李曉雄 江萬(wàn) 梁錦海 趙志丹 劉棟 莫宣學(xué)
1.中國(guó)建筑材料工業(yè)地質(zhì)勘查中心陜西總隊(duì),西安 710003
2.地質(zhì)過(guò)程與礦產(chǎn)資源國(guó)家重點(diǎn)實(shí)驗(yàn)室,中國(guó)地質(zhì)大學(xué)地球科學(xué)與資源學(xué)院,北京 100083
3.中國(guó)地質(zhì)科學(xué)院地質(zhì)力學(xué)研究所,北京 100081
4.黑龍江三道灣子金礦有限公司,黑河 164300
巖漿巖作為地球深部活動(dòng)最直接的記錄者,對(duì)了解板塊運(yùn)動(dòng)及地球深部過(guò)程有著十分重要的作用(莫宣學(xué),2011)。青藏高原南部的拉薩地塊,發(fā)育大規(guī)模中-新生代巖漿作用(Yin and Harrison,2000;潘桂棠等,2004,2006;Zhu et al.,2013),開(kāi)展這些巖石的年代學(xué)、構(gòu)造背景和成因研究,對(duì)揭示雅魯藏布特提斯洋巖石圈的俯沖、印度與亞洲大陸的碰撞等構(gòu)造事件有著重要意義。近年巖漿作用、古生物學(xué)與沉積地球化學(xué)研究普遍認(rèn)為,在主碰撞帶內(nèi)的印度-亞洲大陸碰撞開(kāi)始時(shí)間為70~60Ma(莫宣學(xué)等,2003,2007;Ding et al.,2005;Zhu et al.,2011;Wu et al.,2014),到40Ma 左右完成,這段時(shí)間為同碰撞階段;40Ma 之后則稱后碰撞階段(Yin and Harrison,2000;Mo et al.,2002,2007,2008,2009;周肅等,2004;Dong et al.,2005;Zhao et al.,2009)。
林子宗火山巖(又稱林子宗群,由下到上分為典中組、年波組和帕那組三個(gè)組)呈帶狀分布于拉薩地體南部、岡底斯巖基帶北部,它呈角度不整合覆蓋于強(qiáng)烈變形的上白堊統(tǒng)設(shè)興組或更老地層之上(董國(guó)臣,2002),Ar-Ar 定年和鋯石UPb 定年結(jié)果(周肅等,2004;李皓揚(yáng)等,2007;Lee et al.,2009;He et al.,2007;Chen et al.,2014)較好揭示了林周盆地的林子宗火山巖各組的形成時(shí)代(典中組65~60Ma、年波組60~50Ma、帕那組50~44Ma)。不難看出,林子宗群代表的巖漿活動(dòng)的時(shí)代恰好與目前認(rèn)為的大陸碰撞的初始時(shí)間和碰撞過(guò)程重合,因而備受關(guān)注。莫宣學(xué)等人(周肅等,2004;莫宣學(xué)等,2009;莫宣學(xué),2010,2011)將林子宗最底部典中組火山巖的年齡(約65Ma)作為印度與亞歐大陸碰撞的起始時(shí)間。
本文首次報(bào)道了在林周盆地典中村附近出露的設(shè)興組頂部地層中,新發(fā)現(xiàn)的一套呈層狀產(chǎn)出的玄武巖。林周盆地出露的林子宗標(biāo)準(zhǔn)剖面之下的白堊世設(shè)興組地層,已有研究多認(rèn)為是變質(zhì)-弱變質(zhì)的紅色碎屑巖類,本文在其中識(shí)別出了多個(gè)玄武巖和安山巖夾層,并開(kāi)展了詳細(xì)的年代學(xué)和地球化學(xué)研究,試圖揭示白堊紀(jì)設(shè)興組沉積、淺變質(zhì)沉積巖的最晚時(shí)代,確定林子宗群之下不整合的時(shí)間間斷;判別設(shè)興組玄武巖的構(gòu)造環(huán)境,為大陸碰撞之前的新特提斯洋演化提供新證據(jù)。
拉薩地塊為一東西向的狹長(zhǎng)巨型構(gòu)造巖漿帶,夾持于班公-怒江縫合帶與雅魯藏布縫合帶之間,是青藏高原巖漿作用最為發(fā)育的地區(qū)。其中中生代巖漿巖的面積達(dá)10.2 萬(wàn)平方千米,占整個(gè)拉薩地塊面積的近20%(Zhu et al.,2011)。根據(jù)沉積蓋層和基底性質(zhì)的不同,以獅泉河-永珠-納木錯(cuò)-嘉藜蛇綠混雜巖巖(SNMZ)和洛巴堆-米拉山斷裂帶(LMF)為界,將拉薩地塊分為北(NL)中(CL)南(SL)三部分(圖1a)。其中南部拉薩地塊主要由白堊紀(jì)-古近紀(jì)岡底斯巖基和古新世-始新世林子宗火山巖以及部分侏羅系-白堊世沉積地層構(gòu)成,可能主要是中生代島弧側(cè)向加積作用增生到具有基底的拉薩地塊之上形成的(朱弟成等,2009)。
本文所研究的林周盆地位于拉薩東北約60km 處,是林子宗火山巖的命名地。林周盆地的南緣受冉木江逆斷裂控制,北部則被洛巴堆-古魯-左崗-唐加逆斷層截切,整體呈不規(guī)則的橢圓形,長(zhǎng)軸近東西向展布,面積約230km2,其中林子宗火山巖呈環(huán)狀分布,巖層產(chǎn)狀整體北傾,傾角較緩,一般20°~25°。盆地內(nèi)只有上二疊統(tǒng)旁那組和上白堊統(tǒng)設(shè)興組與林子宗火山巖呈不整合接觸(莫宣學(xué)等,2009)。
在采樣剖面(圖1b),晚白堊世設(shè)興組不整合于典中組火山巖之下,主要巖性為紫紅色砂礫巖、灰綠色玄武巖和紅褐色安山巖。其中設(shè)興組火山巖巖性為玄武巖和安山巖,在紅色砂礫巖中呈夾層產(chǎn)出,多層韻律分布,夾層厚度介于0.5~1.2m(圖1c)。玄武巖和安山巖分布于不同的韻律層中。其中玄武巖層風(fēng)化后呈灰綠色,細(xì)粒結(jié)構(gòu),巖石中暗色礦物較多,杏仁構(gòu)造發(fā)育。玄武巖層產(chǎn)狀為313°∠34°。巖石薄片顯微鏡觀察表明,玄武巖呈斑狀結(jié)構(gòu),斑晶為斜長(zhǎng)石(較少)和輝石(約占10%)。其中輝石呈星散狀分布,均為半自形柱狀,被綠泥石、方解石交代,仍存假象,部分界限模糊不清或消失;斜長(zhǎng)石呈板狀,已絹云母化;基質(zhì)為微晶斜長(zhǎng)石和輝石;副礦物為磁鐵礦和磷灰石等(圖2)。
圖1 西藏林周盆地地質(zhì)圖及樣品位置(a)青藏高原構(gòu)造單元?jiǎng)澐?據(jù)Zhu et al.,2013 和Meng et al.,2014 修改,其中標(biāo)注的年齡見(jiàn)Meng et al.,2014 及其中的文獻(xiàn));(b)林周盆地地質(zhì)圖(據(jù)董國(guó)臣,2002;周肅等,2004 修改);(c)本文采樣剖面的野外照片,所示巖脈就是本文采樣點(diǎn).BNSZ:班公-怒江縫合帶;SNMZ:獅泉河-納木錯(cuò)蛇綠混雜巖帶;LMF:洛巴堆-米拉山斷裂帶;YZSZ:印度河-雅魯藏布江縫合帶Fig.1 Simplified geological map of Linzhou basin,Tibet,showing sample locations(a)tectonic units of the Tibetan Plateau (after Zhu et al.,2013;Meng et al.,2014 and references therein);(b)geological map of Linzhou basin(after Dong,2002;Zhou et al.,2004);(c)photography showing the sampling outcrop,samples were collected from the layers.BNSZ:Bangong-Nujiang suture zone;SNMZ:Shiquan River-Nam Tso Mélange Zone;LMF:Luobadui-Milashan Fault;YZSZ:Yarlung Zangbo Suture Zone
玄武巖的斜長(zhǎng)石單礦物Ar-Ar 年代學(xué)分析在中國(guó)地質(zhì)科學(xué)院地質(zhì)研究所完成。選純的礦物(純度>99%)用超聲波清洗。清洗后的樣品被封進(jìn)石英瓶中送核反應(yīng)堆中接受中子照射。照射工作是在中國(guó)原子能科學(xué)研究院的“游泳池堆”中進(jìn)行的,使用B4 孔道,中子流密度約為2.65 ×1013n·cm-2S-1。照射總時(shí)間為1444min,積分中子通量為2.30 ×1018n·cm-2;同期接受中子照射的還有用做監(jiān)控樣的標(biāo)準(zhǔn)樣:ZBH-25 黑云母標(biāo)樣,其標(biāo)準(zhǔn)年齡為132.7 ±1.2Ma,K 含量為7.6%。樣品的階段升溫加熱使用石墨爐,每一個(gè)階段加熱30min,凈化30min。質(zhì)譜分析是在多接收稀有氣體質(zhì)譜儀Helix MC 上進(jìn)行的,每個(gè)峰值均采集20 組數(shù)據(jù)。所有的數(shù)據(jù)在回歸到時(shí)間零點(diǎn)值后再進(jìn)行質(zhì)量歧視校正、大氣氬校正、空白校正和干擾元素同位素校正。中子照射過(guò)程中所產(chǎn)生的干擾同位素校正系數(shù)通過(guò)分析照射過(guò)的K2SO4和CaF2來(lái)獲得,其值為:(36Ar/37Aro)Ca= 0.0002389,(40Ar/39Ar)K=0.004782,(39Ar/37Aro)Ca=0.000806。37Ar 經(jīng)過(guò)放射性衰變校正;40K 衰變常數(shù)λ =5.543 ×10-10y-1;用ISOPLOT程序計(jì)算坪年齡及正、反等時(shí)線(Ludwig,v2.49,2001)。坪年齡誤差以2σ 給出。詳細(xì)實(shí)驗(yàn)流程見(jiàn)有關(guān)文章(陳文等,2006;張彥等,2006)。設(shè)興組玄武巖的斜長(zhǎng)石Ar-Ar 測(cè)試結(jié)果見(jiàn)表1。樣品編號(hào)為1003-4,礦物為斜長(zhǎng)石,稱樣質(zhì)量為150.41mg,J=0.004468。
