李旺超 張澤明 向華 茍正彬 丁慧霞
1.中國地質(zhì)大學(xué)地球科學(xué)與資源學(xué)院,北京 100083
2.中國地質(zhì)科學(xué)院地質(zhì)研究所,大陸構(gòu)造與動(dòng)力學(xué)國家重點(diǎn)實(shí)驗(yàn)室,北京 100037
由印度板塊和歐亞板塊在新生代碰撞作用形成的喜馬拉雅造山帶是研究大陸碰撞造山和板塊構(gòu)造的天然實(shí)驗(yàn)室(Burg et al.,1984;Hodges et al.,1992;Hodges,2000;Beaumont et al.,2001)。位于造山帶核部的高喜馬拉雅結(jié)晶巖系是印度板塊向北俯沖于歐亞板塊之下經(jīng)歷了高級(jí)變質(zhì)和部分熔融的產(chǎn)物,是揭示喜馬拉雅造山帶形成和演化過程的關(guān)鍵。過去幾十年,人們已經(jīng)對(duì)高喜馬拉雅結(jié)晶巖系進(jìn)行了廣泛的研究,并由此提出了多種不同的造山模型,如楔形擠出模式(Burchfiel and Royden,1985;Grujic et al.,1996;Kohn,2008)、隧道流模式(Beaumont et al.,2001,2004;Hodges et al.,2001;Godin et al.,2006)和構(gòu)造楔模型(Yin,2006;Webb et al.,2007)。
目前對(duì)高喜馬拉雅結(jié)晶巖系的研究主要集中在其變質(zhì)作用類型與溫壓條件、部分熔融方式與機(jī)制、變質(zhì)作用的起始和持續(xù)時(shí)間,以及變質(zhì)條件和熔融程度的空間變化等(Jamieson et al.,2004;Kohn,2008;Groppo et al.,2012;Imayama et al.,2012;Wang et al.,2013;Dasgupta et al.,2004,2009;Faak et al.,2012;Rubatto et al.,2013)。喜馬拉雅造山帶中段的亞東地區(qū)位于造山帶核部,這里很好地出露了一套高級(jí)變質(zhì)巖和其深熔作用形成的淡色花崗巖,是研究喜馬拉雅造山帶構(gòu)造演化的理想地區(qū)(圖1、圖2)。本文對(duì)亞東地區(qū)高喜馬拉雅結(jié)晶巖系中的泥質(zhì)麻粒巖進(jìn)行了巖石學(xué)和鋯石年代學(xué)研究,確定麻粒巖變質(zhì)作用的溫、壓條件和P-T 軌跡、部分熔融過程、機(jī)制與時(shí)間。相關(guān)成果為進(jìn)一步完善喜馬拉雅造山帶的形成與演化模型提供了重要信息。
圖1 喜馬拉雅造山帶地質(zhì)簡圖(據(jù)Guillot et al.,2008)Fig.1 Simplified geological map of the Himalayan orogen (after Guillot et al.,2008)
喜馬拉雅造山帶由沿造山帶走向分布的四個(gè)近平行的構(gòu)造單元組成(圖1)。從南到北它們依次為次喜馬拉雅單元(前陸盆地)、低喜馬拉雅巖系、高喜馬拉雅結(jié)晶巖系和特提斯喜馬拉雅系列。它們之間分別為主邊界逆沖斷裂帶(MBT),主中央逆沖斷裂帶(MCT)和藏南拆離系(STD)(Le Fort,1975;Burg et al.,1984;Burchfiel and Royden,1985;Hodges,2000;Yin and Harrison,2000;Yin,2006)。
圖2 亞東地區(qū)地質(zhì)簡圖圖中表示的礦物出現(xiàn)與消失等變線據(jù)Rubatto et al.(2013)Fig.2 Simplified geological map of the Yadong regionThe mineral-in and-out isograds are after Rubatto et al.(2013)
高喜馬拉雅結(jié)晶巖系為角閃巖相到麻粒巖相變質(zhì)的表殼巖,如泥質(zhì)片巖、副片麻巖、鈣硅酸鹽巖和大理巖及眼球狀正片麻巖組成(Kohn et al.,2001;Searle et al.,2003;Goscombe et al.,2006;Kohn,2008)?,F(xiàn)有的研究大多認(rèn)為,從低喜馬拉雅巖系的上部至高喜馬拉雅結(jié)晶巖系的下部發(fā)育有典型的倒轉(zhuǎn)中壓型變質(zhì)帶,即從下部構(gòu)造層位向上部構(gòu)造層位,變質(zhì)作用程度逐漸增加,依次出現(xiàn)黑云母帶、石榴石帶、十字石帶、藍(lán)晶石帶、夕線石帶和堇青石帶(圖2;Pêcher,1989;Vannay and Grasemann,1998;Kohn et al.,2001;Searle et al.,2003;Goscombe et al.,2006;Kohn,2008;Imayama et al.,2010;Wang et al.,2013)。而且,現(xiàn)有的研究認(rèn)為高喜馬拉雅結(jié)晶巖系發(fā)生過兩期區(qū)域變質(zhì)作用,早期的中壓型變質(zhì)作用發(fā)生在38~32Ma(Vannay and Hodges,1996;Simpson et al.,2000;Godin et al.,2001),晚期的高溫、中低壓變質(zhì)作用和廣泛的深熔作用發(fā)生在26~18Ma(Simpson et al.,2000;Daniel et al.,2003)。
本文研究區(qū)位于亞東地區(qū),構(gòu)造上處于高喜馬拉雅結(jié)晶巖系的上部構(gòu)造層位(圖2)。這里主要由眼球狀正片麻巖、副片麻巖、泥質(zhì)麻粒巖以及少量大理巖和鈣硅酸巖組成。這些巖石多含淡色花崗巖或長英質(zhì)脈體,或被淡色花崗巖墻侵入。所研究的泥質(zhì)麻粒巖主要由石榴石、黑云母、夕線石、斜長石、鉀長石和石英組成,含平行面理分布的長英質(zhì)脈體或透鏡體,表明其經(jīng)歷了明顯的部分熔融。
礦物化學(xué)成分分析是在中國地質(zhì)科學(xué)院地質(zhì)研究所使用JEOL JXA8900 電子探針分析。分析條件是15kV 加速電壓,電子速電流為5nA,電子束斑為5μm。全巖化學(xué)成分分析是在國家地質(zhì)測(cè)試中心分析。主量元素使用X 射線熒光(XRF)(rigaku-3080),分析誤差<0.5%。鋯石U-Pb 年齡和微量元素分析在中國地質(zhì)大學(xué)(武漢)地質(zhì)過程與礦產(chǎn)資源國家重點(diǎn)實(shí)驗(yàn)室分析,相關(guān)激光剝蝕系統(tǒng)和ICP-MS 儀器的詳細(xì)操作方法見Liu et al.(2008,2010)。激光束斑直徑為32μm,剝蝕深度為20~40μm。樣品的同位素比值和元素含量數(shù)據(jù)采用ICPMS DataCal(9.1 版)軟件計(jì)算,諧和圖和加權(quán)平均年齡計(jì)算采用Isoplot 3(2.49 版)(Ludwig,2003)完成。
圖3 亞東高壓泥質(zhì)麻粒巖的顯微照片(a)泥質(zhì)麻粒巖由石榴石、黑云母、斜長石、鉀長石、石英和夕線石組成,石榴石變斑晶核部含有細(xì)小斜長石、黑云母和石英包體,石榴石幔部含有較大顆粒的斜長石、鉀長石、黑云母、石英和藍(lán)晶石包體,以及呈負(fù)晶形產(chǎn)出的由斜長石、鉀長石和石英組成的多相礦物包體.紅色實(shí)線為圖4 中所示的石榴石成分剖面分析位置;(b)泥質(zhì)麻粒巖中的石榴石邊部被夕線石+石英+黑云母或斜長石+尖晶石合晶替代;(c)泥質(zhì)麻粒巖中石榴石核部的長石、黑云母、石英包體和位于石榴石幔部的藍(lán)晶石包體;(d)泥質(zhì)麻粒巖中的大顆粒長石具港灣狀邊緣,部分斜長石中含蠕英狀石英;(e)泥質(zhì)麻粒巖中的石榴石、白云母、黑云母、斜長石、鉀長石、夕線石和石英組合.此外,大顆粒礦物之間有呈薄膜狀分布的斜長石;(f)充填在鉀長石顆粒間的薄膜狀斜長石.本文所采用礦物代號(hào):Gt-石榴石;Bt-黑云母;Ms-白云母;Pl-斜長石;Kf-鉀長石;Ky-藍(lán)晶石;Sil-夕線石;Qz-石英;Rt-金紅石;Ilm-鈦鐵礦;Crd-堇青石;melt-熔體;Opx-斜方輝石;Cpx-單斜輝石;Spl-尖晶石;Prp-錳鋁榴石;Grs-鈣鋁榴石;Alm-鐵鋁榴石;Spe-鎂鋁榴石Fig.3 Photomicrographs of the HP pelitic granulite from the Yadong region
