogenesis.In:Manchar JM and Hoskin PWO (eds.).Reviews in Mineralogy and Geochemistry,53(1):27-62
Hou ZQ,Gao YF,Qu XM,Rui ZY and Mo XX.2004.Origin of adakitic intrusives generated during Mid-Miocene east-west extension in southern Tibet.Earth Planet.Sci.Lett.,220(1-2):139-155
Hou ZQ,Yang ZS,Xu WY,Mo XX,Ding L,Gao YF,Dong FL,Li GM,Qu XM,Li MG,Zhao ZD,Jiang SH,Meng XJ,Li ZQ,Qin KZ and Yang ZM.2006a.Metallogenesis in Tibetan collisional orogenic belt:Ⅰ.Mineralization in main collisional orogenic setting.Mineral Deposits,25(4):337- 358 (in Chinese with English abstract)
Hou ZQ,Pan GT,Wang AJ,Mo XX,Tian SH,Sun XM,Ding L,Wang EQ,Gao YF,Xie YL,Zeng PS,Qin KZ,Xu JF,Qu XM,Yang ZM,Yang ZS,F(xiàn)ei HC,Meng XJ and Li ZQ.2006b.Metallogenesis in Tibetan collisional orogenic belt:Ⅱ .Mineralization in latecollisional transformation setting.Mineral Deposits,25(5):521-543 (in Chinese with English abstract)
Hou ZQ,Xu XM,Yang ZS,Meng XJ,Li ZQ,Yang ZM,Zheng MP,Zheng YY,Nei FJ,Gao YF,Jiang SH and Li GM.2006c.Metallogenesis in Tibetan collisional orogenic belt: Ⅲ.Mineralization in post-collisional extension setting.Mineral Deposits,25(6):629-651 (in Chinese with English abstract)
Hou ZQ,Yang ZM,Qu XM,Meng XJ,Li ZQ,Beaudoin G,Rui ZY,Gao YF and Zaw K.2009.The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen.Ore Geol.Rev.,36(1-3):25-51
Hou ZQ,Zheng YC,Yang ZM,Rui ZY,Zhao ZD,Jiang SH,Qu XM and Sun QZ.2013.Contribution of mantle components within juvenile lower-crust to collisional zone porphyry Cu systems in Tibet.Mineralium Deposita,48(2):173-192
Irvine TN and Baragar WRA.1971.A guide to the chemical classification of the common volcanic rocks.Canadian Journal of Earth Sciences,8(5):523-548
Ji WQ,Wu FY,Chung SL,Li JX and Liu CZ.2009.Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith,southern Tibet.Chemical Geology,262(3):229-245
Le Maitre RW.1976.The chemical variability of some common igneous rocks.Journal of Petrology,17(4):589-598
Lee HY,Chung SL,Wang YB,Zhu DC,Yang JH,Song B,Liu DY and Wu FY.2007.Age,petrogenesis and geological significance of the Linzizong volcanic successions in the Linzhou basin,southern Tibet:Evidence from zircon U-Pb dates and Hf isotopes.Acta Petrologica Sinica,23(2):493-500 (in Chinese with English abstract)
Lee HY,Chung SL,Lo CH,Ji JQ,Lee TY,Qian Q and Zhang Q.2009.Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record.Tectonophysics,477(1-2):20-35
Li JX,Qin KZ,Li GM,Xiao B,Chen L and Zhao JX.2011.Postcollisional ore-bearing adakitic porphyries from Gangdese porphyry copper belt,southern Tibet:Melting of thickened juvenile arc lower crust.Lithos,126(3-4):265-277
Li XH,Li ZX,Wingate MTD,Chung SL,Liu Y,Lin GC and Li WX.2006.Geochemistry of the 755Ma Mundine Well dyke swarm,northwestern Australia:Part of a Neoproterozoic mantle superplume beneath Rodinia?Precambrian Research,146(1-2):1-15
Li XW,Mo XX,Yu XH,Ding Yi,Huang XF,Wei P and He WY.2013.Petrology and geochemistry of the Early Mesozoic pyroxene andesites in the Maixiu Area,West Qinling,China:Products of subduction or syn-collision?Lithos,172-173:158-174
