葉麗娟 趙志丹 劉棟 朱弟成 董國臣 莫宣學 胡兆初 劉勇勝
1.中國地質(zhì)大學地質(zhì)過程與礦產(chǎn)資源國家重點實驗室,地球科學與資源學院,北京 100083
2.天津地質(zhì)礦產(chǎn)研究所,天津 300170
3.中國地質(zhì)大學地質(zhì)過程與礦產(chǎn)資源國家重點實驗室,地球科學學院,武漢 430074
青藏高原雅魯藏布縫合帶(IYZSZ)是一條板塊俯沖消減帶,它標志著印度與亞洲大陸碰撞之前曾經(jīng)存在新特提斯洋(常承法,1984),特提斯洋的形成演化及其有關(guān)的構(gòu)造-巖漿作用過程近年來一直受到國內(nèi)外地學研究者的關(guān)注,被認為是更好揭示印度與亞洲大陸碰撞以來青藏高原構(gòu)造演化的重要基礎(chǔ)(Zhu et al.,2013)。早至195Ma 以來,特提斯洋就開始向北俯沖削減到拉薩地塊南部,形成了島弧巖漿作用(Kang et al.,2014),并持續(xù)北向俯沖直到特提斯洋閉合、印度與亞洲大陸的對接和碰撞(Xu et al.,1985;Coulon et al.,1986;Harris et al.,1988;Yin and Harrison,2000;Mo et al.,2007,2008;Zhu et al.,2009;Zhao et al.,2009)。
新一輪地質(zhì)大調(diào)查獲得的1∶25 萬區(qū)域地質(zhì)資料表明,中生代晚白堊世巖漿作用出露比較廣泛,呈大面積分布于南部拉薩地塊(朱弟成等,2008),目前已經(jīng)發(fā)現(xiàn)的侵入巖包括輝長巖、閃長巖、英云閃長巖、花崗閃長巖和花崗巖等各種巖石類型,構(gòu)成了平行于雅魯藏布縫合帶的大陸邊緣弧巖漿作用帶(Ji et al.,2009)。關(guān)于印度-亞洲大陸碰撞前的巖漿作用及深部動力學過程目前還存在頗多爭議,存在多種觀點和成因模型,例如新特提斯洋殼低角度北向俯沖(Wen et al.,2008a,b)、高角度北向俯沖(王莉等,2013)和新特提斯洋脊俯沖(管琪等,2010;Zhang et al.,2010a;Zhu et al.,2011)等。
作為拉薩地塊南部晚白堊世巖漿作用研究的一部分,本文在南木林縣南部發(fā)現(xiàn)了一套輝綠巖體以及呈巖脈狀侵入的花崗質(zhì)脈巖,開展了這套基性巖和酸性脈巖的鋯石U-Pb年代學和地球化學研究,結(jié)合拉薩地塊南緣新近報道的同時期巖漿巖成果,探討了拉薩地塊南部晚白堊世巖漿巖的成因及其構(gòu)造意義。
以金沙江縫合帶(JSSZ)、班公湖-怒江縫合帶(BNSZ)和雅魯藏布江縫合帶(YZSZ)為界將青藏高原從北向南分為松潘-甘孜復(fù)理石雜巖帶、羌塘、岡底斯和喜馬拉雅帶(Yin and Harrison,2000)。拉薩地塊位于班公湖-怒江縫合帶(BNSZ)和雅魯藏布縫合帶(YZSZ)之間,以獅泉河-拉果錯-永珠-納木錯-嘉黎蛇綠混雜巖帶(SLYNJOMZ)和沙莫勒-麥拉-洛巴堆-米拉山斷裂帶(SMLMF)為界,由北向南分為北部拉薩地塊、中部拉薩地塊和南部拉薩地塊(圖1a)(Zhu et al.,2013)。拉薩地塊南緣,沿著雅魯藏布縫合帶北側(cè)近東西向展布一條狹長花崗巖帶為岡底斯巖基(Chu et al.,2006;Ji et al.,2009;Wen et al.,2008a,b),其西端起始于岡仁波齊峰地區(qū),以喀喇昆侖斷裂為界與科希斯坦-拉達克巖基斷開,東側(cè)延伸到林芝地區(qū),是一條主要由I 型巖漿巖組成的侵入雜巖帶(Debon et al.,1986;Harris et al.,1988),與其并行展布的還有中生代、新生代火山巖和沉積地層,如中侏羅統(tǒng)-下侏羅統(tǒng)葉巴組(董彥輝等,2006;朱弟成等,2008;王偉等,2013;Kang et al.,2014)、上侏羅統(tǒng)-下白堊統(tǒng)桑日群(姚鵬等,2006;Zhu et al.,2009)、古近紀林子宗群(劉鴻飛,1993;莫宣學等,2003;周肅等,2004;李皓揚等,2007;Mo et al.,2008;Lee et al.,2009)。目前已獲得的南部拉薩地塊晚白堊世數(shù)據(jù)大部分均采自南木林至林芝之間(圖1b)。
圖1 研究區(qū)地質(zhì)圖(a)青藏高原及拉薩地塊構(gòu)造單元劃分簡圖(據(jù)Zhu et al.,2011 修改),JSSZ-金沙江縫合帶;BNSZ-班公湖-怒江縫合帶;SNMZ-獅泉河-納木錯蛇綠混雜巖帶;LMF-洛巴堆-米拉山斷裂帶;YZSZ-雅魯藏布縫合帶;(b)南部拉薩地塊南木林至林芝地區(qū)地質(zhì)簡圖(據(jù)朱弟成等,2008 修改),文獻數(shù)據(jù)引自黃玉等,2010;管琪等,2010,2011;Wen et al.,2008a,b;Zhang et al.,2010;Zhu et al.,2011;(c)研究區(qū)輝綠巖和花崗質(zhì)脈巖的野外露頭;(d)南木林南部地區(qū)地質(zhì)簡圖Fig.1 Geological map of the study area(a)simplified geological map of Lhasa terrane and main units in the Tibetan Plateau (modified after Zhu et al.,2011),JSSZ:Jinsha Suture Zone;BNSZ:Bangong-Nujiang Suture Zone;SNMZ:Shiquan River-Nam Tso Ophiolitic Melange Zone;LMF:Luobadui-Mila Mountain Fault;YZSZ:Yarlung Zangbo Suture Zone;(b)geological map of the Namling to Linzhi area in southern Lhasa terrane (modified after Zhu et al.,2008),literature data:Huang et al.,2010;Guan et al.,2010,2011;Wen et al.,2008a,b;Zhang et al.,2010;Zhu et al.,2011;(c)field outcrop of the diabase and intruded granitic dikes in Namling region;(d)geological map of the Namling region
本文研究區(qū)位于拉薩地塊南部南木林縣以南約25km 的棉將雜巖體內(nèi)(圖1c,d),該巖體出露面積約15km2,呈巖瘤狀產(chǎn)出,巖體主體巖性為輝綠巖,巖體內(nèi)部發(fā)育了多條花崗巖脈,巖脈多沿節(jié)理和裂隙貫入,脈寬1~2m,長幾十米,沿北東10°~30°延伸。野外共采集了4 件樣品,包括輝綠巖1件、花崗巖脈3 件。采樣點GPS 坐標為N29°27.235’,E89°05.939’。樣品NM1104 為輝綠巖,巖石具典型的輝綠結(jié)構(gòu)(圖2a),主要礦物為斜長石(>50%)、輝石(20%)、角閃石(10%)、黑云母(10%)等。斜長石呈自形板狀晶體,之間成近三角形,聚片雙晶發(fā)育,輝石及角閃石等發(fā)育兩組解理,暗色礦物部分發(fā)生蝕變。樣品NM1101、NM1102、NM1103 均為花崗巖脈,巖石呈淺肉紅色,主要礦物為石英(40%)、鉀長石(表面高嶺土化)(30%)、斜長石(15%)及少量黑云母(5%)和白云母(5%)(圖2b)。
鋯石單礦物分選在河北省區(qū)域地質(zhì)礦產(chǎn)調(diào)查研究所實驗室完成。鋯石陰極發(fā)光(CL)顯微照相在中國科學院地質(zhì)與地球物理研究所電子探針室完成。鋯石微量元素含量和U-Pb 同位素定年在中國地質(zhì)大學(武漢)地質(zhì)過程與礦產(chǎn)資源國家重點實驗室(GPMR)利用LA-ICP-MS 同時分析完成。激光剝蝕系統(tǒng)為GeoLas 2005,ICP-MS 為Agilent 7500a。對分析數(shù)據(jù)的離線處理(包括對樣品和空白信號的選擇、儀器靈敏度漂移校正、元素含量及U-Th-Pb 同位素比值和年齡計算)采用軟件ICPMSDataCal(Liu et al.,2008,2010a)完成。詳細的儀器操作條件和數(shù)據(jù)處理方法同Liu et al.(2008,2010a,b)。