亞東地區(qū)高喜馬拉雅結(jié)晶巖系中的泥質(zhì)麻粒巖具有片狀或條帶狀構(gòu)造,斑狀變晶結(jié)構(gòu),由石榴石、黑云母、夕線石、白云母、斜長石、鉀長石和石英組成,副礦物為鋯石(圖3)。石榴石變斑晶為半自形粒狀,其核部富含有細(xì)小的單礦物包體,如斜長石、鉀長石、黑云母和石英(圖3a-c),而其幔部含有較大顆粒的單礦物或多礦物包體。單礦物包體為斜長石、鉀長石、黑云母、石英和藍(lán)晶石,多相礦物包體多呈負(fù)晶形,由斜長石、鉀長石和石英組成(圖3a)。這些多相礦物包體代表先前的熔體包體,表明石榴石幔部是在部分熔融過程中結(jié)晶形成的轉(zhuǎn)熔相(Waters,2001;Guilmette et al.,2011;Groppo et al.,2012;Rubatto et al.,2013)。石榴石的邊部常被黑云母+斜長石+石英+夕線石組成的后生合晶冠狀體替代(圖3a,b),這樣的反應(yīng)被推測(cè)為退變質(zhì)過程中石榴石與熔體反應(yīng)的結(jié)果(Waters,2001;Cenki et al.,2002;Kriegsman and Alvarez-Valero,2009)。同時(shí),基質(zhì)中較大顆粒斜長石和鉀長石的邊緣多為港灣狀(圖3d-f),表明它們是部分熔融殘余。部分斜長石含蠕蟲狀石英(圖3d),或呈薄膜狀分布于其它礦物之間(圖3e,f),應(yīng)為熔體結(jié)晶產(chǎn)物(Holness and Sawyer,2008;Sawyer,2008)。這些證據(jù)表明,泥質(zhì)麻粒巖經(jīng)歷了部分熔融,而且至少有一部分熔體殘留在巖石之中。
表1 高壓泥質(zhì)麻粒巖中代表性的石榴石電子探針分析結(jié)果(wt%)Table 1 Representative microprobe analyses of garnet of the HP pelitic granulites (wt%)
巖相學(xué)觀察表明,泥質(zhì)麻粒巖保存有三期變質(zhì)礦物組合:早期礦物組合為石榴石核部及其所含的礦物包體,即石榴石+斜長石+鉀長石+黑云母+石英;峰期礦物組合為石榴石幔部和包含的礦物包體,即石榴石+斜長石+鉀長石+黑云母+藍(lán)晶石+石英;晚期礦物組合為石榴石退變質(zhì)邊和基質(zhì)礦物,即石榴石+斜長石+鉀長石+夕線石+黑云母+白云母+石英。
探針分析結(jié)果表明,麻粒巖中的石榴石富含鐵鋁和鎂鋁榴石組分,其鐵鋁榴石(Alm)、鎂鋁榴石(Prp)、錳鋁榴石(Sps)和鈣鋁榴石(Grs)端元組分分別為0.66~0.73、0.19~0.25、0.03~0.08 和0.03~0.07(表1)。變斑晶石榴石核部和幔部的成分較均勻,但其邊緣具弱的成分環(huán)帶,從內(nèi)向外,鐵鋁榴石和錳鋁榴石含量升高,鎂鋁榴石和鈣鋁榴石含量降低(圖4、圖5)。
圖4 高壓泥質(zhì)麻粒巖中石榴石變斑晶X 光成分掃描圖Fig.4 X-ray mapping of the porphyroblastic garnet of the HP pelitic granulite
基質(zhì)中的斜長石成分較均勻,為更長石(XAn=0.25~0.26;表2),石榴石中的包體斜長石為中長石(XAn=0.35~0.39),而在基質(zhì)中呈薄膜狀產(chǎn)出的斜長石為近純的鈉長石(XAn=0.01~0.09)。基質(zhì)中的鉀長石成分較均一,其XOr=0.78~0.87,石榴石包體中的鉀長石為近純的鉀長石,XOr=0.95(表2)。在石榴石中呈包體的黑云母和基質(zhì)中的黑云母均具有較高的TiO2(3.27%~4.9%)含量,但呈包體的黑云母具有較高的MgO(11.89%~12.11%),而基質(zhì)黑云母具有較低的MgO(8.93%~9.81%)含量(表3)。此外,部分呈后生合晶產(chǎn)出的黑云母具有相對(duì)低的TiO2(1.55%~2.78%)和低的MgO(9.21%~9.71%)含量(表3)。
表2 高壓泥質(zhì)麻粒巖代表性的長石電子探針分析結(jié)果(wt%)Table 2 Representative microprobe analyses of feldspars of the HP pelitic granulites (wt%)
圖5 高壓泥質(zhì)麻粒巖中石榴石成分剖面圖Fig.5 Compositional profile of garnet in the HP pelitic granulite
相平衡模擬使用Perple_X 程序(Connolly,2005,2013年升級(jí)的6.6.8 版),數(shù)據(jù)庫選擇Holland and Powell(1998)的升級(jí)版。所涉及的礦物及熔體相的活度-成分關(guān)系模型選自Perple_X 文件(solution_model.dat)。流體被假定為純H2O??紤]到P2O5主要形成磷灰石,且在所研究的樣品中含量很低,因此被忽略。巖石中未見有磁鐵礦或其他富含F(xiàn)e3+的礦物,因此假設(shè)Fe 均為Fe2+。相平衡模擬選擇的成分體系為MnO-Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2(MnNCKFMASHT)。模擬采用實(shí)測(cè)的全巖成分(SiO2=62.42%,Al2O3=17.37%,F(xiàn)eO=6.65%,MnO=0.15%,MgO=2.7%,CaO=1.44%,Na2O =2.47%和K2O =4.79%),水含量(1%)是基于巖石中的黑云母和白云母體積含量計(jì)算得出。計(jì)算的P-T 條件區(qū)間為5~15kbar 和600~900℃。
表3 高壓泥質(zhì)麻粒巖代表性的黑云母電子探針分析結(jié)果(wt%)Table 3 Representative microprobe analyses of biotites of the HP pelitic granulites (wt%)
從計(jì)算出的P-T 視剖面圖(圖6)中可以看出,石榴石穩(wěn)定存在于所計(jì)算的整個(gè)P-T 區(qū)域內(nèi),藍(lán)晶石穩(wěn)定在大于5.5~12kbar 的區(qū)域,堇青石穩(wěn)定在<6.8kbar 的區(qū)域,黑云母的消失溫度>850℃,白云母穩(wěn)定在<830℃區(qū)域。體系的固相線位于680~800℃之間,熔體含量隨溫度的升高而增加。
相平衡模擬表明,所觀察到的峰期礦物組合Gt +Bt +Pl+Kf + Ky + Qz 穩(wěn)定在有熔體存在的750~850℃和8.8~14.2kbar 區(qū)域內(nèi),其最大熔體含量為11%。退變質(zhì)礦物組合Gt+Bt + Pl + Kf + Sil + Qz + Ms 穩(wěn)定在600~750℃和5~8.5kbar 的區(qū)域內(nèi)。相平衡模擬表明,白云母在固相線下(左側(cè))區(qū)域都是穩(wěn)定存在的,但由于早期的白云母在進(jìn)變質(zhì)過程中發(fā)生脫水熔融反應(yīng)而被完全消耗,使其未能在巖石中保留。所以,巖石的早期變質(zhì)礦物組合應(yīng)為Gt +Bt +Pl +Kf +Ms+Qz,從相平衡模擬圖上可以看出,該礦物組合穩(wěn)定在680~800℃和11.5~15kbar 區(qū)域內(nèi)。
石榴石的成分等值線,如XPrp[=Mg/(Fe +Ca +Mg +Mn)]和XGrs[=Ca/(Fe +Ca +Mg +Mn)]值,可作為兩個(gè)獨(dú)立的變量來限定石榴石生長的P-T 條件(Tinkham and Ghent,2005;Garrido et al.,2006;Wei and Song,2008;Burenjargal et al.,2012)。如前所述,石榴石變斑晶具有一個(gè)成分較均勻的核部,這很可能是在高溫變質(zhì)條件下其成分發(fā)生均勻化的結(jié)果,而石榴石邊緣的成分變化為后期退變質(zhì)過程中其成分發(fā)生擴(kuò)散平衡均一化的結(jié)果。因此,用石榴石核部成分得出的變質(zhì)條件很可能代表該麻粒巖的最小峰期變質(zhì)條件(Groppo et al.,2010,2012;Guilmette et al.,2011)。石榴石核部的XPrp為0.22~0.25,XGrs為0.05~0.07(表1),它們相交得出的溫、壓條件為800~835℃和12.8~14kbar(圖6 中黃色實(shí)線填充圈)。所獲得的溫壓條件范圍主要位于峰期礦物組合穩(wěn)定區(qū)域內(nèi),相對(duì)應(yīng)的熔體含量為5%~8%(圖6)。
