高利娥 曾令森 許志琴 王莉
1.大陸構(gòu)造與動力學(xué)國家重點(diǎn)實(shí)驗(yàn)室,中國地質(zhì)科學(xué)院地質(zhì)研究所,北京 100037
2.河南省有色金屬地質(zhì)勘查總院,鄭州 450052
青藏高原具有“多陸塊、多島弧”組成的基本格局及顯示“多洋盆、多俯沖、多期碰撞和多期造山”的動力學(xué)作用過程(Hsü et al.,1995;Yin and Harrison,2000;許志琴等,2006)。自新元古代以來,組成青藏高原的地體和造山帶經(jīng)歷了長期的構(gòu)造巖漿作用,最后拼貼、碰撞、隆升形成現(xiàn)今的高原,又稱為“造山的高原”(Dewe,2005;許志琴等,2006)。了解新生代喜馬拉雅造山帶的造山過程(包括構(gòu)造變形、地殼深熔和變質(zhì)作用等特征)一直以來是青藏高原研究重點(diǎn)之一。但要深入理解新生代以來喜馬拉雅造山帶的構(gòu)造演化過程,需要了解印度-歐亞大陸碰撞前喜馬拉雅地體可能經(jīng)歷的構(gòu)造作用,需要了解喜馬拉雅造山帶的物質(zhì)組成。
羅迪尼亞超大陸裂解之后,非洲、南美、澳大利亞、印度、阿拉伯、南極等陸塊向南漂移,在新元古代末期匯聚拼合成岡瓦納大陸,這些陸塊之間的造山帶統(tǒng)稱為泛非期造山系,形成時(shí)間為570~510Ma(Cawood et al.,2007)。早期研究認(rèn)為,喜馬拉雅造山帶古生代的巖漿作用和變質(zhì)作用都屬于泛非期(許志琴等,2005)。但越來越多的地質(zhì)年代學(xué)數(shù)據(jù)都揭示了花崗質(zhì)片麻巖的原巖形成年齡要明顯小于泛非期,可能對應(yīng)于原特提斯洋向?qū)呒{大陸北緣俯沖過程中的安第斯型造山作用(Kusky et al.,2003;Cawood et al.,2007;張澤明等,2008;董昕等,2009;Wang et al.,2012),主要表現(xiàn)為:(1)在喜馬拉雅、拉薩和羌塘,發(fā)育大量~480Ma 的巖漿巖和變質(zhì)巖(Foster,2000;Lee et al.,2000;Godin et al.,2001;Gehrels et al.,2003;DeCelles et al.,2004;Cawood et al.,2007;Lee and Whitehouse,2007;Quigley et al.,2008;Guynn et al.,2012;Zhang et al.,2012;Zhu et al.,2013);(2)寒武-奧陶統(tǒng)地層之間的角度不整合和奧陶統(tǒng)底礫巖(Kumar et al.,1978;Bagati et al.,1991;Le Fort et al.,1994;Wiesmayr et al.,1998;Gehrels et al.,2003;Myrow et al.,2006;劉文燦等,2002;周志廣等,2004);(3)沉積相的突變(Bordet et al.,1971;Funakawa,2001)。綜合以上地質(zhì)事件,在Cawood et al.(2007)模型基礎(chǔ)上,Wang et al.(2012)提出:530~500Ma,原特提斯洋向?qū)呒{大陸北緣俯沖;500~467Ma,俯沖板片斷離,東羌塘微陸塊(?)與東岡瓦納大陸北緣發(fā)生碰撞;467Ma 之后,東岡瓦納大陸北緣再次經(jīng)歷裂解作用,伴隨堆晶輝長巖的產(chǎn)生,喜馬拉雅地區(qū)轉(zhuǎn)變?yōu)楸粍哟箨戇吘墶5撃P筒荒芙忉屢韵掠^測結(jié)果,包括:(1)特提斯沉積巖和新生代淡色花崗巖含大量年齡為460~410Ma 碎屑鋯石(Gehrels et al.,2011;高利娥,2014)或繼承性鋯石(Aikman et al.,2008;高利娥,2014);(2)喜馬拉雅造山帶高級變質(zhì)巖的石榴子石中包裹U-Th-Pb 年齡為420~400Ma的獨(dú)居石(Martin et al.,2007)。這些現(xiàn)象暗示著喜馬拉雅造山帶可能經(jīng)歷了加里東期構(gòu)造作用。