圖2 樣品顯微結(jié)構(gòu)照片(a)NM1104(輝綠巖),呈輝綠結(jié)構(gòu),正交偏光;(b)NM1101(正長花崗巖),花崗結(jié)構(gòu).視域左半部分為正交偏光,右半部分為單偏光Fig.2 Photo of micrographs(a)sample NM1104,diabase,diabasic texture,under cross-polarized light;(b)sample NM1101,granites,granular texture.Left half under crosspolarized light,right half under polarized light
鋯石Hf 同位素測試是在中國地質(zhì)科學院礦產(chǎn)資源研究所國土資源部成礦作用與資源評價重點實驗室Neptune 多接收等離子質(zhì)譜和Newwave UP213 紫外激光剝蝕系統(tǒng)(LAMC-ICP-MS)上進行的,實驗過程中采用He 作為剝蝕物質(zhì)載氣,剝蝕直徑采用55μm,測定時使用鋯石國際標樣GJ-1 和Plesovice 作為參考物質(zhì),分析點與U-Pb 定年分析點為同一位置。相關(guān)儀器運行條件及詳細分析流程見(侯可軍等,2007)。分析過程中鋯石標準GJ-1 的176Hf/177Hf 測試加權(quán)平均值分別為0.282007 ±0.000007(2σ,n =36),與文獻報道值(侯可軍等,2007;Morel et al.,2008)在誤差范圍內(nèi)完全一致。
以上定年和鋯石微量元素、Hf 同位素測試結(jié)果分別列于表1、表2 和表3 中。
主量和微量元素在中國地質(zhì)大學(武漢)地質(zhì)過程與礦產(chǎn)資源國家重點實驗室測定。主量元素采用X 射線熒光方法,實驗儀器為XRF-1800。微量元素采用Agilent 7500a 等離子體質(zhì)譜儀(ICP-MS)測定,分析精度優(yōu)于5%~10%。詳細測試方法和分析流程見Gao et al.(2002)。主、微量元素測試結(jié)果列于表4 中。
本文分別對1 件輝綠巖(NM1104)和1 件花崗巖脈(NM1103)進行了鋯石U-Pb 定年。鋯石陰極發(fā)光(CL)圖像和年齡諧和圖見圖3。輝綠巖(NM1104)樣品中的鋯石具有寬板狀韻律環(huán)帶,顆粒粒度較大(粒徑一般>100μm),鋯石的Th/U 比值均大于0.1(0.49~0.97),為典型的巖漿成因鋯石(Hoskin and Schaltegger,2003),剔除18 個測點中5 個不諧和點,其余13 個測點的206Pb/238U 加權(quán)平均年齡為93.8±0.8Ma(MSWD=0.17),為輝綠巖的形成時代。
花崗巖脈(NM1103)樣品中鋯石大多數(shù)為自形,粒徑80~100μm,多具典型巖漿震蕩環(huán)帶,鋯石的Th/U 比值為0.35~0.68,剔除18 個測點中6 個不諧和點,剩余12 個點的206Pb/238U 加權(quán)平均年齡為92.4 ±1.0Ma(MSWD=0.078)。
從鋯石U-Pb 年齡看,正長花崗巖脈(92.4 ±1.0Ma)以略晚的年齡,穿插到輝長-輝綠巖(93.8 ±0.8Ma)中。在測試誤差范圍內(nèi),兩者年齡相似,它們應(yīng)屬于同期巖漿活動的產(chǎn)物。
花崗巖脈NM1103 鋯石Th 含量變化于156 ×10-6~503×10-6,Pb 含量幾乎都小于39 ×10-6,并具有高的Th/Pb 比值和變化范圍大的Nb 含量(圖4b)。LuN值變化于1289~2474,處于Hoskin and Ireland (2000)報道的鋯石的LuN值是球粒隕石的1000 到20000 倍范圍內(nèi),為典型的巖漿鋯石;鋯石的Y 含量為667 × 10-6~1464 × 10-6,與Poller et al.(2001)報道的花崗巖類鋯石的Y 豐度500 ×10-6~4534 ×10-6相當。這些I 型花崗巖類鋯石以中等程度的負Eu 異常(Eu/Eu*= 0.36~0.60)、較高的(Nb/Pb)N比值(0.46~1.27)為特征,其富集HREE,具有明顯的正Ce 異常(圖4a),總體與巖漿鋯石的微量元素特征類似(Hoskin and Schaltegger,2003)。
輝綠巖樣品NM1104 的稀土元素含量整體偏高,ΣREE=800 ×10-6~2546 ×10-6,并且與全巖稀土元素含量整體偏高相一致,而不符合鋯石稀土元素豐度隨巖性由超基性巖到酸性巖逐漸升高的趨勢,因此輝綠巖和花崗巖脈之間在成分上不是同一來源的巖漿的分異演化關(guān)系,而是來自于不同的源區(qū)。在球粒隕石標準化稀土元素圖解上(圖4a),樣品顯示為LREE 虧損、HREE 富集的特點,且具明顯的Ce 正異常和較強烈的Eu 負異常(Eu/Eu*=0.16~0.26)。
表1 西藏南木林巖漿巖鋯石U-Pb 定年數(shù)據(jù)Table 1 Zircons U-Pb data of the magmatic rocks from Namling region
Wang et al.(2012)的研究表明,雖然I 型和S 型花崗巖類鋯石均具有類似的火成巖類鋯石稀土元素配分型式(如正Ce 異常、負Eu 異常、富集HREE 等)(Hoskin and Schaltegger,2003),但在一些元素豐度(如Pb、Th 元素)和比值(如Th/Pb、(Nb/Pb)N和Eu/Eu*)等方面,卻存在明顯差別(圖4b),即I 型花崗巖類以低Pb 含量、高Th/Pb 和(Nb/Pb)N比值為特征,S 型花崗巖類以高Pb 含量、顯著負Eu 異常、低Th/Pb和(Nb/Pb)N比值為特征,而A 型花崗巖類這些參數(shù)的變化范圍介于I 型和S 型花崗巖類之間。
源區(qū)物質(zhì)成分的差異,決定了其部分熔融產(chǎn)物(即I 型或S 型花崗質(zhì)熔體)的獨特地球化學特征。作為從花崗質(zhì)熔體中結(jié)晶出來的鋯石,必然繼承了源區(qū)物質(zhì)成分特點,從而表現(xiàn)出S 型花崗巖鋯石的Pb 含量比值高于I 型花崗巖,而Nb 含量和(Nb/Pb)N比值卻低于I 型花崗巖。本文的花崗巖脈與I 型相同或者相似,相比Th 低Pb 高,但仍不同于A 型和S 型,全巖數(shù)據(jù)也表示出了相似的特征,可能是鋯石中隨時間由Th 和U 衰變而積累了Pb 含量。因此鋯石和全巖的微量元素都表明本文的花崗巖脈成分屬于I 型花崗巖。
圖3 南木林輝綠巖和花崗巖的鋯石U-Pb 年齡諧和圖(a、c)和陰極發(fā)光(CL)圖像(b、d)Fig.3 Zircon U-Pb concordia diagrams (a,c)and CL images (b,d)of representative zircons from diabase and granite from Namling region
圖4 鋯石稀土和微量元素圖(a)稀土元素球粒隕石標準化圖(球粒隕石據(jù)Boynton,1984);(b)微量元素鋯石類型區(qū)分圖解,I 型、S 型花崗巖類的鋯石微量元素含量和比值代表性散點圖,內(nèi)置插圖為全巖地球化學數(shù)據(jù)投圖,I 和S 型花崗巖的成分區(qū)域根據(jù)Wang et al.(2012)Fig.4 Zircon REE and trace elements diagrams(a)chondrite-normalized REE patterns for zircons (chondrite values after Boynton,1984);(b)selected plots of trace element abundances and ratios in zircons from I-,S-type granitoids.The whole-rock geochemical data are also plotted (see insets)for comparison (Wang et al.,2012)
表2 南木林巖漿巖鋯石微量元素數(shù)據(jù)(×10 -6)Table 2 Zircons trace element data of the magmatic rocks from Namling region (×10 -6)
表3 南木林巖漿巖鋯石Hf 同位素數(shù)據(jù)Table 3 Zircon Hf isotopic data of the magmatic rocks from Namling region