石榴石邊緣成分為后期退變質(zhì)過程中擴(kuò)散的結(jié)果,很可能記錄了巖石的退變質(zhì)條件。石榴石邊緣的最低XGrs(0.03)和最低XPrp(0.16)等值線交叉給出的溫壓條件約為720℃和8.2kbar,非常接近退變質(zhì)礦物組合的穩(wěn)定區(qū)域。如果僅考慮石榴石邊緣的最小XPrp值,其等值線(0.16)與退變質(zhì)礦物組合穩(wěn)定區(qū)交叉給出的溫壓條件為720~740℃和7.6~8.3kbar(圖6 中綠色虛線填充圈),這可能更接近巖石的退變質(zhì)條件。
相平衡模擬結(jié)果表明,所研究的變泥質(zhì)巖石經(jīng)歷了高壓麻粒巖相峰期變質(zhì)作用和部分熔融,最小的峰期變質(zhì)條件為800~835℃和12.8~14kbar,其最少熔體含量為5%~8%(圖6)。麻粒巖的進(jìn)變質(zhì)條件很可能在680~800℃和11.5~15kbar 區(qū)間,而退變質(zhì)條件為720~740℃和7.6~8.3kbar。聯(lián)合早期進(jìn)變質(zhì)、峰期和退變質(zhì)作用的溫、壓條件,可獲得一個(gè)順時(shí)針的變質(zhì)作用P-T 軌跡,其進(jìn)變質(zhì)過程很可能為升溫、升壓過程,而退變質(zhì)過程是以降溫、降壓為特征。
圖6 高壓麻粒巖的P-T 視剖面圖(其中紅色虛線為熔體含量等值線)(a)和石榴石成分等值線(b)綠色和藍(lán)色虛線分別代表XCa =Ca/(Fe +Mg +Ca +Mn)和XMg =Mg/(Fe+Mg+Ca+Mn)等值線;黃色實(shí)線和綠色虛線的實(shí)心圓圈分別代表峰期變質(zhì)和退變質(zhì)溫壓條件范圍Fig.6 P-T pseudosection for the high-pressure pelitic granulite (the red dashed lines refer to melt modal proportions(a)and the garnet compositional isopleths (b)The green and blue dashed lines represent isopleths of XCa =Ca/(Fe+Mg+ Ca + Mn)and XMg = Mg/(Fe + Mg + Ca + Mn)of garnet,respectively.The yellow solid line and green dotted line circles refer to the peak-metamorphic and retrograde metamorphic conditions,respectively
圖7 高壓泥質(zhì)麻粒巖鋯石陰極發(fā)光圖像和分析點(diǎn)位及年齡Fig.7 Cathodoluminescence images of representative zircons of the HP pelitic granulite,showing the analytical spots and their ages
對(duì)3 個(gè)泥質(zhì)麻粒巖中的鋯石進(jìn)行了LA-ICP-MS U-Pb 定年和微量元素原位分析,分析結(jié)果見表4 和表5。3 個(gè)樣品中的鋯石多為短柱狀,粒度大小在50~120μm 之間。陰極發(fā)光圖像顯示,大部分鋯石具有核-邊結(jié)構(gòu),即由變質(zhì)增生邊和繼承的碎屑核組成(圖7)。少部分鋯石呈渾圓狀,無分帶,為變質(zhì)鋯石。3 個(gè)樣品中鋯石的增生邊和無分帶鋯石獲得了類似的可變年齡,其206Pb/238U 年齡分別在27.4~22.1Ma、28.5~21.0Ma 和25.5~17.0Ma 之間(圖8)。這些分析點(diǎn)都具有較低的Th/U 比值(Rubatto et al.,2013;Robert et al.,2014;Zhang et al.,2015),分別在0.008~0.019、0.015~0.048 和0.011~0.045 之間,為典型的變質(zhì)鋯石特征。鋯石的稀土元素分異明顯,以富HREE 為特征,但HREE 的配分模式大都呈平坦或虧損型,并具有負(fù)Eu 異常,僅少數(shù)鋯石呈弱的HREE 富集型(圖8)。這表明被定年的鋯石域是與石榴石和長石同時(shí)生長的,即形成在麻粒巖相變質(zhì)過程中(Corfu et al.,2003;Hoskin and Schaltegger,2003;Rubatto,2002;Rubatto and Hermann,2007)。因此,所獲得的鋯石年齡應(yīng)代表麻粒巖的進(jìn)變質(zhì)至峰變質(zhì)階段的時(shí)間。
表4 高壓泥質(zhì)麻粒巖鋯石 LA-ICP-MS U-Pb分析結(jié)果Table4 Zircon LA-ICP-MS U-Pb isotopic date of the HP pelitic granulites
續(xù)表4Continued Table4
表5 高壓泥質(zhì)麻粒巖鋯石稀土元素分析結(jié)果(×10 -6)Table 5 Zircon rare earth elements analyses of the HP pelitic granulites (×10 -6)
圖8 亞東高壓麻粒巖中鋯石的U-Pb 年齡諧和圖(a、c、e)和鋯石稀土元素配分模式圖(b、d、f)Fig.8 U-Pb concordia diagrams (a,c,e)and chondrite-normalized REE patterns (b,d,f)of zircons of the HP pelitic granulite
正如前面描述的,以前的研究認(rèn)為,高喜馬拉雅結(jié)晶巖系的下部構(gòu)造層位經(jīng)歷了中壓區(qū)域變質(zhì)作用,而且發(fā)育典型的倒轉(zhuǎn)型中壓變質(zhì)帶,而高喜馬拉雅結(jié)晶巖系的上部構(gòu)造層位經(jīng)歷了中、低壓和高溫變質(zhì)作用,相當(dāng)于夕線石-鉀長石帶或堇青石帶(圖2;Pêcher,1989;Guillot et al.,1999;Fraser et al.,2000;Hodges,2000;Dasgupta et al.,2004;Searle et al.,2003)。圖9 所表示的是基于巖石學(xué)研究得出的喜馬拉雅造山帶變質(zhì)作用溫、壓條件的南北向空間變化剖面。大多數(shù)研究者(Pêcher,1989;Guillot et al.,1999;Fraser et al.,2000;Hodges,2000;Dasgupta et al.,2004;Searle et al.,2003)認(rèn)為,高喜馬拉雅結(jié)晶巖系最下部構(gòu)造層位的藍(lán)晶石帶具有最高的變質(zhì)溫壓條件,而從藍(lán)晶石帶向上直到最上部構(gòu)造層位的堇青石帶,巖石的變質(zhì)溫度逐漸升高,從約600℃升高到650~800℃,但巖石的變質(zhì)壓力總體上逐漸降低,從8~12kbar 降低到約4~6kbar。這樣的變化規(guī)律與隧道流模型預(yù)測(cè)的并不一致。隧道流模型預(yù)測(cè),從高喜馬拉雅結(jié)晶巖系的下部到上部構(gòu)造層位變質(zhì)溫度和壓力都是逐漸降低的(圖9)。
圖9 高喜馬拉雅結(jié)晶巖系變質(zhì)作用溫、壓條件空間變化剖面和本文獲得的變質(zhì)條件從高喜馬拉雅下部構(gòu)造層位向上部構(gòu)造層位依次為藍(lán)晶石帶、夕線石-白云母帶、夕線石-鉀長石帶和堇青石帶Fig.9 Spatial change profile of metamorphic P-T conditions of the Higher Himalayan Crystalline Sequences,showing the metamorphic conditions obtained by this studyThe kyanite, sillimanite-muscovite, sillimanite-K-feldspar and cordierite zones occur orderly from the lower to upper structural levels of the Higher Himalayan Crystalline Sequences