為了進(jìn)一步探討喜馬拉雅造山帶古生代的構(gòu)造熱事件及其構(gòu)造動力學(xué)意義,本文以馬拉山-吉隆構(gòu)造帶中的花崗巖、變沉積巖和花崗質(zhì)片麻巖為研究對象,來反演喜馬拉雅造山帶古生代的演化歷史,完善東岡瓦納大陸北緣的構(gòu)造演化模型。
喜馬拉雅造山帶呈E-W 向弧形展布(圖1a),自北向南依次劃分為4 個(gè)構(gòu)造單元:特提斯喜馬拉雅帶(也稱北喜馬拉雅片麻巖穹窿,NHGD)、高喜馬拉雅結(jié)晶巖系(HHCS)、低喜馬拉雅巖系(LHS)和次喜馬拉雅巖系(SHS)。它們之間的界限分別為藏南拆離系(STDS)、主中央逆沖斷層(MCT)、主邊界逆沖斷層(MBT)。在喜馬拉雅逆沖構(gòu)造體系形成的同時(shí),藏南地區(qū)經(jīng)歷了廣泛的伸展作用,表現(xiàn)為(1)沿喜馬拉雅北坡展布的藏南拆離系(STDS)和(2)南北向裂谷系(NSTR)。
北喜馬拉雅穹窿內(nèi),沿東西向斷續(xù)分布著一系列串珠狀穹窿(圖1a),不同的穹窿總體上顯示了相似的特征,核部由高級變質(zhì)巖和侵入其中的花崗巖組成,邊部為淺變質(zhì)或未變質(zhì)的特提斯沉積巖系,兩者之間是韌性拆離斷層。高級片麻巖具有與高喜馬拉雅結(jié)晶巖相似的礦物組成、地球化學(xué)特征以及年代學(xué)特征,被認(rèn)為是高喜馬拉雅結(jié)晶巖系折返過程中侵入到特提斯沉積巖,主要包括含石榴子石的花崗質(zhì)片麻巖、眼球狀花崗片麻巖、含石榴子石和矽線石的片麻巖、石榴角閃巖、石榴輝石巖、大理巖等?;◢徺|(zhì)片麻巖的原巖形成于562~506Ma(Sch?rer et al.,1986;Harrison et al.,1997,1998;Lee et al.,2000;Lee and Whitehouse,2007;Quigley et al.,2008;Gao et al.,2012)。高喜馬拉雅帶內(nèi),淡色花崗巖東西向斷續(xù)延伸約兩千余千米,侵入高喜馬拉雅結(jié)晶巖系中,或卷入STDS 下部寬闊的剪切帶內(nèi)。高喜馬拉雅結(jié)晶巖系是一套原巖時(shí)代為古元古代-奧陶紀(jì)的高級變質(zhì)巖,包括榴輝巖相-角閃巖相的片麻巖(變泥質(zhì)巖和花崗質(zhì)片麻巖)、變基性巖(榴輝巖、石榴輝石巖、石榴角閃巖)、鈣硅質(zhì)巖和大理巖。該結(jié)晶巖系在喜馬拉雅帶中段被稱作聶拉木群,在東構(gòu)造結(jié)為南迦巴瓦巖群。大量的年代學(xué)研究表明:高喜馬拉雅結(jié)晶巖系中所獲得的古生代巖漿和變質(zhì)事件年代為530~460Ma(Cawood et al.,2007;Wang et al.,2012;許志琴等,2005;張澤明等,2008)。
馬拉山-吉隆裂谷系是藏南裂谷系中重要一支,位于喜馬拉雅造山帶內(nèi)部的吉隆縣,雅魯藏布江縫合帶和主中央逆沖斷層(MCT)之間,藏南拆離系(STDS)橫貫其中(圖1b)。橫穿研究區(qū)的剖面表明,吉隆周緣地區(qū)可劃分為5 個(gè)特征不同的構(gòu)造-巖石單元,由北向南依次是:馬拉山穹窿、晚新生代盆地、特提斯喜馬拉雅沉積巖系(THS)、藏南拆離系(STDS)、高喜馬拉雅結(jié)晶巖系(HHCS)。馬拉山穹窿位于北喜馬拉雅片麻巖穹窿的西部(圖1a),由錯(cuò)布二云母花崗巖、馬拉山二云母花崗巖和佩枯錯(cuò)復(fù)合淡色花崗巖體組成(圖1b),其中二云母花崗巖巖體規(guī)模較大,從錯(cuò)布往東延伸到波絨穹窿的北側(cè),東西展布~10km,南北~500m。圍巖為侏羅紀(jì)到白堊紀(jì)的泥質(zhì)和鈣質(zhì)片巖(Pan et al.,2004)。