對南木林花崗巖脈和輝綠巖的25 顆鋯石的原位Hf 同位素組成進行了分析(表3)表明,正長花崗巖脈樣品中鋯石的176Yb/177Hf 和176Lu/177Hf 比值范圍分別為0.046091~0.129083 和0.000751~0.003441。εHf(t)范圍為+ 7.7~+13.0,Hf 同位素地殼模式年齡tDMC=301~637Ma。輝綠巖中鋯石的176Yb/177Hf 和176Lu/177Hf 比值范圍分別為0.021627~0.098605 和0.000325~0.001670。εHf(t)范圍為+8.5~+14.2,Hf 同位素地殼模式年齡tDMC=219~592Ma。這表明,輝綠巖和其中的花崗巖脈都是來自于強烈虧損的源區(qū),顯示了新生幔源物質(zhì)的性質(zhì)。
花崗巖脈巖的主量元素特征(表4)表現(xiàn)為SiO2含量比較均勻(74.76%~76.02%),按照主量元素多參數(shù)分類結(jié)果(圖5a),花崗巖可詳細命名為正長花崗巖。巖石具有較高的K2O 含量(4.75%~6.18%)和全堿(K2O + Na2O)含量(7.57%~8.44%),低的TiO2(0.08%~0.11%)和P2O5(0.01%~0.02%)含量;巖石的鋁飽和指數(shù)A/CNK 為1.10~1.18,為具有過鋁質(zhì)特征的正長花崗巖,屬于高鉀鈣堿性-鉀玄質(zhì)系列的巖石(圖5b)。而輝綠巖樣品為典型的基性輝長質(zhì)成分(圖5a),具有較高的Fe2O3T(9.37%)和低MgO 含量(4.32%),全堿(K2O+Na2O)含量(5.03%)也較高,屬于高鉀鈣堿性系列巖石(圖5b)。
圖5 南木林輝綠巖和花崗巖的巖石類型和系列劃分圖(a)巖石類型R1-R2圖解(據(jù)De La Roche et al.,1980);(b)巖石系列K2O-SiO2劃分圖解(據(jù)Rollinson,1993).文獻數(shù)據(jù)引自黃玉等,2010;管琪等,2010,2011;Wen et al.,2008a,b;Zhang et al.,2010;Zhu et al.,2011Fig.5 Discrimination diagrams of rock types and series from the Namling rocks(a)R1-R2 diagram(after De La Roche et al.,1980);(b)K2O-SiO2 diagram(after Rollinson,1993).Literature data:Huang et al.,2010;Guan et al.,2010,2011;Wen et al.,2008a,b;Zhang et al.,2010;Zhu et al.,2011
圖6 南木林南部巖漿巖球粒隕石標準化稀土元素配分曲線圖(a,球粒隕石據(jù)Boynton,1984)和原始地幔標準化微量元素配分曲線圖(b,原始地幔數(shù)據(jù)Sun and McDonough,1989)拉薩地塊南部晚白堊世巖類數(shù)據(jù)自黃玉等,2010;管琪等,2010,2011;Wen et al.,2008;Zhang et al.,2010;Zhu et al.,2011Fig.6 Chondrite-normalized REE patterns (a,after Boynton,1984)and primitive mantle-normalized trace element patterns (b,after Sun and McDonough,1989)Late Cretaceous magmatic rocks from the southern Lhasa Terrane are from literatures (Huang et al.,2010;Guan et al.,2010,2011;Wen et al.,2008a,b;Zhang et al.,2010;Zhu et al.,2011)
從微量元素特征看,輝綠巖顯示相對平坦的配分形式(圖6a),輕重稀土元素分異不明顯,具弱的Eu 異常(δEu =0.87),與拉薩地塊南緣報道的含紫蘇輝石的閃長巖和花崗閃長巖均類似(管琪等,2011;Zhu et al.,2011;Zhang et al.,2010;Ma et al.,2013a,b,c)。輝綠巖富集K、Rb、Sr、Ba 等大離子親石元素,虧損Nb、Ta、Ti 等高場強元素,顯示了楔形地幔源區(qū)部分熔融的島弧巖漿的特征,應(yīng)形成于俯沖帶環(huán)境;Pb 的含量高說明基性巖漿受到了地殼物質(zhì)的影響(圖6b)。正長花崗巖脈輕重稀土分餾較大,(La/Yb)N=11~64,具有微弱的Eu 異常(δEu=0.79~0.90),Nb、P、Ti 虧損,較中基性巖類具有輕稀土含量相似,重稀土含量較低的特征,而該地區(qū)報道的近于同時代的花崗閃長巖類有四個樣品具有Eu 正異常(管琪等,2010;黃玉等,2010;Zhu et al.,2011;Wen et al.,2008a,b),可能是斜長石堆晶作用所致。在微量元素方面的另一重要特征是,花崗巖具有明顯的高Sr/Y(41~84)、低Y (2.4 ×10-6~4.6 ×10-6)、低Yb (0.2×10-6~0.4 ×10-6)的特征,結(jié)合(La/Yb)N等特征看,巖石成分處于典型埃達克巖成分區(qū)域的邊緣,具有類似埃達克巖的特征。
此外,輝綠巖全巖稀土元素含量明顯高于3 個花崗巖樣品,與前述的鋯石微量元素類似,不符合同一巖漿體系稀土元素豐度越到酸性巖越高的演化趨勢,表明輝綠巖和花崗巖脈之間不存在分異演化關(guān)系,即它們應(yīng)來自于不同源區(qū)。
根據(jù)區(qū)域地質(zhì)填圖資料,朱弟成等(2008)發(fā)現(xiàn)拉薩地塊南部存在晚白堊世巖漿活動,大致平行于雅魯藏布江縫合帶呈帶狀分布。近年來在拉薩地塊南部的日喀則到米林一線,越來越多的研究(Wen et al.,2008a,b;Ji et al.,2009,2014;Zhang et al.,2010;黃玉等,2010;管琪等,2010,2011;Zhu et al.,2011;Ma et al.,2013a,b,c)進一步揭示了晚白堊世研究活動的大規(guī)模分布,其年齡主要集中于78~100Ma,被稱為晚白堊世的“巖漿大爆發(fā)”(Ma et al.,2013a)。本文獲得的正長花崗巖脈和輝綠巖形成年齡分別為92.4Ma 和93.8Ma,也屬于晚白堊世早期巖漿作用。這些研究表明,在岡底斯帶南緣,確實明顯存在一條晚白堊世的巖漿巖帶,其巖石成分從基性的輝長-輝綠巖、到角閃石巖、閃長巖,以及大量的花崗巖類。
晚白堊世的巖石類型也存在多樣性,出現(xiàn)了紫蘇花崗巖(Zhang et al.,2010;Guan et al.,2012;Ma et al.,2013c)、蘇長巖和角閃輝長巖(Ma et al.,2013a)、以及采自朗縣到臥龍鎮(zhèn)(管琪等,2010;Guan et al.,2012;Zheng et al.,2014)、里龍與米林一帶(Zhang et al.,2010a;Ma et al.,2013c)報道了87~90Ma 的埃達克質(zhì)巖漿活動埃達克質(zhì)巖石,反映了新特提斯洋俯沖消減過程中既有俯沖洋殼、同時也有洋脊俯沖等多種構(gòu)造環(huán)境的巖漿作用記錄。
從巖石出露的空間特征看,78~100Ma 的巖石主要出露在拉薩地塊南緣,疊加在岡底斯巖基的南緣(Ji et al.,2009,2014;Zhang et al.,2010;黃玉等,2010;管琪等,2010,2011;Zhu et al.,2011;Guan et al.,2012;Ma et al.,2013a,b,c),尤其是在臥龍到米林一帶分布很多(Zhang et al.,2010;管琪等,2010,2011;Zhu et al.,2011;Guan et al.,2012;Ma et al.,2013a,b,c;Zheng et al.,2014)。在中部拉薩地塊(也稱岡底斯弧背斷隆帶)的門巴地區(qū)也出現(xiàn)了88Ma 的埃達克質(zhì)巖石(孟繁一等,2010;Meng et al.,2014)。本文位于南木林的研究區(qū)與上述研究的區(qū)別是,巖體出露疊加在岡底斯巖基的北緣,靠近中部拉薩地塊,處于岡底斯島弧的北緣或者弧后地區(qū)。
本文研究的南木林輝綠巖和花崗巖脈,結(jié)合區(qū)域同時代巖漿巖研究結(jié)果,具有如下特征:
圖7 鋯石εHf(t)-年齡圖解(a)和地殼模式年齡直方圖(b)文獻數(shù)據(jù)引自黃玉等,2010;管琪等,2010,2011;Zhu et al.,2011Fig.7 Zircon εHf(t)-age (Ma)diagram (a)and histogram of tCM values (b)Literature data from Huang et al.,2010;Guan et al.,2010,2011;Zhu et al.,2011
圖8 拉薩地塊晚白堊世巖石構(gòu)造判別圖(a)花崗巖類Rb-Y+Nb 判別圖(Pearce et al.,1984);(b)鎂鐵質(zhì)巖類Th/Hf-Ta/Hf 圖解(汪云亮等,2001).文獻數(shù)據(jù)引自黃玉等,2010;管琪等,2010,2011;Wen et al.,2008a,b;Zhang et al.,2010;Zhu et al.,2011Fig.8 Geochemical discrimination plots of the magmatic rocks in southern Lhasa terrane(a)Rb-Y+Nb for granites (after Pearce et al.,1984 );(b)Th/Hf-Ta/Hf diagram for mafic rocks (after Wang et al.,2001).Literature data:Huang et al.,2010;Guan et al.,2010,2011;Wen et al.,2008a,b;Zhang et al.,2010;Zhu et al.,2011
(1)巖石來自于虧損的源區(qū),且具有源區(qū)組成的不均一性。南木林輝綠巖(εHf(t)= +8.5~+14.2)和正長花崗巖(εHf(t)= +7.7~+13.0)具有虧損程度較大的鋯石Hf 同位素組成(圖7a),該特征與岡底斯帶南緣的晚白堊世巖漿巖完全一致(Ji et al.,2014),同時輝綠巖微量元素顯示了明顯的輕稀土和LILE 的富集、以及HFSE 的虧損(圖6),表明輝綠巖應(yīng)來自于遭受了俯沖交代的地幔楔部分熔融,以及來自于深部的強烈虧損的軟流圈地幔物質(zhì)的加入,因此該巖漿作用可能代表了巖石圈-軟流圈的相互作用過程,在拉薩地塊南緣的米林地區(qū)的93Ma 的蘇長巖和角閃輝長巖也代表了巖石圈-軟流圈的相互作用的產(chǎn)物(Ma et al.,2013a)。而花崗巖具有虧損的Hf 同位素特征,源區(qū)物質(zhì)的鋯石Hf 模式年齡峰值為300~400Ma(圖7b),表明其源于島弧基底的地幔注入到下地殼的新生地殼的部分熔融。同時,上述鋯石Hf 同位素的變化范圍均大于5 個ε 單位,顯示了源區(qū)組成的不均一性。
(2)花崗巖脈屬于高分異的I 型花崗巖。南木林花崗巖脈的鋯石和全巖的微量元素(圖4)特征表明巖石屬于I 型花崗巖。同時,巖石又具有富SiO2(74.76%~76.02%)、富K2O(4.75%~6.18%)、富堿(K2O + Na2O = 7.57%~8.44%),以及過鋁質(zhì)特征(A/CNK=1.10~1.18),表明巖石是高分異的I 型花崗巖,在巖石中出現(xiàn)了白云母,可以作為過鋁質(zhì)的巖石學證據(jù)。那么,略晚期侵入到基性巖體中的花崗巖脈,是否可以代表基性巖漿分異作用的產(chǎn)物呢?前文述及輝綠巖的鋯石和全巖稀土元素含量都分別明顯整體高于花崗巖脈的稀土含量(圖4、圖6a),與同一巖漿體系稀土元素豐度越到酸性巖越高的演化趨勢矛盾,表明花崗巖脈不是基性巖漿分異演化的產(chǎn)物,它們具有不同的巖漿源區(qū)。
(3)巖石可能代表了弧后伸展作用的產(chǎn)物。從研究區(qū)的巖石組合看,出現(xiàn)了基性巖石與后期的花崗巖脈共存的特征,顯示了類似“雙峰式”巖漿作用的侵入巖組合;脈體的產(chǎn)出也意味著該時期具有伸展的構(gòu)造背景。
已有的研究結(jié)果表明,采用比較謹慎的方法,還是可以從花崗巖類的巖石類型和地球化學特征中獲得一些構(gòu)造環(huán)境方面的重要信息,如:島弧巖漿組合中英云閃長巖和花崗閃長巖占優(yōu)勢(也包括部分花崗巖或輝長巖),后期形成鉀玄巖系列巖石(圖5b),地球化學性質(zhì)主要屬鈣堿性偏鋁質(zhì)到弱過鋁質(zhì)的I 型花崗巖(也包括部分S 型花崗巖)(朱弟成等,2008)。南部拉薩地塊晚白堊世已有的所有數(shù)據(jù)特征完全符合以上島弧巖漿組合的特征。將南部拉薩地塊花崗巖類投在Pearce et al.(1984)提出的花崗巖構(gòu)造背景判別圖上,樣品落入火山弧花崗巖的范圍內(nèi)(圖8a),按照花崗巖構(gòu)造判別圖及微量元素特征,包括南木林花崗巖脈的南部拉薩地塊花崗巖類應(yīng)屬于島弧花崗巖,其總體構(gòu)造環(huán)境應(yīng)是新特提斯洋板塊一直向著拉薩地塊持續(xù)的俯沖和擠壓。
同時拉薩地塊南緣出現(xiàn)的基性和酸性脈巖出現(xiàn),則表明在擠壓同時局部存在伸展作用。南木林地區(qū)晚白堊世輝綠巖具有較高的Zr 含量(84.93 ×10-6),在Th/Hf-Ta/Hf 圖解(圖8b)中落入大陸伸展帶/初始裂谷玄武巖區(qū)域,顯示出板內(nèi)鈣堿性玄武巖親緣性。
結(jié)合前述的研究區(qū)處于岡底斯巖基帶的北緣、產(chǎn)出基性和酸性的雙峰式巖石組合、出現(xiàn)脈巖侵入等特征,本文認為南木林地區(qū),甚至整個拉薩地塊南部,晚白堊世時期在總體為特提斯洋向北俯沖的大構(gòu)造背景控制下,也局部存在弧后伸展的構(gòu)造背景,向北在中部拉薩地塊南緣的門巴地區(qū)近于同時也出現(xiàn)了伸展性質(zhì)的巖漿作用(孟繁一等,2010;Meng et al.,2014)。
新特提斯洋巖石圈的北向俯沖消減于拉薩地塊南緣,是解釋拉薩地塊南緣晚白堊世巖漿作用成因的主要模型。具體到不同研究地區(qū),則存在幾種不同觀點:(1)正常安第斯型島弧巖漿作用(Ji et al.,2009;Chu et al.,2006;李曉雄等,2015);(2)雅魯藏布新特提斯洋殼低角度或平板俯沖(Coulon et al.,1986;Wen et al.,2008a);(3)東部朗縣-米林地區(qū)的新特提斯洋脊俯沖(70~95Ma,Zhang et al.,2010;管琪等,2010;Guan et al.,2012);(4)俯沖的特提斯洋板片的回轉(zhuǎn)(Ma et al.,2014a)。
從本文的南木林地區(qū)產(chǎn)出的基性巖和酸性脈巖的產(chǎn)出結(jié)果以及上述討論看,該巖漿作用顯示了靠近弧后的伸展構(gòu)造背景、軟流圈和巖石圈的共同參與、上地幔和下地殼同時產(chǎn)生巖漿作用等過程,結(jié)合目前認為的78~100Ma 巖漿作用大量出現(xiàn)(Ma et al.,2013a),本文認為除了特殊巖石類型需要應(yīng)用洋脊俯沖模式來解釋之外,板片斷離、板片回轉(zhuǎn)等都可以解釋上述晚白堊世的大規(guī)模巖漿作用過程。如果應(yīng)用板片回轉(zhuǎn)模式(Ma et al.,2013a),在先期總體俯沖作用的背景下,拉薩地塊可能在晚白堊時期已經(jīng)存在地殼縮短、抬升、變形等事件(Murphy et al.,1997;Yin and Harrison,2000;Kapp et al.,2007;Leier et al.,2007);大約在100~90Ma 期間,之前低角度北向俯沖的新特提斯洋板片由于重力原因,發(fā)生板塊回轉(zhuǎn)(roll-back)(Chung et al.,2005;Ma et al.,2013a),伴隨著上涌對流軟流圈提供熱量與物質(zhì),使得受俯沖交代過的上覆地幔楔發(fā)生部分熔融,產(chǎn)生了基性的巖漿;基性巖漿上侵到地殼后,誘發(fā)了島弧基底物質(zhì)的部分熔融,形成了中酸性的具有新生地殼性質(zhì)的巖漿。上述巖漿疊加侵位到岡底斯巖基中。本文的南木林巖漿巖位于巖基北緣,可能代表了弧后伸展的構(gòu)造背景下的產(chǎn)物,而俯沖帶深部的板片斷離和板片回轉(zhuǎn)過程,都可以導致地殼淺部形成伸展的構(gòu)造環(huán)境。
(1)獲得了南部拉薩地塊南木林南部輝綠巖年齡為93.8 ± 0.8Ma,侵入其中的正長花崗巖脈年齡為92.4±1.0Ma。