但是,最近的研究表明,高喜馬拉雅結(jié)晶巖系的上部構(gòu)造層位也經(jīng)歷了中、高壓和高溫變質(zhì)作用。如有研究認(rèn)為,在與亞東相鄰近錫金地區(qū),高喜馬拉雅結(jié)晶巖系中的泥質(zhì)麻粒巖經(jīng)受了峰期為~800℃和8~9kbar 的麻粒巖相變質(zhì)作用和部分熔融(Rubatto et al.,2013),或750~800℃和9~12kbar 的麻粒巖相峰期變質(zhì)和部分熔融(Sorcar et al.,2014)。錫金地區(qū)高喜馬拉雅結(jié)晶巖系和低喜馬拉雅巖系中的基性麻粒巖經(jīng)歷了一致的高溫(~800℃)和高壓(9~12kbar)的麻粒巖相變質(zhì)作用(Faak et al.,2012)。此外,最近的研究表明,尼泊爾地區(qū)高喜馬拉雅結(jié)晶巖系中的泥質(zhì)麻粒巖經(jīng)受了峰期條件為~820℃和13kbar 的麻粒巖相變質(zhì)作用(Groppo et al.,2010),變沉積巖經(jīng)歷了峰期可達(dá)14~16kbar 的高壓麻粒巖相變質(zhì)作用(Kali et al.,2010)。在喜馬拉雅造山東端,高喜馬拉雅結(jié)晶巖系(南迦巴瓦雜巖)中副片麻巖的峰期變質(zhì)條件大于825℃和14kbar(Guilmette et al.,2011),泥質(zhì)麻粒巖的峰期變質(zhì)條件為840~880℃和13~16kbar(Zhang et al.,2015)。本研究進(jìn)一步證明高喜馬拉雅結(jié)晶巖系上部構(gòu)造層位中的泥質(zhì)麻粒巖經(jīng)受了800~835℃和12.8~14kbar(圖9 中紅點(diǎn)位置)的高溫和高壓麻粒巖相變質(zhì)和部分熔融。
最近的研究表明,高喜馬拉雅結(jié)晶巖系的中、上部構(gòu)造層位確實(shí)經(jīng)歷了高溫、低壓麻粒巖相退變質(zhì)作用,其以夕線石替代藍(lán)晶石和堇青石的出現(xiàn)為特征(Imayama et al.,2010;Wang et al.,2013;Rubatto et al.,2013;Sorcar et al.,2014)。先前的研究很可能將上部構(gòu)造層位的退變質(zhì)條件解釋成了峰期變質(zhì)條件,并與下部層位的峰期變質(zhì)作用聯(lián)系在一起,錯(cuò)誤地建立了如圖9 顯示的高喜馬拉雅結(jié)晶巖系P-T條件的空間變化剖面圖。
以前的研究普遍認(rèn)為,高喜馬拉雅結(jié)晶巖系的深熔作用發(fā)生在近等溫、降壓過程中(Harris et al.,2004;Harrison et al.,1997;Pati?o Douce and Harris,1998;Viskupic et al.,2005;Zhang et al.,2004;Spear et al.,1984,1999)。然而,最近的研究表明,高喜馬拉雅結(jié)晶巖系的部分熔融主要發(fā)生在進(jìn)變質(zhì)過程中,即在升溫、升壓過程中白云母和黑云母發(fā)生了脫水熔融(Groppo et al.,2010,2012;Guilmette et al.,2011;Zhang et al.,2015)。我們的相平衡模擬顯示,泥質(zhì)麻粒巖的部分熔融發(fā)生在進(jìn)變質(zhì)和峰期階段(圖6a),這和東喜馬拉雅構(gòu)造結(jié)南迦巴瓦雜巖體的部分熔融方式一致(向華等,2013)。在進(jìn)變質(zhì)過程中主要是白云母脫水熔融(Ms +Pl+Qz=Ky+Kf+melt),在峰期變質(zhì)階段主要是黑云母脫水熔融(Bt+Qz=Gt+Sil+Kf +melt),所形成的熔融體積至少為5%~8%。相反,在麻粒巖的降溫、降壓退變質(zhì)過程中熔體含量將逐漸減少,直至P-T 軌跡與固相線相交時(shí),熔體全部結(jié)晶(圖6)。即使是高壓麻粒巖經(jīng)歷了近等溫降壓退變質(zhì)過程,其P-T 軌跡也將與熔體等容線近平行,不可能發(fā)生明顯熔融(圖6a)。
盡管對(duì)高喜馬拉雅結(jié)晶巖系進(jìn)行了大量的年代學(xué)研究,但這些巖石變質(zhì)和部分熔融的起始和持續(xù)時(shí)間仍然存在許多爭(zhēng)議?,F(xiàn)有的研究表明,高喜馬拉雅結(jié)晶巖系的鋯石UPb 定年結(jié)果常常是分散的,如32~17Ma(Searle et al.,2003)、33~13Ma(Cottle,2009b,2009a;Kali et al.,2010)、37~20Ma(Kohn and Corrie,2011)、33~18Ma(Imayama et al.,2012)、25~9Ma(Guo and Wilson,2012)、40~14Ma(Wang et al.,2013)、36~17Ma(Rubatto et al.,2013)、26~28Ma(Robert et al.,2014)和43~7Ma(Zhang et al.,2015)。本文和現(xiàn)有的研究均表明,高壓泥質(zhì)麻粒巖中的鋯石大多具有核-邊結(jié)構(gòu),變質(zhì)增生邊都有較低的Th/U 比值,呈平坦或虧損的HREE 模型,并具有明顯的負(fù)Eu 異常(Zhang et al.,2010,2015;Rubatto et al.,2013),為麻粒巖相變質(zhì)和部分熔融作用中形成鋯石的典型特征(Corfu et al.,2003;Hoskin and Schaltegger,2003;Rubatto,2002;Rubatto and Hermann,2007)。Rubatto et al.(2013)認(rèn)為高喜馬拉雅結(jié)晶巖系泥質(zhì)麻粒巖的鋯石在部分熔融發(fā)生前的進(jìn)變質(zhì)作用過程中,以及在熔體結(jié)晶后的退變質(zhì)過程中都不可能生長。他們還認(rèn)為,如果巖石長期處在高溫和有熔體存在的條件下,鋯石很容易發(fā)生溶解和生長,由此導(dǎo)致鋯石具有分散的年齡。因此,我們推測(cè),本文所獲得的分散鋯石年齡很可能代表麻粒巖進(jìn)變質(zhì)和部分熔融的持續(xù)時(shí)間,因?yàn)樗治龅匿喪驇缀醵急憩F(xiàn)出與石榴石同時(shí)生長的成分特征,而石榴石是形成在部分熔融過程中的轉(zhuǎn)熔相。
本文所獲得的28.5~17.0Ma 的高溫麻粒巖相變質(zhì)和深熔時(shí)間與Rubatto et al.(2013)在錫金泥質(zhì)麻粒巖中獲得的31~17Ma 的高溫變質(zhì)和深熔年齡是一致的,與Regis et al.(2014)在鄰近不丹地區(qū)的高喜馬拉雅結(jié)晶巖系中獲得的36~18Ma 的高溫變質(zhì)年齡也是一致的。此外,Stübner et al.(2014)對(duì)喜馬拉雅造山帶西北部的高喜馬拉雅結(jié)晶巖系的研究表明,其高溫變質(zhì)作用開始于約30Ma,持續(xù)到了約23Ma。Finch et al.(2014)也發(fā)現(xiàn),喜馬拉雅造山帶西北部的高喜馬拉雅結(jié)晶巖系的高溫和部分熔融作用發(fā)生在29~20Ma。Zhang et al.(2015)對(duì)東喜馬拉雅構(gòu)造結(jié)的研究也表明,高喜馬拉雅結(jié)晶巖系的高壓麻粒巖相變質(zhì)作用開始于約40Ma,持續(xù)到約8Ma。因此,本文和現(xiàn)有研究均表明,高喜馬拉雅結(jié)晶巖系經(jīng)歷了長期持續(xù)的高溫麻粒巖相變質(zhì)與部分熔融過程。