圖2 設(shè)興組玄武巖鏡下顯微照片圖中玄武巖為斑狀結(jié)構(gòu),斑晶為輝石(已蝕變?yōu)榫G泥石等),基質(zhì)為間粒結(jié)構(gòu),可見(jiàn)微晶斜長(zhǎng)石、輝石(蝕變?yōu)榫G泥石)和不透明的副礦物(磁鐵礦等).(a)為單偏光,(b)為正交偏光Fig.2 The microscopic photographs of the basalt from Shexing Formation in Linzhou basinThe rocks are porphyry texture,with altered pyroxenes (Py)as phenocrysts.The groundmass shows intergranular texture,with plagioclase (Pl),Py,and other Fe-Ti oxides.(a)is under plane polarized light;(b)is under crossed polars
圖3 林周盆地設(shè)興組玄武巖斜長(zhǎng)石40Ar-39Ar 年齡譜和等時(shí)線圖Fig.3 Ar-Ar dating spectra and isochron age of plagioclase of the basalt from Shexing Formation in Linzhou basin
表1 西藏林周盆地設(shè)興組玄武巖斜長(zhǎng)石40Ar-39Ar 年齡測(cè)定結(jié)果Table 1 40Ar-39Ar analysis data of the plagioclase of the basalt from Shexing Formation in Linzhou basin
表2 林周盆地設(shè)興組玄武巖的主量元素(wt%)和微量元素(×10 -6)數(shù)據(jù)Table 2 Whole-rock major(wt%)and trace elements (×10 -6)data of the basalts from Shexing Formation in Linzhou basin
表3 林周盆地設(shè)興組玄武巖樣品Sr-Nd-Pb 同位素?cái)?shù)據(jù)Table 3 Sr-Nd-Pb isotope data of the basalts from Shexing Formation in Linzhou basin
主、微量元素測(cè)定在中國(guó)地質(zhì)科學(xué)院國(guó)家地質(zhì)實(shí)驗(yàn)測(cè)試中心完成。其中主量元素測(cè)試使用X 射線熒光光譜儀(2100),微量元素的測(cè)試使用等離子質(zhì)譜儀(X-series)。樣品測(cè)試誤差普遍小于10%,稀土元素均小于5%。巖石主、微量結(jié)果見(jiàn)表2。Sr-Nd-Pb 同位素測(cè)定在核工業(yè)北京地質(zhì)研究院測(cè)試完成。其中Rb-Sr 同位素在PHOENIX 儀器上進(jìn)行;Sm-Nd 同位素測(cè)定在ISOPROBE-T 儀器上進(jìn)行,Pb 同位素在ISOPROBE-T 儀器上進(jìn)行。Sr-Nd-Pb 同位素測(cè)試結(jié)果見(jiàn)表3。
林周盆地設(shè)興組頂部玄武巖的斜長(zhǎng)石Ar-Ar 定年結(jié)果表明(表1),斜長(zhǎng)石坪年齡為90.6 ±1.8Ma;等時(shí)線年齡為84.9±6.4Ma,在誤差范圍內(nèi)與坪年齡一致(圖3)。因此,根據(jù)采樣斜長(zhǎng)石Ar-Ar 坪年齡結(jié)果,設(shè)興組玄武巖的噴發(fā)年齡約為90.6Ma。
設(shè)興組火山巖的主量元素?cái)?shù)據(jù)列于表2 中。由于樣品總體燒失量大(9.9%~11.85%),CaO 含量較高(8.14%~11.16%),在薄片中也可見(jiàn)碳酸鹽化,因此巖石受到了后期碳酸鹽蝕變。為確定原始巖石的成分,對(duì)數(shù)據(jù)進(jìn)行了去碳酸鹽化處理,按照全部燒失量為水和二氧化碳,應(yīng)用CO2反算,從CaCO3中扣除與CO2等摩爾量的CaCO3然后再將主量元素重新百分化。計(jì)算結(jié)果表明,去碳酸鹽化后巖石的SiO2含量52.25%~54.76%,Al2O3含量16.04%~17.85%,Mg#為59~91,平均值為66,因此原始的巖石應(yīng)為玄武質(zhì)或者部分為玄武安山巖成分。本文以下討論中統(tǒng)稱為設(shè)興組玄武巖。
圖4 林周盆地設(shè)興組玄武巖(a)Nb/Y-Zr/TiO2分類圖解(據(jù)Winchester and Floyd,1977);(b)Th-Co 圖解(據(jù)Hastie et al.,2007);(c)稀土元素球粒隕石標(biāo)準(zhǔn)化圖(球粒隕石據(jù)Boynton,1984);(d)微量元素原始地幔標(biāo)準(zhǔn)化圖(原始地幔據(jù)Sun and McDonough,1989);桑日群數(shù)據(jù)引自Kang et al.(2014)Fig.4 Geochemical plots of the basic rocks of the Shexing Formation from Linzhou basin(a)Nb/Y-Zr/TiO2 plots (after Winchester and Floyd,1977);(b)Th-Co plots (after Hastie et al.,2007);(c)chondrite-normalized REE patterns (chondrite values after Boynton,1984);(d)primitive-mantle-normalized trace element patterns (primitive mantle values after Sun and McDonough (1989).Sangri Group data after Kang et al.(2014)
由于樣品遭受后期蝕變,可能有活潑的堿性元素的帶入帶出,故使用抗蝕變的高場(chǎng)強(qiáng)元素和不活潑元素(Zr/TiO2-Nb/Y 圖解)進(jìn)行巖石成分識(shí)別(圖4a),巖石為堿性玄武巖,與主量元素的成分一致。為避免鎂鐵質(zhì)巖受Fe-Ti 氧化物堆晶作用影響而不能真實(shí)反映源區(qū)特征,本文利用Co-Th 分類圖解(Hastie et al.,2007),巖石主要屬于高鉀鈣堿性系列的玄武巖-玄武安山巖(圖4b)。
設(shè)興組玄武巖8 個(gè)樣品具有非常均一的微量元素組成(圖4)。巖石具有較高的稀土總量(ΣREE =291 ×10-6~310 ×10-6,巖石顯示明顯的輕重稀土分餾((La/Yb)N=28~34)。玄武巖具有弱的Eu 負(fù)異常(Eu/Eu*= 0.81~0.93)。在原始地幔標(biāo)準(zhǔn)化圖解中(圖4d),設(shè)興組玄武巖表現(xiàn)出明顯的Nb、Ta、Ti 等高場(chǎng)強(qiáng)元素的虧損和Ba、Th、U、Pb等大離子親石元素的富集,呈現(xiàn)出與拉薩地塊南緣的洋殼俯沖產(chǎn)生的島弧型桑日群火山巖類似的弧火山巖的地球化學(xué)特征,但是微量元素含量明顯高于桑日群。
3 個(gè)玄武巖樣品的Sr-Nd-Pb 同位素組成列于表3。采用本文獲得的Ar-Ar 年齡90.6Ma 進(jìn)行校正。設(shè)興組玄武巖均具有正的εNd值(+0.72~+4.75)和年輕的虧損地幔模式年齡(tDM<660Ma);87Sr/86Sr 為0.706633~0.706654。Pb 同位素校正后比值分別為,(206Pb/204Pb)t為18.649~18.675,(207Pb/204Pb)t為15.640~15.666,(208Pb/204Pb)t為39.055~39.108。
圖5 設(shè)興組玄武巖Ni-Mg#(a)和Cr-Mg#(b)圖解Fig.5 Plots of Ni (a)and Cr (b),against Mg# of basalts from Shexing Formation in Linzhou basin
圖6 設(shè)興組基性巖石的Nb/La-SiO2圖(a)和(Hf/Sm)N-(Ta/La)N圖(b)(據(jù)La Flèche et al.,1998)Fig.6 Nb/La-SiO2(a)and (Hf/Sm)N-(Ta/La)N(b)plots (after La Flèche et al.,1998)of the basic rocks from Shexing Formation