佩枯錯(cuò)淡色花崗巖是一復(fù)合巖體,由含電氣石淡色花崗巖、二云母花崗巖和含石榴石淡色花崗巖組成(Gao et al.,2013)。馬拉山二云母花崗巖由多期次“量子行為”的巖脈匯聚而成,形成于16.9~17.6Ma(高利娥等,2013),是水致白云母部分熔融的產(chǎn)物(Gao and Zeng,2014)。STDS 為一大型韌性剪切帶,在吉隆地區(qū)寬~8km,主要由眼球狀花崗質(zhì)片麻巖和面理化的淡色花崗巖組成,并被后期的淡色花崗巖體侵位(圖1b),眼球狀片麻巖的源巖為早古生代的花崗巖,形成于498.9 ±4.4Ma(Wang et al.,2012)。高喜馬拉雅結(jié)晶巖系(HHCS)主要由眼球狀片麻巖、黑云母花崗質(zhì)片麻巖、變泥質(zhì)巖、斜長角閃片麻巖、含透輝石的大理巖、石榴輝石巖等組成。呈巖脈、巖墻、巖枝狀或透鏡巖體產(chǎn)出的淡色花崗巖直接侵入到變泥質(zhì)巖、花崗質(zhì)片麻巖或含透輝石的大理巖中。
圖1 藏南喜馬拉雅造山帶地質(zhì)簡圖(a,據(jù)Zeng et al.,2009)和馬拉山穹隆地質(zhì)簡圖(b,據(jù)Yang et al.,2009)YTS-雅魯藏布江縫合帶;STDS-藏南拆離系;MCT-主中央逆沖推覆帶;MBT-主邊界逆沖推覆帶;LH-小喜馬拉雅巖系Fig.1 Simplified geologic map of the Himalayan orogenic belt,southern Tibet (a,after Zeng et al.,2009)and simplified geological map of the Malashan Gneiss Dome (b,after Yang et al.,2009)YTS:Yarlung-Tsangpo suture;STDS:Southern Tibet Detachment System;MCT:Main Center Thrust;MBT:Main Boundary Thrust;LH:Lower Himalayan Crystalline Sequence
為了探討喜馬拉雅造山帶古生代的構(gòu)造演化歷史,追蹤該造山帶物質(zhì)組成的來源,選擇了馬拉山片穹窿核部的石英片巖T0659-Q、高喜馬拉雅結(jié)晶巖系內(nèi)眼球狀花崗片麻巖TZC09 和馬拉山二云母花崗巖T0829 和T0830 樣品,測定了這些樣品的鋯石U-Pb 同位素年齡和Hf 同位素組成,分析了眼球狀花崗質(zhì)片麻巖的地球化學(xué)組成。
為了查明眼球狀花崗質(zhì)片麻巖、石英片巖和二云母花崗巖的年代學(xué)特征,從樣品TZC09、T0659-Q、T0829 和T0830 中挑選鋯石,經(jīng)過手工挑選、制靶和拋光,然后進(jìn)行陰極發(fā)光(CL)和掃描電鏡背散射(BSE)成像觀察,揭示鋯石不同生長域的細(xì)微特征。陰極發(fā)光成像在中國地質(zhì)科學(xué)院地質(zhì)研究所北京離子探針中心進(jìn)行。在中國地質(zhì)科學(xué)院地質(zhì)研究所大陸構(gòu)造與動力學(xué)國家重點(diǎn)實(shí)驗(yàn)室進(jìn)行了BSE 圖像和鋯石內(nèi)部包裹體的成分測試。在陰極發(fā)光和BSE 圖像的指導(dǎo)下,選取鋯石U/Pb 測試點(diǎn)。鋯石U/Pb 同位素定年測試在中國地質(zhì)科學(xué)院礦產(chǎn)資源研究所成礦作用與資源評價(jià)重點(diǎn)實(shí)驗(yàn)室進(jìn)行。所用儀器為德國Finnigan 公司生產(chǎn)的Neptune 型激光多接收等離子體質(zhì)譜(LA-MC-ICPMS),并結(jié)合美國New Wave 公司生產(chǎn)的UP 213nm 激光剝蝕系統(tǒng),激光剝蝕所用斑束直徑為25μm,頻率為10Hz,能量密度約為2.5J/cm2,以He為載氣。