在喜馬拉雅造山帶中段亞東地區(qū),高喜馬拉雅結(jié)晶巖系中的泥質(zhì)麻粒巖經(jīng)歷了高溫、高壓麻粒巖相變質(zhì)作用和部分熔融,其峰期相礦物組合為石榴石+藍(lán)晶石+斜長石+鉀長石+黑云母+石英,峰期變質(zhì)條件為800~835℃和12.8~14kbar,其變質(zhì)作用P-T 軌跡為順時(shí)針型,以增溫、埋藏進(jìn)變質(zhì)和降溫、減壓退變質(zhì)為特征。在進(jìn)變質(zhì)以及峰期變質(zhì)過程中,白云母和黑云母脫水熔融導(dǎo)致了泥質(zhì)麻粒巖發(fā)生了深熔作用,所形成的熔體體積至少為5%~8%。高溫麻粒巖相變質(zhì)和深熔作用發(fā)生在28.5~17.0Ma。本文研究表明,高喜馬拉雅結(jié)晶巖系的上部構(gòu)造層位經(jīng)歷了高壓麻粒巖相變質(zhì)作用,而不是以前認(rèn)為的以高溫、低壓變質(zhì)作用為特征。這一成果為進(jìn)一步揭示高喜馬拉雅結(jié)晶巖系的構(gòu)造演化提供了重要信息。
致謝 感謝張聰和田作林老師對(duì)本文提出的寶貴修改意見;感謝董昕、賀振宇和祁敏老師在工作中的指導(dǎo)與幫助!
Beaumont C,Jamieson RA,Nguyen MH and Lee B.2001.Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation.Nature,414(6865):738-742
Beaumont C,Jamieson RA,Nguyen MH and Medvedev S.2004.Crustal channel flows:1.numerical models with applications to the tectonics of the Himalayan-Tibetan orogen.Journal of Geophysical Research,109:B06406,doi:10.1029/2003JB002809
Burg JP,Guiraud M,Chen GM and Li GC.1984.Himalayan metamorphism and deformations in the North Himalayan Belt(southern Tibet,China).Earth and Planetary Science Letters,69(2):391-400
Burchfiel BC and Royden LH.1985.North-south extension within the convergent Himalayan region.Geology,13(10):679-682
Burenjargal U,Okamoto A,Meguro Y and Tsuchiya N.2012.An exhumation pressure-temperature path and fluid activities during metamorphism in the Tseel terrane,SW Mongolia:Constraints from aluminosilicate-bearing quartz veins and garnet zonings in metapelites.Journal of Asian Earth Sciences,54-55:214-229
Cenki B,Kriegsman LM and Braun I.2002.Melt-producing and meltconsuming reactions in the Achankovil cordierite gneisses,South India.Journal of Metamorphic Geology,20(6):543-561
Connolly JAD.2005.Computation of phase equilibria by linear programming:A tool for geodynamic modeling and its application to subduction zone decarbonation.Earth and Planetary Science Letters,236(1-2):524-541
Corfu F,Hanchar JM,Hoskin PWO and Kinny P.2003.Atlas of zircon textures.Reviews in Mineralogy and Geochemistry,53(1):469-500
Cottle JM,Jessup MJ,Newell DL,Horstwood MSA,Noble SR,Parrish RR, Waters DJ and Searle MP.2009a.Geochronology of granulitized eclogite from the Ama Drime Massif:Implications for the tectonic evolution of the South Tibetan Himalaya.Tectonics,28:TC1002,doi:10.1029/2008TC002256
Cottle JM,Searle MP,Horstwood MSA and Waters DJ.2009b.Timing of midcrustal metamorphism,melting,and deformation in the Mount Everest region of Southern Tibet revealed by U (-Th )-Pb geochronology.The Journal of Geology,117(6):643-664
Daniel CG,Hollister LS,Parrish RR and Grujic D.2003.Exhumation of the Main Central Thrust from lower crustal depths,eastern Bhutan Himalaya.Journal of Metamorphic Geology,21(4):317-334
Dasgupta S,Ganguly J and Neogi S.2004.Inverted metamorphic sequence in the Sikkim Himalayas:Crystallization history,P-T gradient,and implications.Journal of Metamorphic Geology,22(5):395-412
Dasgupta S,Chakraborty S and Neogi S.2009.Petrology of an inverted Barrovian sequence of metapelites in Sikkim Himalaya,India:Constraints on the tectonic inversion.American Journal of Science,309(1):43-84
Faak K,Chakraborty S and Dasgupta S.2012.Petrology and tectonic significance of metabasite silvers in the Lesser and Higher Himalayan domains of Sikkim,India.Journal of Metamorphic Geology,30(6):599-622
Finch M,Hasalová P,Weinberg R and Fanning M.2014.Switch from thrusting to normal shearing in the Zanskar Shear Zone,NW Himalaya:Implications for channel flow.Geological Society of America Bulletin,126(7-8):892-924
Fraser G, Worley B and Sandiford M.2000.High-precision geothermobarometry across the High Himalayan metamorphic sequence, Langtang Valley, Nepal.Journal of Metamorphic Geology,18(6):665-681