Liu D,Zhao ZD,Zhu DC,Wang Q,Sui QL,Liu YS,Hu ZC and Mo XX.2011.The petrogenesis of postcollisional potassic-ultrapotassic rocks in Xungba basin,western Lhasa terrane:Constraints from zircon U-Pb geochronology and geochemistry.Acta Petrologica Sinica,27(7):2045-2059 (in Chinese with English abstract)
Liu YF,Yang ZM,Xie YL,Zhou P,Du DH,Li YX,Li QY,Qu HC and Xu B.2012.Zircon SHRIMP U-Pb age and geochemistry of intrusive rocks from Nongruri gold deposit,Gangdese,Tibet.Mineral Deposits,31(4):727- 744 (in Chinese with English abstract)
Liu YS,Hu ZC,Gao S,Günther D,Xu J,Gao CG and Chen HH.2008a.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard.Chemical Geology,257(1-2):34-43
Liu YS,Zong KQ,Kelemen PB and Gao S.2008b.Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole:Subduction and ultrahigh-pressure metamorphism of lower crustal cumulates.Chemical Geology,247(1-2):133-153 Liu YS,Gao S,Hu ZC,Gao CG,Zong KQ and Wang DB.2010.Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating,Hf isotopes and trace elements in zircons of mantle xenoliths.Journal of Petrology,51(1-2):537-571
Ludwig KR.2003.ISOPLOT 3.00:A Geochronological Toolkit for Microsoft Excel.California,Berkeley:Berkeley Geochronology Center,39
Maniar PD and Piccoli PM.1989.Tectonic discrimination of granitoids.Geological Society of America Bulletin,101(5):635-643
Martin H,Smithies RH,Rapp R,Moyen JF and Champion D.2005.An overview of adakite,tonalite-trondhjemite-granodiorite (TTG),and sanukitoid: Relationships and some implications for crustal evolution.Lithos,79(1-2):1-24
Miller C,Schuster R,Kl?tzli U,F(xiàn)rank W and Purtscheller F.1999.Post-collisional potassic and ultrapotassic magmatism in SW Tibet:Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis.Journal of Petrology,40(9):1399-1424
Mo XX,Niu YL,Dong GC,Zhao ZD,Hou ZQ,Zhou S and Ke S.2008.Contribution of syncollisional felsic magmatism to continental crust growth:A case study of the Paleogene Linzizong volcanic succession in southern Tibet.Chemical Geology,250(1-4):49-67
Mo XX.2009.A review of genesis study on magmatic rocks of the Qinghai-Tibet Plateau:Achievements and remaining problems.Geological Bulletin of China,28(12):1693- 1703 (in Chinese with English abstract)
Nomade S,Renne PR,Mo XX,Zhao ZD and Zhou S.2004.Miocene volcanism in the Lhasa block,Tibet:Spatial trends and geodynamic implications.Earth and Planetary Science Letters,221(1):227-243
Qu XM,Hou ZQ,Zaw K,Mo XX,Xu WY and Xin HB.2009.A largescale copper ore-forming event accompanying rapid uplift of the southern Tibetan Plateau:Evidence from zircon SHRIMP U-Pb dating and LA ICP-MS analysis.Ore Geol.Rev.,36(1-3):52-64
Rickwood PC.1989.Boundary lines within petrologic diagrams which use oxides of major and minor elements.Lithos,22(4):247-263
Sun SS and McDonough WF.1989.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes.In:Saunders AD and Norry MJ (eds.).Magmatism in the Ocean Basins.Geological Society,London,Special Publication,42(1):313-345
Turner S,Arnaud N,Liu J,Rogers N,Hawkesworth C,Harris N,Kelley S,Van Calsteren P and Deng W.1996.Post-collision,shoshonitic volcanism on the Tibetan Plateau:Implications for convective thinning of the lithosphere and the source of ocean island basalts.Journal of Petrology,37(1):45-71