U 和Th 含量以鋯石標(biāo)樣M127(U:923 ×10-6;Th:439 ×10-6;Th/U:0.475)為外標(biāo)進(jìn)行校正。在測試過程中,每測定10 個(gè)樣品點(diǎn)前后重復(fù)測量兩次鋯石標(biāo)樣GJ-1 和一次鋯石標(biāo)樣Plesovice。分析數(shù)據(jù)的離線處理(包括對樣品和空白信號的選擇、儀器靈敏度漂移校正、元素含量及U-Th-Pb同位素比值和年齡計(jì)算)采用軟件ICPMSDataCal ADDIN EN.CITE ADDIN EN.CITE.DATA 完成(Liu et al.,2010),鋯石年齡諧和圖用Isoplot 3.0 程序獲得。測試結(jié)果見表1。
為了確定眼球狀花崗質(zhì)片麻巖的地球化學(xué)特征,進(jìn)行了全巖主量和微量元素組成測試。主量及微量元素的測試在國土資源部國家地質(zhì)實(shí)驗(yàn)測試中心進(jìn)行。主量元素通過XRF(X 熒光光譜儀3080E)方法測試,分析精度為5%。微量元素和稀土元素(REE)通過等離子質(zhì)譜儀(ICP-MS-Excell)分析,含量大于10 ×10-6的元素的測試精度為5%,而小于10×10-6的元素精度為10%。個(gè)別在樣品中含量低的元素,測試誤差大于10%。分析結(jié)果見表2。
圖2 眼球狀花崗質(zhì)片麻巖(TZC09)中鋯石的陰極發(fā)光照片(a)和LA-MC-ICP-MS U/Pb 定年諧和圖(b、c)Fig.2 Cathodoluminescence (CL)showing the texture,spot,and respective age of zircon U/Pb dating (a)and U/Pb concordia diagram (b,c)for the augen granitic gneiss (TZC09)
表1 馬拉山吉隆構(gòu)造帶中二云母花崗巖(T0829和T0830-B)、石英片巖(T0659-Q)和眼球狀花崗質(zhì)片麻巖(TZC09)的LA-MC-ICP-MS鋯石U-Pb定年數(shù)據(jù)Table1 U-Pb isotopic data for the two-mica granite(T0829 and T0830-B), graohiteschist(T0659-Q) and augen graniticgneiss(TZC09) in the Malashan-GyirongZone
續(xù)表1Continued Table1
續(xù)表1Continued Table1
續(xù)表1Continued Table1
表2 眼球狀花崗質(zhì)片麻巖(TZC09 和T0807)的主量(wt%)及微量(×10 -6)元素地球化學(xué)特征Table 2 Major (wt%)and trace (×10 -6)element data for the augen granitic gneiss (TZC09 and T0807)
鋯石Hf 同位素測試是在中國地質(zhì)科學(xué)院礦產(chǎn)資源研究所國土資源部成礦作用與資源評價(jià)重點(diǎn)實(shí)驗(yàn)室Neptune 多接收等離子質(zhì)譜和Newwave UP213 紫外激光剝蝕系統(tǒng)(LAMC-ICP-MS)上進(jìn)行的,實(shí)驗(yàn)過程中采用He 作為剝蝕物質(zhì)載氣,剝蝕直徑采用40μm,測定時(shí)使用鋯石國際標(biāo)樣GJ1 和Plesovice 作為參考物質(zhì),分析點(diǎn)與U-Pb 定年分析點(diǎn)為同一位置,或者選擇結(jié)構(gòu)相似的點(diǎn)。相關(guān)儀器運(yùn)行條件及詳細(xì)分析流程見侯可軍等(2007)。分析過程中鋯石標(biāo)準(zhǔn)GJ1 和Plesovice 的176Hf/177Hf 測試加權(quán)平均值分別為0.282007 ±0.000007(2σ,n=36)和0.282476 ±0.000004(2σ,n =27),與文獻(xiàn)報(bào)道值(Morel et al.,2008;Sláma et al.,2008;侯可軍等,2007)在誤差范圍內(nèi)完全一致。分析結(jié)果見表3。