Garrido CJ,Bodinier JL,Burg JP,Zeilinger G,Hussain SS,Dawood H,Chaudhry MN and Gervilla F.2006.Petrogenesis of mafic garnet granulite in the lower crust of the Kohistan Paleo-arc Complex(Northern Pakistan):Implications for intra-crustal differentiation of island arcs and generation of continental crust.Journal of Petrology,47(10):1873-1914
Godin L,Parrish RR,Brown RL and Hodges KV.2001.Crustal thickening leading to exhumation of the Himalayan metamorphic core of central Nepal:Insight from U-Pb geo-chronology and40Ar/39Ar thermochronology.Tectonics,20(5):729-747
Godin L,Grujic D,Law RD and Searle MP.2006.Channel flow,ductile extrusion and exhumation in continental collision zones: An introduction.Geological Society,London,Special Publications,268:1-23
Goscombe B,David G and Hand M.2006.Crustal architecture of the Himalayan metamorphic front in eastern Nepal.Gondwana Research,10(3-4):232-255
Grujic D,Casey M,Davidson C,Hollister LS,Kundig R,Pavlis T and Schmid S.1996.Ductile extrusion of the Higher Himalayan Crystalline in Bhutan: Evidence from quartz micro-fabrics.Tectonophysics,260(1-3):21-43
Groppo C,Rubatto D,Rolfo F and Lombardo B.2010.Early Oligocene partial melting in the Main Central Thrust Zone (Arun valley,eastern Nepal Himalaya).Lithos,118(3-4):287-301
Groppo C,Rolfo F and Indares A.2012.Partial melting in the Higher Himalayan crystallines of Eastern Nepal:The effect of decompression and implications for the‘Channel flow’model.Journal of Petrology,53(5):1057-1088
Guillot S,Cosca M,Allemand P and Le Fort P.1999.Contrasting metamorphic and geochronologic evolution along the Himalayan Belt.Geological Society of America Special Papers,328:117-128
Guillot S,Mahéo G,de Sigoyer J,Hattori KH and Pêcher A.2008.Tethyan and Indian subduction viewed from the Himalayan high-to ultrahigh-pressure metamorphic rocks.Tectonophysics,451(1-4):225-241
Guilmette C,Indares A and Hébert R.2011.High-pressure anatectic paragneisses from the Namche Barwa,Eastern Himalayan Syntaxis:Textural evidence for partial melting,phase equilibria modeling and tectonic implications.Lithos,124(1-2):66-81
Guo ZF and Wilson M.2012.The Himalayan leucogranites:Constraints on the nature of their crustal source region and geodynamic setting.Gondwana Research,22(2):360-376
Harris NBW,Caddick M,Kosler J,Goswami S,Vance D and Tindle AG.2004.The pressure-temperature-time path of migmatites from the Sikkim Himalaya.Journal of Metamorphic Geology,22(3):249-264
Harrison TM,Lovera OM and Grove M.1997.New insights into the origin of two contrasting Himalayan granite belts.Geology,25(10):899-902
Hodges KV,Parrish RR,Housh TB,Lux DR,Burchfiel BC,Royden LH and Chen Z.1992.Simultaneous Miocene and shortening in the Himalaya orogen.Science,258(5087):1466-1469
Hodges KV.2000.Tectonics of the Himalaya and southern Tibet from two perspectives.Geological Society of America Bulletin,112(3):324-350
Hodges KV,Hurtado Jr JM and Whipple KX.2001.Southward extrusion of Tibetan crust and its effect on Himalayan tectonics.Tectonics,20(6):799-809
Holland TJB and Powell R.1998.An internally consistent thermodynamic data set for phases of petrological interest.Journal of Metamorphic Geology,16(3):309-343
Holness MB and Sawyer EW.2008.On the pseudomorphing of melt-filled pores during the crystallization of migmatites.Journal of Petrology,49(7):1343-1363
Hoskin PWO and Schaltegger U.2003.The composition of zircon and igneous and metamorphic petrogenesis.Reviews in Mineralogy and Geochemistry,53(1):27-62
Imayama T,Takeshita T and Arita K.2010.Metamorphic P-T profile and P-T path discontinuity across the far-eastern Nepal Himalaya:Investigation of channel flow models.Journal of Metamorphic Geology,28(5):527-549
Imayama T,Takeshita T,Yi K et al.2012.Two-stage partial melting and contrasting cooling history within the Higher Himalayan Crystalline Sequence in the far-eastern Nepal Himalaya.Lithos,134-135:1-22