(2)輝綠巖和花崗巖的組合可能代表了弧后伸展背景的巖漿作用產(chǎn)物,輝綠巖可能是巖石圈和軟流圈共同作用的產(chǎn)物;花崗巖是新生的島弧基底的部分熔融,為高分異的I 型花崗巖。
(3)南部拉薩地塊晚白堊世巖漿巖可能是在新特提斯洋殼北向俯沖過程中,發(fā)生板片斷離或者板片回轉(zhuǎn)過程中,交代的地幔楔與軟流圈作用熔融形成基性巖漿,基性巖漿底侵下地殼誘發(fā)下地殼部分熔融形成酸性巖漿,形成了后期侵入的脈巖。
致謝 實驗中得到秦虹、陳海紅和劉碩的幫助;曾令森和戴緊根審閱論文并提出了很好的修改意見;在此一并表示感謝。
Blichert-Toft J and Albarède F.1997.The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system.Earth and Planetary Science Letters,148(1-2):243-258
Boynton WV.1984.Geochemistry of the rare earth elements:Meteorite studies.In: Henderson P (ed.).Rare Earth Element Geochemistry.Amsterdam:Elsevier,63-114
Chang CF.1984.Geological structural features and evolution of the Yarlung Zangbo Suture Zone.In:Sino-French Investigation Report on Himalayan.Beijing:Science Press,327-339 (in Chinese)
Chu MF,Chung SL,Song B,Liu DY,O’Reilly SY,Pearson N,Ji J and Wen DJ.2006.Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet.Geology,34(9):745-748
Chung SL,Chu MF,Zhang YQ,Xie YW,Lo CH,Lee TY,Lan CY,Li XH,Zheng Q and Wang YZ.2005.Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism.Earth-Science Reviews,68(3-4):173-196
Coulon C,Maluski H,Bollinger C and Wand S.1986.Mesozoic and Cenozoic volcanic rocks from central and southern Tibet:39Ar-40Ar dating petrological characteristics and geodynamical significance.Earth and Planetary Science Letters,79(3-4):281-302
De La Roche H,Leterrier J,Grandclaude P and Marchal M.1980.Classification of volcanic and plutonic rocks using R1-R2 diagrams and major element analysis-its relationships and current nomenclature.Chemical Geology,29(1-4):183-210
Debon F,Le Fort P,Sheppard SM,Simon MF and Sonet J.1986.The four plutonic belts of the Transhimalaya-Himalaya:A chemical,mineralogical,isotopic,and chronological synthesis along a Tibet-Nepal section.Journal of Petrology,27(1):219-250
Dong YH,Xu JF,Zeng QG,Wang Q,Mao GZ and Li J.2006.Is there a Neo-Tethys’subduction record earlier than arc volcanic rocks in the Sangri Group?Acta Petrologica Sinica,22(3):661-668 (in Chinese with English abstract)
Gao S,Liu XM,Yuan HL,Hattendorf B,Günther D,Chen L and Hu SH.2002.Determ ination of forty two major and trace elements in USGS and NIST SRM glasses by laser ablation inductively coupled plasmamass spectrometry.Geostandards Newsletter-Journal of Geostandards and Geoanalysis,26(2):191-196
Griffin WL,Pearson NJ,Belousova E,Jackson SE,van Achterbergh E,O’Reilly SY and Shee SR.2000.The Hf isotope composition of cratonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites.Geochimica et Cosmochimica Acta,64(1):133-147
Guan Q,Zhu DC,Zhao ZD,Zhang LL,Liu M,Li XW,Yu F and Mo XX.2010.Late Cretaceous adakites from the eastern segment of the Gangdese Belt,southern Tibet:Products of Neo-Tetheyan mid-ocean ridge subduction.Acta Petrologica Sinica,26(7):2165-2179 (in Chinese with English abstract)
Guan Q,Zhu DC,Zhao ZD,Dong GC,Mo XX,Liu YS,Hu ZC and Yuan HL.2011.Zircon U-Pb chronology,geochemistry of the Late Cretaceous mafic magnatism in the southern Lhasa Terrane and its implications.Acta Petrologica Sinica,27(7):2083- 2094 (in Chinese with English abstract)Guan Q,Zhu DC,Zhao ZD,Dong GC,Zhang LL,Li XW,Liu M,Mo
XX,Liu YS and Yuan HL.2012.Crustal thickening prior to 38Ma in southern Tibet:Evidence from lower crust-derived adakitic magmatism in the Gangdese Batholith.Gondwana Research,21(1):88-99
Harris NBW,Xu RH,Lewis CL and Jin CW.1988.Plutonic rocks of the 1985 Tibet Geotraverse, Lhasa to Golmud.Philosophical Transactions of the Royal Society of London.Series A,Mathematical and Physical Sciences,327(1594):145-146
Hoskin PWO and Ireland TR.2000.Rare earth element chemistry of zircon and its use as a provenance indicator.Geology,28(7):627-630
Hoskin PWO and Schaltegger U.2003.The composition of zircon and igneous and metamorphic petrogenesis.Reviews in Mineralogy and Geochemistry,53(1):27-62