王乃文等(1983)根據(jù)建組剖面上設(shè)興組的第2~3 段所產(chǎn)的雙殼類Amphidonte ostracina,以及在典中-那瑪剖面上發(fā)現(xiàn)介形蟲(chóng)和孢粉化石并結(jié)合設(shè)興組所處層位,認(rèn)為整個(gè)設(shè)興組沉積時(shí)代應(yīng)為晚白堊世,設(shè)興組上部的時(shí)代定為晚白堊世晚期。此后,許多研究結(jié)果(朱志文等,1981;王乃文等,1983;Besse et al.,1984;Molnar et al.,1988;Jaeger et al.,1989;Rage et al.,1995;Leier et al.,2007;Kapp et al.,2007)在進(jìn)行相關(guān)的研究和總結(jié)時(shí),都將設(shè)興組置于晚白堊世(72~100Ma)。井天景(2014)通過(guò)馬鄉(xiāng)青藏線路西出露的設(shè)興組與上覆林子宗群火山巖的剖面研究,獲得設(shè)興組頂部砂巖的最年輕的碎屑鋯石年齡為81~88Ma,表明設(shè)興組地層的沉積時(shí)代不早于81Ma。
本文獲得林周盆地設(shè)興組頂部地層中玄武巖夾層的斜長(zhǎng)石Ar-Ar 等時(shí)線定年結(jié)果表明,設(shè)興組玄武巖的年齡約為90.6Ma,該年齡結(jié)果與沉積學(xué)和古生物學(xué)獲得的設(shè)興組年齡相吻合,從巖漿巖方面進(jìn)一步證實(shí)設(shè)興組的形成時(shí)限為晚白堊世。
設(shè)興組玄武巖MgO(4.47%~8.41%)和Ni 含量(79 ×10-6~249 × 10-6)與原生玄武質(zhì)巖漿范圍比較(Hess,1992)變化范圍較大,說(shuō)明玄武巖漿形成后經(jīng)歷了分離結(jié)晶等后期演化過(guò)程。設(shè)興組玄武巖的Ni 含量隨Mg#的減小呈明顯的下降趨勢(shì)(圖5a),表明巖漿在上升過(guò)程中經(jīng)歷了一定程度的橄欖石分離結(jié)晶作用。隨著巖石CaO 含量從11.16%降低到8.14%,對(duì)應(yīng)的CaO/Al2O3比值也逐漸從0.71 減小到0.53(表2),Cr 含量隨Mg#的減小而降低,這些趨勢(shì)被認(rèn)為是單斜輝石結(jié)晶分離作用所致(圖5b)(劉叢強(qiáng)等,1995)。玄武巖弱的Eu 負(fù)異常(Eu/Eu*= 0.81~0.93),表明斜長(zhǎng)石的分離結(jié)晶作用不顯著。鏡下巖相學(xué)觀察發(fā)現(xiàn)斑晶以單斜輝石為主,缺少斜長(zhǎng)石斑晶,與以上的成分演化趨勢(shì)一致(圖2)。因此,從巖相學(xué)與元素變化規(guī)律看,設(shè)興組玄武巖的巖漿演化中,早期可能是橄欖石的分離結(jié)晶作用為主,而后期主要是單斜輝石為主,而斜長(zhǎng)石分離結(jié)晶作用不明顯。
圖7 設(shè)興組玄武巖(143Nd/144Nd)-(87Sr/86 Sr)圖解(a)、(207Pb/204 Pb)-(206 Pb/204 Pb)圖解(b)和(208 Pb/204 Pb)-(206Pb/204Pb)圖(c)圖內(nèi)主要地球化學(xué)端員引自Zindler and Hart (1986);林周盆地林子宗火山巖數(shù)據(jù)引自Mo et al.,2007,2008;董國(guó)臣,2002;其余數(shù)據(jù)引自Zhao et al.(2009)以及其中的文獻(xiàn)Fig.7 (87 Sr/86 Sr)t-(143 Nd/144 Nd)t(a),(206 Pb/204 Pb)-(207Pb/204Pb)(b)and (208 Pb/204 Pb)-(206 Pb/204 Pb)(c)plots of the basalt from Shexing FormationThe main geochemical endmembers are from Zindler and Hart(1986),the Linzizong data form Linzhou basin from Mo et al.,2007,2008;Dong,2002;Others after Zhao et al.(2009)and the references therein
林周盆地設(shè)興組玄武巖,隨SiO2增高,Nb/La 比值變化范圍不大(圖6a),表明其受到地殼混染的可能性很小,這暗示玄武巖的成分可以反映其地幔源區(qū)的特征。在(Hf/Sm)N-(Ta/La)N圖解中(La Flèche et al.,1998),林周盆地基性巖石具有較低的(Hf/Sm)N和(Ta/La)N值,表明其源區(qū)可能受到了俯沖流體的交代(La Flèche et al.,1998;Zhu et al.,2012)(圖6b)。樣品相對(duì)較高的Nb 含量(12.8 ×10-6~14.5 ×10-6)、低的Ce/Pb 比值(平均為11.4),也說(shuō)明可能有俯沖板片熔體和流體的加入(Seghedi et al.,2004),樣品已經(jīng)偏離了原始地幔、MORB 和OIB 的Ce/Pb 比值(Ce/Pb=25,Sun and McDonough,1989)。與同樣產(chǎn)出在拉薩地塊南緣的桑日群玄武巖(189~195Ma)進(jìn)行比較(圖4c,d、圖6),發(fā)現(xiàn)它們具有成分的相似性,說(shuō)明本文樣品也是起源于特提斯洋俯沖消減階段產(chǎn)生的島弧地幔楔部分熔融的產(chǎn)物(Kang et al.,2014),但是設(shè)興組玄武巖具有更加富集的微量元素組成。另外,設(shè)興組玄武巖的Sr-Pb 同位素成分靠近EMⅡ富集地幔端員(圖7),也暗示源區(qū)有消減物質(zhì)(洋殼攜帶的沉積物或洋殼板片熔體)加入到了地幔源區(qū)。此外,從Sr-Nd-Pb 特征看,設(shè)興組玄武巖與拉薩地塊南緣的與特提斯洋消減有關(guān)的島弧巖漿作用具有一致的同位素地球化學(xué)特征。
玄武質(zhì)巖石的地球化學(xué)特征對(duì)構(gòu)造背景非常敏感,可以有效的揭示巖石產(chǎn)出的構(gòu)造背景(Pearce and Norry,1979)。本文主要選用玄武巖形成后蝕變過(guò)程中不活潑的高場(chǎng)強(qiáng)元素進(jìn)行構(gòu)造環(huán)境的判別。設(shè)興組玄武巖Nb、Ta、Ti 三種元素顯著虧損和所有樣品Ta/Yb 比值近0.5,表明其源區(qū)巖漿為與俯沖有關(guān)的島弧巖漿(Condie,1989);另外其大離子親石元素和輕稀土元素明顯富集,相對(duì)虧損高場(chǎng)強(qiáng)元素和重稀土元素,較高的La/Nb 比值(4.03~5.61),表明其巖漿可能來(lái)源于交代過(guò)的地幔,其形成與大洋板塊俯沖作用有關(guān)(Condie,2003;Innocenti et al.,2005)。設(shè)興組玄武巖在Ti-Zr 圖解中全部落入火山弧區(qū)域(圖8a);在玄武巖Hf-Th-Ta圖解中,設(shè)興組玄武巖投影點(diǎn)也較集中,與南部拉薩地塊晚白堊世基性巖一樣,數(shù)據(jù)處于CAB 火山弧(陸緣弧)玄武巖成分范圍內(nèi)(圖8b),顯示其形成于俯沖環(huán)境。研究表明,Ta/Yb 比值變化主要與地幔部分熔融及幔源性質(zhì)有關(guān),因此其對(duì)鑒別火山巖源區(qū)特征有著重要意義(Pearce and Cann,1973)。設(shè)興組玄武巖在Th/Yb-Ta/Yb 圖解中(圖8c)均位于MORB-OIB 趨勢(shì)線的上方,處于活動(dòng)大陸邊緣(陸緣弧)區(qū)域,這種地球化學(xué)特征也表明設(shè)興組玄武巖形成于俯沖環(huán)境,并且與虧損地幔源區(qū)及陸殼物質(zhì)參與有密切成因關(guān)系(Hergt et al.,1991)。另外,作者還發(fā)現(xiàn)同玄武巖互層產(chǎn)出的安山巖顯示了俯沖洋殼部分熔融形成的埃達(dá)克質(zhì)巖石特征(另文發(fā)表),進(jìn)一步證明設(shè)興組玄武巖形成于島弧體制之下的俯沖構(gòu)造背景。
此外,值得提出的是,除了本文大約90Ma 的設(shè)興組玄武巖揭示的島弧巖漿作用反映的特提斯洋正常安第斯型島弧巖漿作用(Ji et al.,2009;Chu et al.,2006),在拉薩地塊南緣晚白堊世時(shí)期也存在多種類型構(gòu)造環(huán)境。例如,葉麗娟等(2015)認(rèn)為在南木林南部存在大約94Ma 的弧后伸展構(gòu)造背景;在拉薩地塊南緣的臥龍鎮(zhèn)(管琪等,2010;Guan et al.,2012)、里龍與米林一帶(Zhang et al.,2010)存在洋脊俯沖的巖漿作用記錄。
圖8 玄武巖微量元素成分構(gòu)造判別圖(a)Zr-TiO2;(b)Hf/3-Th-Ta,原圖引自Wood (1980);(c)Ta/Yb-Th/Yb 圖解,引自Perfit et al.(1980).南部拉薩地塊晚白堊世基性巖數(shù)據(jù)引自管琪等(2011)和葉麗娟(2013)Fig.8 Trace element discrimination diagrams showing the tectonic setting of the Shexing basalts(a)Zr/Y-Zr;(b)Th/Hf-Ta/Hf,after Wood (1980);(c)Ta/Yb-Th/Yb,after Perfit (1982).The late cretaceous rock data in southern Lhasa block from Guan et al.(2011)and Ye (2013)