Jamieson RA,Beaumont C,Medvedev S and Nguyen MH.2004.Crustal channel flows: 2.Numerical models with implications for metamorphism in the Himalayan-Tibetan orogen.Journal of Geophysical Research,109:B06407,doi:10.1029/2003JB002811
Kali E,Leloup PH,Arnaud N,Maheo G,Liu DY,Boutonnet E,Van der Woerd J,Liu XH,Liu ZJ and Li HB.2010.Exhumation history of the deepest central Himalayan rocks,Ama Drime range:Key pressure-temperature-deformation-time constraints on orogenic models.Tectonics,29(2):1-31
Kohn MJ,Catlos EJ,Ryerson FJ and Harrison TM.2001.Pressuretemperature-time path discontinuity in the Main Central thrust zone,central Nepal.Geology,29(3):571-574
Kohn MJ.2008.P-T-t data from central Nepal support critical taper and repudiate large-scale channel flow of the Greater Himalayan sequence.Geological Society of America Bulletin,120(3-4):259-273
Kohn MJ and Corrie SL.2011.Preserved Zr-temperature and U-Pb ages in high-grade metamorphic titanite:Evidence for a static hot channel in the Himalayan orogen.Earth and Planetary Science Letters,311(1-2):136-143
Kriegsman LE and álvarez-Valero AM.2009.Melt-producing versus meltconsuming reactions in pelitic xenoliths and migmatites.Lithos,116(3-4):310-320
Le Fort P.1975.Himalayas:The collided range.Present knowledge of the continental arc.American Journal of Science,275:1-44
Liu YS,Hu ZC,Gao S,Gunther D,Xu J,Gao CG and Chen HH.2008.In situ-analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard.Chemical Geology,257(1-2):34-43
Liu YS,Gao S,Hu ZC,Gao CG,Zong KQ and Wang DB.2010.Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating,Hf isotopes and trace elements in zircons of mantle xenoliths.Journal of Petrology,51(1-2):537-571
Ludwig KR.2003.ISOPLOT 3.00:A Geochronological Toolkit for Microsoft Excel.Berkeley:Berkeley Geochronology Center
Pati?o Douce AE and Harris N.1998.Experimental constraints on Himalayan anatexis.Journal of Petrology,39(4):689-710
Pêcher A.1989.The metamorphism in the Central Himalaya.Journal of Metamorphic Geology,7(1):31-41
Regis D,Warren CJ,Young D and Roberts NMW.2014.Tectonometamorphic evolution of the Jomolhari massif:Variations in timing of syn-collisional metamorphism across western Bhutan.Lithos,190-191:449-466
Robert A,Sumit C,Somnath D,Dilip M and Katarzyna K.2014.Timing,duration and inversion of prograde Barrovian metamorphism constrained by high resolution Lu-Hf garnet dating:A case study from the Sikkim Himalaya,NE India.Earth and Planetary Science Letters,407:70-81
Rubatto D.2002.Zircon trace element geochemistry:Partitioning with garnet and the link between U-Pb ages and metamorphism.Chemical Geology,184(1-2):123-138
Rubatto D and Hermann J.2007.Zircon behaviour in deeply subducted rocks.Elements,3(1):31-35
Rubatto D,Chakraborty S and Dasgupa S.2013.Timescales of crustal melting in the Higher Himalayan Crystallines (Sikkim,Eastern Himalaya)inferred from trace element-constrained monazite and zircon chronology.Contributions to Mineralogy and Petrology,165(2):349-372
Sawyer EW.2008.Atlas of Migmatites.The Canadian Mineralogist,Special Publication 9.Ottawa, Ontario, Canada: NRC Research Press
Searle MP,Simpson RL and Law RD.2003.The structural geometry,metamorphic and magmatic evolution of the Everest massif,High Himalaya of Nepal-South Tibet.Journal of the Geological Society,160(3):345-366
Simpson RL,Parrish RR,Searle MP and Waters DJ.2000.Two episodes of monazite crystallization during metamorphism and crustal melting in the Everest region of the Nepalese Himalaya.Geology,28(5):403-406