Hou KJ,Li YH,Zou TR,Qu XM,Shi YR and Xie GQ.2007.Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications.Acta Petrologica Sinica,23(10):2595-2604 (in Chinese with English abstract)
Huang Y,Zhao ZD,Zhang FQ,Zhu DC,Dong GC,Zhou S and Mo XX.2010.Geochemistry and implication of the Gangdese batholiths from Renbu and Lhasa areas in southern Gangdese,Tibet.Acta Petrologica Sinica,26(10):3131-3142 (in Chinese with English abstract)
Ji WQ,Wu FY,Chung SL,Li JX and Liu CZ.2009.Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith,southern Tibet.Chemical Geology,262(3-4):229-245
Ji WQ,Wu FY,Chung SL and Liu CZ.2014.The Gangdese magmatic constraints on a latest Cretaceous lithospheric delamination of the Lhasa terrane,southern Tibet.Lithos,210-211:168-180
Kang ZQ,Xu JF,Wilde SA,F(xiàn)eng ZH,Chen JL,Wang BD,F(xiàn)u WC and Pan HB.2014.Geochronology and geochemistry of the Sangri Group volcanic rocks,Southern Lhasa Terrane:Implications for the early subduction history of the Neo-Tethys and Gangdese magmatic arc.Lithos,200-201:157-168
Kapp P,DeCelles PG,Leier AL,F(xiàn)abijanic JM,He SD,Pullen A and Gehrels GE.2007.The Gangdese retroarc thurst belt revealed.GSA Today,17(7):4-9
Lee HY,Chung SL,Wang YB,Zhu DC,Yang JH,Song B,Liu DY and Wu FY.2007.Age,petrogenesis and geological significance of Linzizong volcanic successions in the Linzhou basin,southern Tibet:Evidence from zircon U-Pb dates and Hf isotopes.Acta Petrologica Sinica,23(2):493-500 (in Chinese with English abstract)
Lee HY,Chung SL,Lo CH,Ji JQ,Lee TY,Qian Q and Zhang Q.2009.Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record.Tectonophysics,477(1-2):20-35
Leier AL,DeCelles PG,Kapp P and Ding L.2007.The Takena Formation of the Lhasa terrane,southern Tibet:The record of a Late Cretaceous retroarc foreland basin.Geological Society of America Bulletin,119(1-2):31-48
Li XX,Jiang W,Liang JH,Zhao ZD,Liu D and Mo XX.2014.The geochemical characteristics and significance of the basalt from Shexing Formation in Linzhou basin, southern Tibet.Acta Petrologica Sinica,31(5):1285-1297 (in Chinese with English abstract)
Liu HF.1993.Division of Linzizong volcanic rock system and belong to time in Lhasa area.Tibet Geology,(2):59-69 (in Chinese)
Liu YS,Hu ZC,Gao S,Günther D,Xu J,Gao CG and Chen HH.2008.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard.Chemical Geology,257(1-2):34-43
Liu YS,Gao S,Hu ZC,Gao CG,Zong KQ and Wang DB.2010a.Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating,Hf isotopes and trace elements in zircons of mantle xenoliths.Journal of Petrology,51(1-2):537-571
Liu YS,Hu ZC,Zong KQ,Gao CG,Gao S,Xu J and Chen HH.2010b.Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS.Chinese Science Bulletin,55(15):1535-1546
Ma L,Wang Q,Li ZX,Wyman DA,Jiang ZQ,Yang JH,Gou GN and Guo HF.2013a.Early Late Cretaceous (ca.93Ma)norites and hornblendites in the Milin area,eastern Gangdese:Lithosphereasthenosphere interaction during slab rollback and an insight into early Late Cretaceous (ca.100~80Ma)magmatic“flare-up”in southern Lhasa (Tibet).Lithos,172-173:17-30 Ma L,Wang Q,Wyman DA,Jiang ZQ,Yang JH,Li QL,Gou GN and
Guo HF.2013b.Late Cretaceous crustal growth in the Gangdese area,southern Tibet:Petrological and Sr-Nd-Hf-O isotopic evidence from Zhengga diorite-gabbro.Chemical Geology,349-350:54-70 Ma L,Wang Q,Wyman DA,Li ZX,Jiang ZQ,Yang JH,Gou GN and Guo HF.2013c.Late Cretaceous (100~89Ma) magnesian charnockites with adakitic affinities in the Milin area,eastern Gangdese: Partial melting of subducted oceanic crust and implications for crustal growth in southern Tibet.Lithos,175-176:315-332