近年來(lái)在拉薩地塊南緣,不斷發(fā)現(xiàn)200Ma 以來(lái)的中生代巖漿作用,新特提斯洋巖石圈的北向俯沖消減于拉薩地塊南緣,是解釋這些中生代巖漿作用成因的最主要機(jī)制。目前主要有以下幾種觀點(diǎn),(1)正常安第斯型島弧巖漿作用(Ji et al.,2009;Chu et al.,2006);(2)雅魯藏布新特提斯洋殼低角度或平板俯沖(Coulon et al.,1986;Wen et al.,2008a);(3)新特提斯洋脊俯沖(70~95Ma),在拉薩地塊南緣存在的“埃達(dá)克質(zhì)”巖漿作用,被解釋為與特提斯洋脊俯沖有關(guān),但該類巖漿作用分布的地區(qū)比較局限,主要位于拉薩地塊南緣的臥龍鎮(zhèn)(管琪等,2010;Guan et al.,2012)、里龍與米林一帶(Zhang et al.,2010)。
安第斯型島弧俯沖作用是解釋中生代巖漿作用的普遍模型。Ji et al.(2009)結(jié)合其他研究成果,認(rèn)為大約205Ma以來(lái)直到大約109~80Ma 的岡底斯帶巖漿作用都與新特提斯洋北向俯沖的“安第斯型”穩(wěn)定的島弧俯沖作用有關(guān),與其對(duì)應(yīng)的是南部拉薩地塊上發(fā)育的一系列具有島弧性質(zhì)的巖漿巖,如大面積發(fā)育的早侏羅世葉巴組火山巖、早白堊世桑日群火山巖都具有明顯的俯沖性質(zhì),證明該時(shí)期俯沖作用的存在(陳煒等,2009;Zhu et al.,2008,2009;Kang et al.,2014)。其中在晚白堊世(約100~90Ma),北向俯沖的新特提斯洋殼俯沖角度變小,南部拉薩地塊發(fā)生安第斯型造山作用(Wen et al.,2008b;Zhang et al.,2010),增厚的地殼部分熔融形成該時(shí)期一系列的埃達(dá)克質(zhì)巖石。同時(shí)該時(shí)期的俯沖帶前緣造山作用造成拉薩地塊晚白堊時(shí)期地殼的縮短、抬升、變形事件的廣泛發(fā)育(Murphy et al.,1997;Yin and Harrison,2000;Kapp et al.,2007;Leier et al.,2007)。而之后的晚白堊世(90~55Ma),之前低角度北向俯沖的新特提斯洋板片由于重力原因,在約90Ma 發(fā)生板塊回轉(zhuǎn)(rollback)(Chung et al.,2005;侯增謙等,2006),在這個(gè)過(guò)程中,上涌的對(duì)流軟流圈提供了熱量,誘使受俯沖的新特提斯大洋板片熔體及流體交代的上覆地幔楔發(fā)生部分熔融產(chǎn)生設(shè)興組玄武巖。
本文在林周盆地設(shè)興組新發(fā)現(xiàn)的玄武巖(90.6Ma)和埃達(dá)克質(zhì)安山巖(另文發(fā)表),可能就是板塊回轉(zhuǎn)初始期的巖漿活動(dòng)響應(yīng)。俯沖的大洋板片發(fā)生回轉(zhuǎn),將拖拽大陸板片向下俯沖到較深位置,最直接的結(jié)果是導(dǎo)致陸-陸匯聚速率的加快(侯增謙等,2006)。在90.6~60Ma 左右,印度-亞洲兩大陸匯聚速率達(dá)到最大(190.6mm/a),也證明了這個(gè)推論的正確性,同時(shí)造成在65Ma 左右印度-亞洲大陸的初始碰撞。之后在約60Ma 左右,板片回轉(zhuǎn)過(guò)程被印度大陸板片的陡深俯沖取代,其結(jié)果導(dǎo)致板塊匯聚速率出現(xiàn)驟減,在約55Ma 左右,向北俯沖的新特提斯洋板片發(fā)生斷離,導(dǎo)致南部拉薩地塊林子宗火山巖和大量花崗巖的侵位(趙志丹等,2011;侯增謙等,2006;莫宣學(xué)等,2005;董國(guó)臣等,2006,2008;Chung et al.,2005;Mo et al.,2005,2007,2008,2009;Wen et al.,2008a,b;Ji et al.,2009;Lee et al.,2009;Zhu et al.,2011)。
因此,本文研究的林周盆地設(shè)興組玄武巖的形成可能是晚白堊世北向俯沖的新特提斯洋板塊在回轉(zhuǎn)初期的巖漿活動(dòng)響應(yīng)。
(1)在西藏南部林周盆地設(shè)興組頂部新發(fā)現(xiàn)了玄武巖夾層,玄武巖的斜長(zhǎng)石Ar-Ar 年齡為90.6Ma;該玄武巖為堿性-高鉀鈣堿性系列,具有俯沖性質(zhì)陸緣弧的地球化學(xué)特征。
(2)設(shè)興組玄武巖可能為新特提斯洋板片在約90Ma 發(fā)生板片回轉(zhuǎn)初期的巖漿活動(dòng)響應(yīng),來(lái)源于俯沖帶流體交代的地幔楔的部分熔融。
致謝 董國(guó)臣教授和戴緊根副教授審閱稿件并提出寶貴修改意見(jiàn),在此表示感謝。
Besse J,Courtillot V,Possi JP,Westphal M and Zhou YX.1984.Palaeomagnetic estimates of crustal shortening in the Himalayan thrusts and Zangbo suture.Nature,311(5987):621-626
Boynton WV.1984.Geochemistry of the rare earth elements:Meteorite studies.In: Henderson P (ed.).Rare Earth Element Geochemistry.Amsterdam:Elsevier,63-114
Chen JS,Huang BC,Yi ZY,Yang LK and Chen LW.2014.Paleomagnetic and40Ar/39Ar geochronological results from the Linzizong Group,Linzhou Basin,Lhasa Terrane,Tibet:Implications to Paleogene paleolatitude and onset of the India-Asia collision.Journal of Asian Earth Sciences,96:162-177
Chen W,Zhang Y,Zhang YQ,Jin GS and Wang QL.2006.Late Cenozoic episodic uplifting in southeastern part of the Tibetan Plateau:Evidence from Ar-Ar thermochronology.Acta Petrologica Sinica,22(4):867-872 (in Chinese with English abstract)
Chen W,Ma CQ,Bian QJ,Hu YQ,Long TC,Yu SL,Chen DM and Tu JH.2009.Evidence from geochemistry and zircon U-Pb geochronology of volcanic rocks of Yeba Formation in Demingding area,the east of Middle Gangdise,Tibet.Geological Science and Technology Information,28(3):31-40
Chu MF,Chung SL,Song B,Liu DY,O’Reilly SY,Pearson N,Ji J and Wen DJ.2006.Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet.Geology,34(9):745-748
Chung SL,Chu MF,Zhang YQ,Xie YW,Lo CH,Lee TY,Lan CY,Li XH,Zhang Q and Wang YZ.2005.Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism.Earth-Science Reviews,68(3-4):173-196
Condie KG.1989.Geochemical changes in baslts and andesites across the Archean-Proterozoic boundary:Identification and significance.Lithos,23(1-2):1-18
Condie KC.2003.Incompatible element ratios in oceanic basalts and komatiites:Tracking deep mantle sources and continental growth rates with time.Geochemistry Geophysics Geosystems,4(1):1-128
Coulon C,Maluski H,Bollinger C and Wand S.1986.Mesozoic and Cenozoic volcanic rocks from central and southern Tibet:39Ar-40Ar dating petrological characteristics and geodynamical significance.Earth and Planetary Science Letters,79(3-4):281-302