3.1.1 眼球狀花崗質(zhì)片麻巖( TZC09)
在該樣品中,鋯石呈自形長柱狀,棱角清晰(圖2a),長100~200μm,寬60~100μm,長寬比一般為2∶1。大部分鋯石為核-幔-邊結(jié)構(gòu),核部具有繼承性特征,幔部為模糊化的振蕩環(huán)帶,為變質(zhì)成因,邊部為較窄的均一化灰白色(<30μm),表明這些鋯石結(jié)晶之后經(jīng)歷了后期的變質(zhì)作用。對不同結(jié)構(gòu)的微區(qū)進(jìn)行了鋯石U-Pb 同位素測試。鋯石核部U 和Th 濃度都較低,分別為27 ×10-6~181 ×10-6和25 ×10-6~146 ×10-6,Th/U 變化較大但較高,為0.81~1.04,206Pb/238U 年齡分布于846~995Ma 之間。模糊化振蕩環(huán)帶的鋯石幔部,U 和Th 濃度也較低,95 ×10-6~650 ×10-6和6×10-6~106 × 10-6,大部分Th/U 比值為0.19~0.44,206Pb/238U 年齡分布廣泛,在410~465Ma 之間,在U-Pb 諧和圖上,集中分布于447Ma 處(圖2b),TuffZir 年齡值為447.0+3.0/-5.3Ma(26 個(gè)測點(diǎn),置信度為95%)(圖2c),是眼球狀花崗質(zhì)片麻巖源巖結(jié)晶之后經(jīng)歷的變質(zhì)作用的時(shí)間。在U-Pb 諧和線上還有另一組年齡集中于410Ma(圖2b),可能代表了另一期變質(zhì)作用時(shí)間。多數(shù)鋯石邊部較窄,較難于精確測定U-Pb 同位素年齡,3 粒邊部較寬的鋯石得到206Pb/238U 年齡為26.0~35.8Ma,表明眼球狀花崗質(zhì)片麻巖的確經(jīng)歷了喜馬拉雅期變質(zhì)作用,但可能由于變質(zhì)作用過程中,流體有限,鋯石重結(jié)晶再生長有限。
3.1.2 石英片巖( T0659-Q)
在該樣品中,鋯石呈自形長柱狀,棱角清晰,長100~150μm,寬60~80μm,長寬比一般為2∶1。大部分鋯石整體顯示振蕩環(huán)帶,個(gè)別鋯石含繼承性的核部(圖3a-f)。這些特征預(yù)示著石英片巖的原巖可能形成于巖漿作用強(qiáng)烈的活動大陸邊緣,原巖物質(zhì)未經(jīng)歷遠(yuǎn)距離的搬運(yùn)作用。U-Pb 同位素測試主要集中在具有振蕩環(huán)帶的鋯石,分析結(jié)果表明,U和Th 濃度變化較大,為215 ×10-6~3504 ×10-6和88 ×10-6~509 ×10-6,Th/U 變化也較大,0.06~0.64。剔除幾個(gè)混合年齡點(diǎn),206Pb/238U 年齡為371~457Ma,在Pb/U 諧和圖上集中分布于一致線的374.8Ma 和447.0Ma 附近(圖3g),TuffZir年齡值分別為374.8 +4.0/-1.5Ma(9 個(gè)測點(diǎn),置信度為96.1%)和447.0 + 1.4/- 1.5Ma(26 個(gè)測點(diǎn),置信度為95%)(圖3h)。這兩組年齡數(shù)據(jù)點(diǎn)在諧和線上相對集中分布,可信度高,代表了石英片巖的物源含有447.0Ma 和374.8Ma 的兩期巖漿巖,對應(yīng)于東岡瓦那北緣經(jīng)歷的兩期構(gòu)造巖漿事件。