Meng FY,Zhao ZD,Zhu DC,Zhang LL,Guan Q,Liu M,Yu F,Liu MH and Mo XX.2010.The petrogenesis of Late Cretaceous adakitelike rocks in Mamba from the eastern Gangdese,Tibet.Acta Petrologica Sinica,26(7):2180-2192 (in Chinese with English abstract)
Meng FY,Zhao Z,Zhu DC,Mo X,Guan Q,Huang Y,Dong GC,Zhou S,DePaolo DJ,Harrison TM,Zhang ZC,Liu JL,Liu YS,Hu ZC and Yuan HL.2014.Late Cretaceous magmatism in Mamba area,central Lhasa subterrane:Products of back-arc extension of Neo-Tethyan Ocean?Gondwana Research,26(2):505-520
Mo XX,Zhao ZD,Deng JF,Dong GC,Zhou S,Guo TY,Zhang SQ and Wang LL.2003.Response of volcanism to the India-Asia collision.Earth Science Frontiers,10(3):135- 148 (in Chinese with English abstract)
Mo XX,Hou ZQ,Niu Y,Dong GC,Qu XM,Zhao ZD and Yang ZM.2007.Mantle contributions to crustal thickening during continental collision:Evidence from Cenozoic igneous rocks in southern Tibet.Lithos,96(1-2):225-242
Mo XX,Niu Y,Dong GC,Zhao ZD,Hou ZQ,Zhou S and Ke S.2008.Contribution of syncollisional felsic magmatism to continental crust growth:A case study of the Paleogene Linzizong volcanic succession in southern Tibet.Chemical Geology,250(1-4):49-67
Morel MLA,Nebel O,Nebel-Jacobsen YJ,Miller JS and Vroon PZ.2008.Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS.Chemical Geology,255(1-2):231-235
Murphy MA,Harrison TM,Durr SB,Chen Z,Ryerson FJ,Kidd WSF,Wang X and Zhou X.1997.Significant crustal shortening in southcentral Tibet prior to the Indo-Asian collision.Geology,25:719-722
Pearce JA, Harris NBW and Tindle AG.1984.Trace element discrimination diagrams for the tectonic interpretation of granitic rocks.Journal of Petrology,25(4):956-983
Poller U,Huth J,Hoppe P and Williams IS.2001.REE,U,Th,and Hf distribution in zircon from western Carpathian Variscan granitoids:A combined cathodoluminescence and ion microprobe study.American Journal of Science,301(10):858-876
Rollinson HR.1993.Using Geochemical Data: Evaluation,Presentation,Interpretation.New York:Longman Group UK Ltd.,1-352
S?derlund U,Patchett PJ,Vervoort JD and Isachsen CE.2004.The176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions.Earth and Planetary Science Letters,219(3-4):311-324
Sun SS and McDonough WF.1989.Chemical and isotope systematics of oceanic basalts Implications for mantle composition and processes In:Saunders AD and Norry MJ (eds.).Magmatism in Ocean Basins.Geological Society,London,Special Publication,42(1):313-345
Wang L,Zeng LS,Gao LE and Chen ZY.2013.Early Cretaceous high Mg#and high Sr/Y clinopyroxene-bearing diorite in the southeast Gangdese batholith,Southern Tibet.Acta Petrologica Sinica,29(6):1977-1994 (in Chinese with English abstract)
Wang Q,Zhu DC,Zhao ZD,Guan Q,Zhang XQ,Sui QL,Hu ZC and Mo XX.2012.Magmatic zircons from I-,S-and A-type granitoids in Tibet:Trace element characteristics and their application to detrital zircon provenance study.Journal of Asian Earth Sciences,53:59-66
Wang W,Zeng LS,Liu J,Xiao P and Gao LE.2013.Geochemical characteristics of the Late-Cretaceous dacite in Coqen,western Gangdese batholith,Tibet.Chinese Journal of Geology,48(2):484-500 (in Chinese with English abstract)
Wang YL,Zhang CJ and Xiu SZ.2001.Th/Hf-Ta/Hf identification of tectonic setting of basalts.Acta Petrologica Sinica,17(3):413-421 (in Chinese with English abstract)
Wen DR,Chung SL,Song B,Iizuka Y,Yang HJ,Ji J,Liu D and Gallet S.2008a.Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics,SE Tibet:Petrogenesis and tectonic implication.Lithos,105(1-2):1-11
Wen DR,Liu DY,Chung SL,Chu MF,Ji JQ,Zhang Q,Song B,Lee TY,Yeh MW and Lo CH.2008b.Zircon SHRIMP U-Pb ages of the Gangdese batholith and implications for Neotethyan subduction in southern Tibet.Chemical Geology,252(3-4):191-201