Ding L,Kapp P and Wan XQ.2005.Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision,south central Tibet.Tectonics,24(3):1-18
Dong GC.2002.Linzizong volcanic rocks in Linzhou volcanic basin,Tibet and implication for India-Eurasia collision process.Ph.D.Dissertation.Beijing:China University of Geosciences (in Chinese)
Dong GC,Mo XX,Zhao ZD,Guo TY,Wang LL and Chen T.2005.Geochronologic constraints on the magmatic underplating of the Gangdisê Belt in the India-Eurasia collision:Evidence of SHRIMPⅡzircon U-Pb dating.Acta Geologica Sinica,79(6):787-794
Dong GC,Mo XX,Zhao ZD,Zhu DC,Wang LL,Chen T and Li B.2006.Magma mixing in middle part of Gangdise magma belt:Evidence from granitoid complex.Acta Petrologica Sinica,24(4):835-844 (in Chinese with English abstract)
Dong GC,Mo XX,Zhao ZD,Zhu DC,Song YT and Wang L.2008.Gabbros from southern Gangdese:Implication for mass exchange between mantle and crust.Acta Petrologica Sinica,24(2):203-210 (in Chinese with English abstract)
Guan Q,Zhu DC,Zhao ZD,Zhang LL,Liu M,Li XW,Yu F and Mo XX.2010.Late Cretaceous adakites from the eastern segment of the Gangdese Belt,Southern Tibet:Products of Neo-Tethyan mid-ocean ridge subduction?Acta Petrologica Sinica,26(7):2165-2179 (in Chinese with English abstract)
Guan Q,Zhu DC,Zhao ZD,Dong GC,Mo XX,Liu YS,Hu ZC and Yuan HL.2011.Zircon U-Pb chronology,geochemistry of the Late Cretaceous mafic magmatism in the southern Lhasa Terrane and its implications.Acta Petrologica Sinica,27(7):2083- 2094 (in Chinese with English abstract)
Guan Q,Zhu DC,Zhao ZD,Dong GC,Zhang LL,Li XW,Liu M,Liu MH,Mo XX,Liu YS and Yuan HL.2012.Crustal thickening prior to 38Ma in southern Tibet:Evidence from lower crust-derived adakitic magmatism in the Gangdese Batholith.Gondwana Research,21(1):88-99
Hastie AR,Kerr AC,Pearce JA and Mitchell SF.2007.Classification of altered volcanic island arc rocks using immobile trace elements:Development of the Th-Co discrimination diagram.Journal of Petrology,48(12):2341-2357
He SD,Kapp P,DeCelles PC,Gehrels GE and Heizler M.2007.Cretaceous-Tertiary geology of the Gangdese arc in the Linzhou area,southern Tibet.Tectonophysics,433(1-4):15-37
Hergt JM,Peate DW and Hawkesworth CJ.1991.The petrogenesis of Mesozoic Gondwana low-Ti flood basalts.Earth Planet.Sci.Lett.,105(1-3):134-148
Hess PC.1992.Phase equilibria constraints on the origin of ocean floor basalts.In:Morgan JP,Blackman DK and Sinton JM (eds.).Mantle Flow and Melt Generation at Mid-Ocean Ridges.Geophysical Monograph Series,71:67-102
Hou ZQ,Mo XX,Gao YF,Yang ZM,Dong GC and Ding L.2006.Early processes and tectonic model for the Indian-Asian continental collision:Evidence from the Cenozoic Gangdese igneous rocks in Tibet.Acta Geologica Sinica,80(9):1233- 1248 (in Chinese with English abstract)
Innocenti F,Agostini S,Vincenzo GD,Doglioni C,Manetti P,Savascin MY and Tonarini S.2005.Neogene and Quaternary volcanism in Western Anatolia:Magma sources and geodynamic evolution.Marine Geology,221(1-4):397-421
Jaeger JJ,Courtillot V and Tapponnier P.1989.Paleontological view of the ages of the Deccan Traps,the Cretaceous/Tertiary boundary and the India-Asia collision.Geology,17(4):316-319
Ji WQ,Wu FY,Chong SL,Li JX and Liu CZ.2009.Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gandese batholith,southern Tibet.Chemical Geology,262(3-4):229-245
Jing TJ.2014.Geochronology,geochemistry and implications of the sandstones in Shexing Formation in Maxiang area,Tibet.Master Degree Thesis.Beijing:China University of Geosciences (in Chinese with English summary)
Kang ZQ,Xu JF,Wilde SA,F(xiàn)eng ZH,Chen JL,Wang BD,F(xiàn)u WC and Pan HB.2014.Geochronology and geochemistry of the Sangri Group volcanic rocks,Southern Lhasa Terrane:Implications for the early subduction history of the Neo-Tethys and Gangdese Magmatic Arc.Lithos,200-201:157-168
Kapp P,DeCelles PG,Leier AL,F(xiàn)abijanic JM,He SD,Pullen A and Gehrels GE.2007.The Gangdese retroarc thurst belt revealed.GSA Today,17(7):4-9
La Flèche MR,Camiré G and Jenner GA.1998.Geochemistry of post-Acadian,Carboniferous continental intraplate basalts from the Maritimes Basin,Magdalen islands,Quebec Canada.Chemical Geology,148(3-4):115-136