圖3 石英片巖(T0659-Q)中鋯石的陰極發(fā)光照片(a-f)和LA-MC-ICP-MS U/Pb 定年諧和圖(g、h)Fig.3 Cathodoluminescence (CL)showing the texture,spot,and respective age of zircon U/Pb dating (a-f)and U/Pb concordia diagram (g,h)for the quartz schist (T0659-Q)
3.1.3 二云母花崗巖( T0829)
在該樣品中,鋯石顯示核-幔-邊結(jié)構(gòu)(圖4a),但大部分鋯石核-幔-邊結(jié)構(gòu)不完整。核部為振蕩環(huán)帶或均一化變質(zhì)區(qū)域,幔部為均一化的灰白色,顯示了變質(zhì)作用的特征,邊部顯示典型的韻律生長環(huán)帶,記錄了二云母花崗巖的結(jié)晶年齡。為了了解二云母花崗巖的源巖經(jīng)歷的構(gòu)造巖漿作用,對結(jié)構(gòu)不同的微區(qū)進(jìn)行了U-Pb 同位素組成測試。在振蕩環(huán)帶的核部,U 和Th 含量變化較大,分別在117 ×10-6~848 ×10-6和58 ×10-6~360 ×10-6之間,Th/U 比值較變化較大(0.27~0.97),但206Pb/238U 年齡相對集中,從431Ma 到438Ma,9 點(diǎn)TuffZir 年齡值為434.7 +1.9/-2.9Ma(置信度為96.1%,圖4f)。韻律生長環(huán)帶表明二云母花崗巖的源巖含來自~434.7Ma的巖漿成因的組分。與振蕩環(huán)帶的鋯石巖漿核部相比,均一化的鋯石變質(zhì)核部U 和Th 含量較低,分別在165×10-6~1021 ×10-6和1 ×10-6~32 ×10-6之間,Th/U <0.05(圖4g),206Pb/238U 年齡相對分散,從315Ma 到432Ma,其中大部分年齡集中于425~432Ma 之間,8 點(diǎn)TuffZir 年齡值為431.3 +0.6/-2.5Ma(置信度為93%,圖4e)。這期年齡代表了二云母花崗巖源巖同時(shí)含有經(jīng)歷了~431.3Ma 變質(zhì)作用的組分。這些數(shù)據(jù)表明,二云母花崗巖的源巖組分中含有大量經(jīng)歷了約430~440Ma 巖漿和變質(zhì)作用的物質(zhì),可能表明喜馬拉雅造山帶在約430~440Ma 期間經(jīng)歷了一期重要的構(gòu)造巖漿事件。
均一化的變質(zhì)鋯石幔部U 和Th 含量很低,分別在50 ×10-6~551 ×10-6和0~4 ×10-6之間,Th/U 比值較低(0.1~0.7),206Pb/238U 年齡相對分散,從17.0Ma 到20.5Ma(圖4b),其中4 點(diǎn)年齡集中于17.0~17.7Ma 之間,TuffZir 年齡值為17.5 +0.2/-0.6Ma(置信度為87.8%,圖4d)。對具有典型的韻律生長環(huán)帶的鋯石邊部進(jìn)行了16 點(diǎn)測試,U 含量較高(4484 ×10-6~16903 ×10-6),其中15 點(diǎn)沒有得到207Pb/206Pb 年齡,無法進(jìn)行計(jì)算,1 點(diǎn)得到的206Pb/238U 年齡為17.6 ±0.2Ma(圖4a)。從以上這些數(shù)據(jù)分析表明:二云母花崗巖的源巖記錄了約430~440Ma 期間的一期重要的構(gòu)造巖漿事件和17.0~20.5Ma 的喜馬拉雅期變質(zhì)作用。
3.1.4 二云母花崗巖( T0830)
圖4 馬拉山二云母花崗巖(T0829)中鋯石的陰極發(fā)光照片(a)和LA-MC-ICP-MS U/Pb 定年諧和圖(b-g)Fig.4 Cathodoluminescence (CL)showing the texture,spot,and respective age of zircon U/Pb dating (a)and U/Pb concordia diagram (b-g)for the Malashan two-mica granite (T0829)