Xu RH,Sch?rer U and Allègre CJ.1985.Magmatism and metamorphism in the Lhasa Block (Tibet):A geochronological study.The Journal of Geology,93(1):41-57
Yao P,Li JG,Wang QH,Gu XX,Tang JX and Hui L.2006.Discovery and geological significance of the adakite in Gangdise island arc belt,Xizang (Tibet).Acta Petrologica Sinica,22(3):612-620 (in Chinese with English abstract)
Yin A and Harrison TM.2000.Geologic evolution of the Himalayan-Tibetan Orogen.Annual Review of Earth and Planetary Sciences,28:211-280
Zhang ZM,Zhao GC,Santosh M,Wang JL,Dong X and Shen K.2010.Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith,southeastern Tibet:Evidence for Neo-Tethyan mid-ocean ridge subduction?Gondwana Research,17 (4):615-631
Zhao ZD,Mo XX,Dilek Y,Niu Y,DePaolo DJ,Robinson P,Zhu DC,Sun CG,Dong GC,Zhou S,Luo ZH and Hou ZQ.2009.Geochemical and Sr-Nd-Pb-O isotopic compositions of the postcollisional ultrapotassic magmatism in SW Tibet:Petrogenesis and implications for India intra-continental subduction beneath southern Tibet.Lithos,113(1-2):190-212
Zheng YC,Hou ZQ,Gong YL,Liang W,Sun QZ,Zhang S,F(xiàn)u Q,Huang KX,Li QY and Li W.2014.Petrogenesis of Cretaceous adakite-like intrusions of the Gangdese Plutonic Belt,southern Tibet:Implications for mid-ocean ridge subduction and crustal growth.Lithos,190-191:240-263
Zhou S,Mo XX,Dong GC,Zhao ZD,Qiu RZ,Guo TY and Wang LL.2004.40Ar-39Ar geochronology of Cenozoic Linzizong volcanic rocks from Linzhou Basin,Tibet,China,and their geological implications.Chinese Science Bulletin,49(18):1970-1979
Zhu DC,Pan GT,Wang LQ,Mo XX,Zhao ZD,Zhou CY,Liao ZL,Dong GC and Yuan SH.2008.Tempo-spatial variations of Mesozoic magmatic rocks in the Gangdese belt,Tibet,China,with a discussion of geodynamic setting-related issues.Geological Bulletin,27(9):1535-1550 (in Chinese with English abstract)
Zhu DC,Mo XX,Niu Y,Zhao ZD,Wang LQ,Liu YS and Wu FY.2009.Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane,Tibet.Chemical Geology,268(3-4):298-312
Zhu DC,Zhao ZD,Niu YL,Mo XX,Chung SL,Hou ZQ,Wang LQ and Wu FY.2011.The Lhasa Terrane:Record of a microcontinent and its histories of drift and growth.Earth and Planetary Science Letters,301(1-2):241-255
Zhu DC,Zhao ZD,Niu YL,Dilek Y,Hou ZQ and Mo XX.2013.The origin and pre-Cenozoic evolution of the Tibetan Plateau.Gondwana Research,23(4):1429-1454
附中文參考文獻
常承法.1984.雅魯藏布江縫合帶地質(zhì)構(gòu)造特征及其演化.見:中法喜馬拉雅考察報告.北京:科學出版社,327-339
董彥輝,許繼峰,曾慶高,王強,毛國政,李杰.2006.存在比桑日群弧火山巖更早的新特提斯洋俯沖記錄么?巖石學報,22(3):661-668
管琪,朱弟成,趙志丹,張亮亮,劉敏,李小偉,于楓,莫宣學.2010.西藏南部岡底斯帶東段晚白堊世埃達克巖:新特提斯洋脊俯沖的產(chǎn)物?巖石學報,26(7):2165-2179
管琪,朱弟成,趙忠丹,董國臣,莫宣學,劉勇勝,胡兆初,袁洪林.2011.西藏拉薩地塊南緣晚白堊世鎂鐵質(zhì)巖漿作用的年代學、地球化學及意義.巖石學報,27(7):2083-2094
侯可軍,李延河,鄒天人,曲曉明,石玉若,謝桂青.2007.LA-MCICP-MS 鋯石Hf 同位素的分析方法及地質(zhì)應(yīng)用.巖石學報,23(10):2595-2604
黃玉,趙志丹,張鳳琴,朱弟成,董國臣,周肅,莫宣學.2010.西藏岡底斯仁布-拉薩一帶花崗巖基的地球化學及其意義.巖石學報,26(10):3131-3142
李皓揚,鐘孫霖,王彥斌,朱弟成,楊進輝,宋彪,劉敦一,吳福元.2007.藏南林周盆地林子宗火山巖的時代、成因及其地質(zhì)意義:鋯石U-Pb 年齡和Hf 同位素證據(jù).巖石學報,23(2):493-500
李曉雄,江萬,梁錦海,趙志丹,劉棟,莫宣學.2015.西藏林周盆地設(shè)興組玄武巖地球化學特征及意義.巖石學報,31(5):1285-1297
劉鴻飛.1993.拉薩地區(qū)林子宗火山巖系的劃分和時代歸屬.西藏地質(zhì),(2):59-69
孟繁一,趙志丹,朱弟成,張亮亮,管琪,劉敏,于楓,劉美華,莫宣學.2010.西藏岡底斯東部門巴地區(qū)晚白堊世埃達克質(zhì)巖的巖石成因.巖石學報,26(7):2180-2192
莫宣學,趙志丹,鄧晉福,董國臣,周肅,郭鐵鷹,張雙全,王亮亮.2003.印度-亞洲大陸主碰撞過程的火山作用響應(yīng).地學前緣,10(3):135-148
王莉,曾令森,高利娥,陳振宇.2013.藏南岡底斯巖基東南緣早白堊世高鎂-高Sr/Y 含單斜輝石閃長巖.巖石學報,29(6):1977-1994
王偉,曾令森,劉靜,肖萍,高利娥.2013.西藏措勤晚白堊世英安巖的厘定與地球化學特征.地質(zhì)科學,48(2):484-500
汪云亮,張成江,修淑芝.2001.玄武巖類形成的大地構(gòu)造環(huán)境的Th/Hf-Ta/Hf 圖解判別.巖石學報,17(3):413-421
姚鵬,李金高,王全海,顧雪祥,唐菊興,惠蘭.2006.西藏岡底斯南緣火山-巖漿弧帶中桑日群adakite 的發(fā)現(xiàn)及其意義.巖石學報,22(3):612-620
周肅,莫宣學,董國臣,趙志丹,邱瑞照,王亮亮,郭鐵鷹.2004.西藏林周盆地林子宗火山巖40Ar/39Ar 年代學格架.科學通報,49(20):2095-2104
朱弟成,潘桂堂,王立權(quán),莫宣學,趙志丹,周長勇,廖忠禮,董國臣,袁四化.2008.西藏岡底斯帶中生代巖漿巖的時空分布和相關(guān)問題的討論.地質(zhì)通報,27(9):1535-1550