Sorcar N,Hoppe U,Dasgupta S and Chakraborty S.2014.Hightemperature cooling histories of migmatites from the High Himalayan Crystallines in Sikkim, India: Rapid cooling unrelated to exhumation.Contributions to Mineralogy and Petrology,167(2):1-34
Spear FS,Selverstone J,Hickmott D,Crowley P and Hodges KV.1984.P-T paths from garnet zoning:A new technique for deciphering tectonic processes in crystalline terranes.Geology,12(2):87-90
Spear FS,Kohn MJ and Cheney JT.1999.P-T paths from anatectic pelites.Contributions to Mineralogy and Petrology,134(1):17-32
Stübner K,Grujic D,Parrish RR,Roberts NMW,Kronz A,Wooden J and Ah mad T.2014.Monazite geochronology unravels the timing of crustal thickening in NW Himalaya.Lithos,210-211:111-128
Tinkham DK and Ghent ED.2005.Estimating P-T conditions of garnet growth with isochemical phase diagram sections and the problem of effective bulk composition.Canadian Mineralogist,43(1):35-50
Vannay JC and Hodges KV.1996.Tectonometamorphic evolution of the Himalayan metamorphic core between the Annapurna and Dhaulagiri,central Nepal.Journal of Metamorphic Geology,14(5):635-656
Vannay JC and Grasemann B.1998.Inverted metamorphism in the High Himalaya of Himachal Pradesh (NW India):Phase equilibria versus thermobarometry.Schweizerische Mineralogissche and Petrographische Mitteilungen,78:107-132
Viskupic K,Hodges KV and Bowring SA.2005.Timescales of melt generation and the thermal evolution of the Himalayan metamorphic core,Everest region,eastern Nepal.Contributions to Mineralogy and Petrology,149(1):1-21
Wang JM,Zhang JJ and Wang XX.2013.Structural kinematics,metamorphic P-T profiles and zircon geochronology across the Greater Himalayan Crystalline Complex in south-central Tibet:Implication for a revised channel flow.Journal of Metamorphic Geology,31(6):607-628
Waters DJ.2001.The significance of prograde and retrograde quartzbearing intergrowth microstructures in partially melted granulite facies rocks.Lithos,56(1):97-110
Webb AAG,Yin A,Harrison TM,Célérier J and Burgess WP.2007.The leading edge of the Greater Himalayan Crystallines revealed in the NW Indian Himalaya:Implications for the evolution of the Himalayan Orogen.Geology,35(10):955-958
Wei CJ and Song SG.2008.Chloritoid-glaucophane schist in the North Qilian orogen,NW China:Phase equilibria and P-T path from garnet zonation.Journal of Metamorphic Geology,26(3):301-316
Xiang H,Zhang ZM,Dong X,Qi M,Lin YH and Lei HC.2013.Highpressure metamorphism and anatexis during the subduction of Indian continent:Phase equilibria modeling of the Namche Barwa complex,Eastern Himalayan Syntaxis.Acta Petrologica Sinica,29(11):3792-3802 (in Chinese with English abstract)
Yin A and Harrison TM.2000.Geologic evolution of the Himalayan-Tibetan orogen.Annual Review of Earth and Planetary Sciences,28:211-280
Yin A.2006.Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry,exhumation history, and foreland sedimentation.Earth-Science Reviews,76(1-2):1-131
Zhang JJ,Ji JQ,Zhong DL,Ding L and He SD.2004.Structural pattern of eastern Himalayan syntaxis in Namjagbarwa and its formation process.Science in China (Series D),47(2):138-150
Zhang ZM,Zhao GC,Wang JL,Dong X and Liou JG.2010.Two stages of granulite facies metamorphism in the eastern Himalayan syntaxis,south Tibet:Petrology,zircon geochronology and implications for the subduction of neo-Tethys and the Indian continent beneath Asia.Journal of Metamorphic Geology,28(7):719-733
Zhang ZM,Xiang H,Dong X,Ding HX and He ZY.2015.Long-lived high-temperature granulite-facies metamorphism in the Eastern Himalayan orogen,South Tibet.Lithos,212-215:1-15
附中文參考文獻(xiàn)
向華,張澤明,董昕,祁敏,林彥蒿,雷恒聰.2013.印度大陸俯沖過程中的高壓變質(zhì)與深熔作用:東喜馬拉雅構(gòu)造結(jié)南迦巴瓦雜巖的相平衡模擬研究.巖石學(xué)報(bào),29(11):3792-3802