Lee HY,Chung SL,Wang YB,Zhu DC,Yang JH,Song B,Liu DY and Wu FY.2007.Age,petrogenesis and geological significance of Linzizong volcanic successions in the Linzhou basin,southern Tibet:Evidence from zircon U-Pb dates and Hf isotopes.Acta Petrologica Sinica,23(2):493-500 (in Chinese with English abstract)
Lee HY,Chung SL,Lo CH,Ji JQ,Lee TY,Qian Q and Zhang Q.2009.Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record.Tectonophysics,477(1-2):20-35
Leier AL,DeCelles PG,Kapp P and Ding L.2007.The takena formation of the Lhasa terrane,southern Tibet:The record of a Late Cretaceous retroarc foreland basin.Geological Society of America Bulletin,119(1-2):31-48
Liu CQ,Xie GH and Masuda A.1995.Geochemistry of Cenozoic basalts from eastern China:(Ⅱ)Sr,Nd,and Ce isotopic compostitions.Geochimica,24(3):203-214 (in Chinese)
Meng FY,Zhao ZD,Zhu DC,Mo XX,Guan Q,Huang Y,Dong GC,Zhou S,DePaolo DJ,Harrison TM,Zhang ZC,Liu JL,Liu YS,Hu ZC and Yuan HL.2014.Late Cretaceous magmatism in Mamba area,central Lhasa subterrane:Products of back-arc extension of Neo-Tethyan Ocean?Gondwana Research,26(2):505-520
Mo XX,Zhao ZD,Zhou S,Liu CD and Wang L.2002.Evidence for timing of theinitiation of India-Asia collision from igneous rocks in Tibet.In:EOS Trans.AGU.F1003.San Francisco:Fall Meeting Abstract.S62B-1201,83:47
Mo XX,Zhao ZD,Deng JF,Dong GC,Zhou S,Guo TY,Zhang SQ and Wang LL.2003.Response of volcanism to the India-Asia collision.Earth Science Frontiers,10 (3):135- 148 (in Chinese with English abstract)
Mo XX,Dong GC,Zhao ZD,Guo TY,Wang LL and Chen T.2005.Timing of the magma mixing in the Gangdisê magmatic belt during the India-Asia collision: Zircon SHRIMP U-Pb dating.Acta Geologica Sinica,79(1):66-76
Mo XX,Dong GC,Zhao ZD,Zhou S,Wang LL,Qiu RZ and Zhang FQ.2005.Spatial and temporal distribution and characteristics of granitoids in the Gangdese,Tibet and implication for crustal growth and evolution.Geological Journal of China Universities,11(3):281-290 (in Chinese with English abstract)
Mo XX,Hou ZQ,Niu YL,Dong GC,Qu XM,Zhao ZD and Yang ZM.2007.Mantle contributions to crustal thickening during continental collision:Evidence from Cenozoic igneous rocks in southern Tibet.Lithos,96(1-2):225-242
Mo XX,Zhao ZD,Zhou S,Dong GC and Liao ZL.2007.On the timing of India-Asia continental collision.Geological Bulletin of China,26(10):1240-1244 (in Chinese with English abstract)
Mo XX,Niu YL,Dong GC,Zhao ZD,Hou ZQ,Zhou S and Ke S.2008.Contribution of syncollisional felsic magmatism to continental crust growth:A case study of the Paleogene Linzizong volcanic succession in southern Tibet.Chemical Geology,250(1-4):49-67
Mo XX,Dong GC,Zhao ZD,Zhu DC,Zhou S and Niu YL.2009.Mantle input to the crust in southern Gangdese,Tibet,during the Cenozoic:Zircon Hf isotopic evidence.Journal of Earth Science,20(2):241-249
Mo XX,Zhao ZD,Yu XH,Dong GC,Li YG,Zhou S,Liao ZL and Zhu DC.2009.Cenozoic Collisional-postcollisional Igneous Rocks in the Tibetan Plateau.Beijing:Geological Publishing House,1-396 (in Chinese with English abstract)
Mo XX.2010.A review and prospect of geological researches on the Qinghai-Tibet Plateau.Geology in China,37(4):841-853 (in Chinese with English abstract)
Mo XX.2011.Magmatism and evolution of the Tibetan Plateau.Geological Journal of China Universities,17(3):351- 367 (in Chinese with English abstract)
Molnar P,Pardo-Casas F and Stock J.1988.The Cenozoic and Late Cretaceous evolution of the Indian Ocean basin:Uncertainties in the reconstructed positions of the Indian,African and Antarctic plates.Basin Research,1(1):23-40
Murphy MA,Harrison TM,Durr SB,Chen Z,Ryerson FJ,Kidd WSF,Wang X and Zhou X.1997.Significant crustal shortening in southcentral Tibet prior to the Indo-Asian collision.Geology,25:719-722
Pan GT,Ding J,Yao DS and Wang LQ.2004.Guidebook of 1 ∶1500000 Geologic Map of the Qinghai-Xizang (Tibet)Plateau and Adjacent Areas.Chengdu:Cartographic Publishing House,1-148(in Chinese)
Pan GT,Mo XX,Hou ZQ,Zhu DC,Wang LQ,Li GM,Zhao ZD,Geng QR and Liao ZL.2006.Spatial-temporal framework of the Gangdese Orogenic Belt and its evolution.Acta Petrologica Sinica,22(3):521-533 (in Chinese with English abstract)