Wang BD,Xu JF,Zhang XG,Chen JL,Kang ZQ and Dong YH.2008.Petrogenesis of Miocene volcanic rocks in the Sailipu area,Western Tibetan Plateau:Geochemical and Sr-Nd isotopic constraints.Acta Petrologica Sinica,24(2):265- 278 (in Chinese with English abstract)
Wen DR,Liu DY,Chung SL,Chu MF,Ji JQ,Zhang Q,Song B,Lee TY,Yeh MW and Lo CH.2008.Zircon SHRIMP U-Pb ages of the Gangdese batholith and implications for Neotethyan subduction in southern Tibet.Chemical Geology,252(3-4):191-201
Wilson BM.2001.Igneous Petrogenesis:A Global Tectonic Approach.London:Kluwer Academic Publishers
Xu WC,Zhang HF,Guo L and Yuan HL.2010.Miocene high Sr/Y magmatism,South Tibet:Product of partial melting of subducted Indian continental crust and its tectonic implication.Lithos,114(3-4):293-306
Yang ZM,Hou ZQ,White NC,Chang ZS,Li ZQ and Song YC.2009.Geology of the post-collisional porphyry copper-molybdenum deposit at Qulong,Tibet.Ore Geol.Rev.,36(1-3):133-159
Yin A and Harrison TM.2000.Geologic evolution of the Himalayan-Tibetan orogen.Annual Review of Earth and Planetary Sciences,28(1):211-280
Zhang S,Zheng YC,Huang KS,Li W,Sun QZ,Li QY,F(xiàn)u Q and Liang W.2012.Re-Os dating of molybdenite from Nuri Cu-W-Mo deposit and its geological significance.Mineral Deposits,31(2):227-346(in Chinese with English abstract)
Zhao ZD,Mo XX,Dilek Y,Niu YL,DePaolo DJ,Robinson P,Zhu DC,Sun CG,Dong GC,Zhou S,Luo ZH and Hou ZQ.2009.Geochemical and Sr-Nd-Pb-O isotopic compositions of the postcollisional ultrapotassic magmatism in SW Tibet:Petrogenesis and implications for India intra-continental subduction beneath southern Tibet.Lithos,113(1-2):190-212
Zheng YC,Hou ZQ,Li QY,Sun QZ,Liang W,F(xiàn)u Q,Pan FC,Li W and Huang KX.2012.Origin of Late Oligocene adakitic intrusives in the southeastern Lhasa terrane:Evidence from in situ zircon U-Pb dating,Hf-O isotopes,and whole-rock geochemistry.Lithos,148:296-311
Zhu DC,Zhao ZD,Niu YL,Dilek Y,Hou ZQ and Mo XX.2012.The origin and pre-Cenozoic evolution of the Tibetan Plateau.Gondwana Research,23(4):1429-1454
附中文參考文獻
董國臣,莫宣學(xué),趙志丹,朱弟成,宋云濤,王磊.2008.西藏岡底斯南帶輝長巖及其所反映的殼幔作用信息.巖石學(xué)報,24(2):203-210
侯增謙,楊竹森,徐文藝,莫宣學(xué),丁林,高永豐,董方瀏,李光明,曲曉明,李光明,趙志丹,江思宏,孟祥金,李振清,秦克章,楊志明.2006a.青藏高原碰撞造山帶:Ⅰ.主碰撞造山成礦作用.礦床地質(zhì),25(4):337-358
侯增謙,潘桂棠,王安建,莫宣學(xué),田世洪,孫曉明,丁林,王二七,高永豐,謝玉玲,曾普勝,秦克章,許繼峰,曲曉明,楊志明,楊竹森,費紅彩,孟祥金,李振清.2006b.青藏高原碰撞造山帶:Ⅱ.晚碰撞轉(zhuǎn)換成礦作用.礦床地質(zhì),25(5):521-543
侯增謙,曲曉明,楊竹森,孟祥金,李振清,楊志明,鄭綿平,鄭有業(yè),聶鳳軍,高永豐,江思宏,李光明.2006c.青藏高原碰撞造山帶:Ⅲ.后碰撞伸展成礦作用.礦床地質(zhì),25(6):629-651
李皓揚,鍾孫霖,王彥斌,朱弟成,楊進輝,宋彪,劉敦一,吳福元.2007.藏南林周盆地林子宗火山巖的時代、成因及其地質(zhì)意義:鋯石U-Pb 年齡和Hf 同位素證據(jù).巖石學(xué)報,23(2):493-500
劉棟,趙志丹,朱弟成,王青,隋清霖,劉勇勝,胡兆初,莫宣學(xué).2011.青藏高原拉薩地塊西部雄巴盆地后碰撞鉀質(zhì)-超鉀質(zhì)火山巖年代學(xué)與地球化學(xué).巖石學(xué)報,27(7):2045-2059
劉云飛,楊志明,謝玉玲,周平,杜等虎,李應(yīng)栩,李秋耘,曲煥春,許博.2012.西藏弄如日金礦床侵入巖鋯石SHRIMP U-Pb 年齡與地球化學(xué)特征.礦床地質(zhì),31(4):727-744
莫宣學(xué).2009.青藏高原巖漿巖成因研究:成果與展望.地質(zhì)通報,28(12):1693-1703
王保弟,許繼峰,張興國,陳建林,康志強,董彥輝.2008.青藏高原西部賽利普中新世火山巖源區(qū):地球化學(xué)及Sr-Nd 同位素制約.巖石學(xué)報,24(2):265-278
張松,鄭遠川,黃克賢,李為,孫清鐘,李秋耘,付強,梁維.2012.西藏努日矽卡巖型銅鎢鉬礦輝鉬礦Re-Os 定年及其地質(zhì)意義.礦床地質(zhì),31(2):337-346