Pearce JA and Cann JR.1973.Tectonic setting of basic volcanic rocks determined using trace element analyses.Earth and Planetary Science Letters,19(2):290-300
Pearce JA and Norry MJ.1979.Petrogenetic implications of Ti,Zr,Y,and Nb Variations in volcanic rocks.Contributions to Mineralogy and Petrology,69(1):33-37
Perfit MR,Gust DA,Bence AE,Arculus RJ and Taylor SR.1980.Chemical characteristics of island-arc basalts:Implications for mantle sources.Chemical Geology,30(3):227-256
Rage JC,Cappetta H,Hartenberger JL,Jaeger JJ,Sudre J,Vlaney-liaud M,Kumar K,Prasadg GVR and Sahni A.1995.Collision ages.Nature,375(6529):6529-6535
Seghedi I,Downes H,Vaselli O,Szakács A,Badosa K and Pecskay Z.2004.Post-collisional Tertiary-Quaternary mafic alkalic magmatism in the Carpathian-Pannonian region:A review.Tectonophysics,393(1-4):43-62
Sun SS and McDonough WF.1989.Chemical and isotope systematics of oceanic basalts:Implications for mantle composition and processes.In:Saunders AD and Norry MJ (eds.).Magmatism in Ocean Basins.Geological Society,London,Publication,42 (1):313-345
Wang NW,Wang SE,Liu GF,Bassoullet J,Colchen M,Mascle L and Jaeger J.1983.The Juro-Cretaceous marine-Terrestrial alternating formations in Lhasa area,Xizang (Tibet).Acta Geologica Sinica,(1):83-96 (in Chinese with English abstract)
Wen DR,Chung SL,Song B,Iizuka Y,Yang HJ,Ji JQ,Liu DY and Gallet S.2008a.Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics,SE Tibet:Petrogenesis and Tectonic implications.Lithos,105(1-2):1-11
Wen DR,Liu DY,Chung SL,Chu MF,Ji JQ,Zhang Q,Song B,Lee TY,Yeh MW and Lo CH.2008b.Zircon SHRIMP U-Pb ages of the Gangdese batholith and implications for Neotethyan subduction in southern Tibet.Chemical Geology,252(3-4):191-201
Winchester JA and Floyd PA.1977.Geochemical discrimination of different magma series and their differentiation products using immobile elements.Chemical Geology,20:325-343
Wood DA.1980.The application of Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province.Earth and Planetary Science Letters,50(1):11-30
Wu FY,Ji WQ,Wang JG,Liu CZ,Chung SL and Clift PD.2014.Zircon U-Pb and Hf isotopic constraints on the onset time of India-Asia collision.American Journal of Science,314(2):548-579
Ye LJ.2013.Chronology and geochemistry of magmatic rocks in Namling-Yangbajing at Lhasa terrane,Tibet.Master Degree Thesis.Beijing:China University of Geosciences (in Chinese with English summary)
Ye LJ,Zhao ZD,Liu D,Zhu DC,Dong GC,Mo XX,Hu ZC and Liu YS.2015.Late Cretaceous diabase and granite dike in Namling,Tibet:Petrogenesis and implications for extension.Acta Petrologica Sinica,31(5):1298-1312 (in Chinese with English abstract)
Yin A and Harrison TM.2000.Geologic Evolution of the Himalayan-Tibetan Orogen.Annual Review of Earth and Planetary Sciences,28:211-280
Zhang Y,Chen W,Chen KL and Liu XY.2006.Study on the Ar-Ar age spectrum of diagenetic I/S and the mechanism of39Ar recoil loss:Examples from the clay minerals of P-T boundary in Changxing,Zhejiang Province.Geological Review,52(4):556- 561 (in Chinese with English abstract)
Zhang ZM,Zhao GC,Santosh M,Wang JL,Dong X and Shen K.2010.Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith,southeastern Tibet:Evidence for Neo-Tethyan mid-ocean ridge subduction?Gondwana Research,17 (4):615-631
Zhao ZD,Mo XX,Dilek Y,Niu YL,DePaolo DJ,Robinson P,Zhu DC,Sun CG,Dong GC,Zhou S,Luo ZH and Hou ZQ.2009.Geochemical and Sr-Nd-Pb-O isotopic compositions of the postcollisional ultrapotassic magmatism in SW Tibet:Petrogenesis and implications for India intra-continental subduction beneath southern Tibet.Lithos,113(1-2):190-212
Zhao ZD,Zhu DC,Dong GC,Mo XX,DePaolo D,Jia LL,Hu ZC and Yuan HL.2011.The~54Ma gabbro-granite intrusive in southern Dangxung area:Petrogenesis and implications.Acta Petrologica Sinica,27(12):3513-3524 (in Chinese with English abstract)
Zhou S,Mo XX,Dong GC,Zhao ZD,Qiu RZ,Guo TY and Wang LL.2004.40Ar-39Ar geochronology of Cenozoic Linzizong volcanic rocks from Linzhou Basin,Tibet,China,and their geological implications.Chinese Science Bulletin,49(18):1970-1979
Zhu DC,Pan GT,Chung SL,Liao ZL,Wang LQ and Li GM.2008.SHRIMP zircon age and geochemical constraints on the origin of Lower Jurassic volcanic rocks from the Yeba Formation,southern Gangdese,South Tibet.International Geology Review,50(5):442-471
Zhu DC,Pan GT,Zhao ZD,Lee HY,Kang ZQ,Liao ZL,Wang LQ,Li GM,Dong GC and Liu B.2009.Early Cretaceous subductionrelated adakite-like rocks in the Gangdese,South Tibet:Products of slab melting and subsequent melt-peridotite interaction?Journal of Asian Earth Sciences,34(3):298-309
Zhu DC,Mo XX,Zhao ZD,Niu Y,Pan GT,Wang LQ and Liao ZL.2009.Permian and Early Cretaceous tectonomagmatism in southern Tibet and Tethyan evolution.Earth Science Frontiers,16(2):1-20 (in Chinese)
Zhu DC,Zhao ZD,Niu YL,Mo XX,Chung SL,Hou ZQ,Wang LQ and Wu FY.2011.The Lhasa Terrane:Record of a microcontinent and its histories of drift and growth.Earth and Planetary Science Letters,301(1-2):241-255
Zhu DC,Zhao ZD,Niu Y,Dilek Y,Wang Q,Ji WH,Dong GC,Sui QL,Liu YS,Yuan HL and Mo XX.2012.Cambrian bimodal volcanism in the Lhasa Terrane,southern Tibet:Record of an early Paleozoic Andean-type magmatic arc in the Australian proto-Tethyan margin.Chemical Geology,328:290-308
Zhu DC,Zhao ZD,Niu YL,Dilek Y,Hou ZQ and Mo XX.2013.The origin and pre-Cenozoic evolution of the Tibetan Plateau.Gondwana Research,23(4):1429-1454
Zhu ZW,Zhu XY and Zhang YM.1981.Palaeomagnetic observation in Xizang and continental drift.Acta Geophysica Sinica,24(1):40-49 (in Chinese with English abstract)
Zindler A and Hart SR.1986.Chemical geodynamics.Annual Review Earth Planetary Sciences,14:493-573
附中文參考文獻(xiàn)
陳文,張彥,張?jiān)罉颍鹳F善,王清利.2006.青藏高原東南緣晚新生代幕式抬升作用的Ar-Ar 熱年代學(xué)證據(jù).巖石學(xué)報(bào),22(4):867-872
陳煒,馬昌前,邊秋娟,胡遠(yuǎn)清,龍?zhí)页?,喻水林,陳冬明,屠江?2009.西藏得明頂?shù)貐^(qū)葉巴組火山巖地球化學(xué)特征和同位素UPb 年齡證據(jù).地質(zhì)科技情報(bào),28(3):31-40
董國(guó)臣.2002.西藏林子宗火山巖及其反演的板塊碰撞過(guò)程研究.博士學(xué)位論文.北京:中國(guó)地質(zhì)大學(xué)
董國(guó)臣,莫宣學(xué),趙志丹,朱弟成,王亮亮,陳濤,李冰.2006.岡底斯巖漿帶中段巖漿混合作用:來(lái)自花崗雜巖的證據(jù).巖石學(xué)報(bào),22(4):835-844
董國(guó)臣,莫宣學(xué),趙志丹,朱弟成,宋云濤,王磊.2008.西藏岡底斯南帶輝長(zhǎng)巖及其所反映的殼幔作用信息.巖石學(xué)報(bào),24 (2):203-210
管琪,朱弟成,趙志丹,張亮亮,劉敏,李小偉,于楓,莫宣學(xué).2010.西藏南部岡底斯帶東段晚白堊世埃達(dá)克巖:新特提斯洋脊俯沖的產(chǎn)物?巖石學(xué)報(bào),26(7):2165-2179
管琪,朱弟成,趙志丹,董國(guó)臣,莫宣學(xué),劉勇勝,胡兆初,袁洪林.2011.西藏拉薩地塊南緣晚白堊世鎂鐵質(zhì)巖漿作用的年代學(xué)、地球化學(xué)及意義.巖石學(xué)報(bào),27(7):2083-2094
侯增謙,莫宣學(xué),高永豐,楊志明,董國(guó)臣,丁林.2006.印度大陸與亞洲大陸早期碰撞過(guò)程與動(dòng)力學(xué)模型——來(lái)自西藏岡底斯新生代火山巖證據(jù).地質(zhì)學(xué)報(bào),80(9):1233-1248
井天景.2014.西藏馬鄉(xiāng)設(shè)興組砂巖鋯石U-Pb 年代學(xué)、巖石地球化學(xué)及其意義.碩士學(xué)位論文.北京:中國(guó)地質(zhì)大學(xué)
李皓揚(yáng),鐘孫霖,王彥斌,朱弟成,楊進(jìn)輝,宋彪,劉敦一,吳福元.2007.藏南林周盆地林子宗火山巖的時(shí)代、成因及其地質(zhì)意義:鋯石U-Pb 年齡和Hf 同位素證據(jù).巖石學(xué)報(bào),23(2):493-500
劉叢強(qiáng),解廣轟,增田彰正.1995.中國(guó)東部新生代玄武巖的地球化學(xué)(Ⅱ):Sr、Nd、Pb 同位素組成地球化學(xué).地球化學(xué),24(3):203-214
莫宣學(xué),趙志丹,鄧晉福,董國(guó)臣,周肅,郭鐵鷹,張雙全,王亮亮.2003.印度-亞洲大陸主碰撞過(guò)程的火山作用響應(yīng).地學(xué)前緣,10(3):135-148
莫宣學(xué),董國(guó)臣,趙志丹,周肅,王亮亮,邱瑞照,張鳳琴.2005.西藏岡底斯帶花崗巖的時(shí)空分布特征及地殼生長(zhǎng)演化信息.高校地質(zhì)學(xué)報(bào),11(3):281-290
莫宣學(xué),趙志丹,周肅,董國(guó)臣,廖忠禮.2007.印度-亞洲大陸碰撞的時(shí)限.地質(zhì)通報(bào),26(10):1240-1244
莫宣學(xué),趙志丹,喻學(xué)惠,董國(guó)臣,李佑國(guó),周肅,廖忠禮,朱弟成.2009.青藏高原新生代碰撞-后碰撞火成巖.北京:地質(zhì)出版社,1-396
莫宣學(xué).2010.青藏高原地質(zhì)研究的回顧與展望.中國(guó)地質(zhì),37(4):841-853
莫宣學(xué).2011.巖漿作用與青藏高原演化.高校地質(zhì)學(xué)報(bào),17(3):351-367
潘桂棠,丁俊,王立全.2004.1∶1500000 青藏高原及鄰區(qū)地質(zhì)圖及說(shuō)明書(shū).成都:成都地圖出版社
潘桂棠,莫宣學(xué),侯增謙,朱弟成,王立全,李光明,趙志丹,耿全如,廖忠禮.2006.岡底斯造山帶的時(shí)空結(jié)構(gòu)及演化.巖石學(xué)報(bào),22(3):521-533
王乃文,王思恩,劉桂芳,巴蘇雷J,柯?tīng)柹闙,馬斯克L,讓格J.1983.西藏拉薩地區(qū)的海陸交互相侏羅系與白堊世.地質(zhì)學(xué)報(bào),(1):83-96
葉麗娟.2013.西藏拉薩地塊南木林-羊八井巖漿巖的年代學(xué)和地球化學(xué).碩士學(xué)位論文.北京:中國(guó)地質(zhì)大學(xué)
葉麗娟,趙志丹,劉棟,朱弟成,董國(guó)臣,莫宣學(xué),胡兆初,劉勇勝.2015.西藏南木林晚白堊世輝綠巖與花崗質(zhì)脈巖成因及其揭示的伸展背景.巖石學(xué)報(bào),31(5):1298-1312
張彥,陳文,陳克龍,劉新宇.2006.成巖混層(I/S)Ar-Ar 年齡譜型及39Ar 核反沖丟失機(jī)理研究——以浙江長(zhǎng)興地區(qū)P-T 界線粘土巖為例.地質(zhì)論評(píng),52(4):556-561
趙志丹,朱弟成,董國(guó)臣,莫宣學(xué),DePaolo D,賈黎黎,胡兆初,袁洪林.2011.西藏當(dāng)雄南部約54Ma 輝長(zhǎng)巖-花崗巖雜巖的巖石成因及意義.巖石學(xué)報(bào),27(12):3513-3524
周肅,莫宣學(xué),董國(guó)臣,趙志丹,邱瑞照,王亮亮,郭鐵鷹.2004.西藏林周盆地林子宗火山巖40Ar/39Ar 年代學(xué)格架.科學(xué)通報(bào),49(20):2095-2104
朱弟成,莫宣學(xué),趙志丹,牛耀玲,潘桂棠,王立全,廖忠禮.2009.西藏南部二疊紀(jì)和早白堊世構(gòu)造巖漿作用與特提斯演化:新觀點(diǎn).地學(xué)前緣,16(2):1-20
朱志文,朱湘元,張一鳴.1981.西藏高原古地磁及大陸漂移.地球物理學(xué)報(bào),24(1):40-49