在樣品T0830 中,大部分鋯石顯示核-邊結(jié)構(gòu)(圖5a),核部為振蕩環(huán)帶,邊部較窄(<30μm),顯示典型的韻律生長環(huán)帶。個(gè)別鋯石具有以下特征:(1)多期繼承性核部;(2)均一化灰白色幔部;(3)后期退火均一化邊部。同樣,對不同的結(jié)構(gòu)微區(qū)進(jìn)行了U-Pb 同位素組成測試。具有有振蕩環(huán)帶的巖漿核部U 和Th 含量較低,分別在259 ×10-6~4833 ×10-6和18 ×10-6~323 ×10-6之間,Th/U 比值變化較大(0.06~0.57),206Pb/238U 年齡相對分散,從108Ma 到487Ma,其中大部分年齡集中于436~458Ma 之間,5 點(diǎn)TuffZir 年齡值為445.3+12.9/-8.9Ma(置信度為93.6%,圖5b),這表明,與上述樣品相似,二云母花崗巖的源巖中包含~445.3Ma 的巖漿型繼承鋯石。2 點(diǎn)均一化的變質(zhì)幔部206Pb/238U 年齡為436Ma 和438Ma,Th/U 較低(<0.06)。其中一顆幔部變質(zhì)年齡為436Ma 的鋯石,核部年齡為486Ma,可能與喜馬拉雅造山帶經(jīng)歷的兩期古生代構(gòu)造熱事件相關(guān)。典型的韻律生長環(huán)帶邊部較窄,進(jìn)行了13 點(diǎn)測試,其中9 點(diǎn)打在核部和邊部的混合區(qū)域,2 點(diǎn)諧和度小于95%,剩余2 點(diǎn)得到的206Pb/238U 年齡為17.6Ma 和18.7Ma(圖5a)。2 點(diǎn)均一化的變質(zhì)邊部206Pb/238U 年齡分別為20.8Ma 和21.8Ma。
圖5 馬拉山二云母花崗巖(T0830)中鋯石的陰極發(fā)光照片(a)和LA-MC-ICP-MS U/Pb 定年諧和圖(b、c)Fig.5 Cathodoluminescence (CL)showing the texture,spot,and respective age of zircon U/Pb dating (a)and U/Pb concordia diagram (b,c)for the Malashan two-mica granite (T0830)
為了確定眼球狀花崗質(zhì)片麻巖的Hf 同位素組成特征,利用MC-ICP-MS 對TZC09 中鋯石進(jìn)行了原位Hf 同位素測試。個(gè)別鋯石邊部的176Yb/177Hf 比值偏高(表3),為了保證Hf 同位素比值的合理性,我們最終選擇了176Yb/177Hf <0.20的測點(diǎn)進(jìn)行探討。測試結(jié)果顯示模糊化振蕩環(huán)帶具有高度變化的Hf 同位素含量,εHf(t)為-15.9~-3.0(圖6),地殼模式年齡tDM1對應(yīng)于1216~1732Ma。個(gè)別均一化的灰白色變質(zhì)邊部(年齡<36Ma)具有正的εHf,εHf(t)=0.1~5.0,地殼模式年齡tDM1為893~1070Ma,可能表明眼球狀花崗質(zhì)片麻巖在新生代變質(zhì)作用過程中有年輕的地殼流體加入。
圖6 眼球狀花崗質(zhì)片麻巖(TZC09)的εHf(t)-年齡圖解二云母花崗巖的數(shù)據(jù)來自于高利娥等,2013Fig.6 εHf(t)vs.age diagram for the augen granitc gneiss(TZC09)Data for two-mica granites are from Gao et al.,2013
從主量元素含量來看,眼球狀花崗質(zhì)片麻巖TZC09 和T0807 具有較高的SiO2(71.0%~75.9%),Al2O3(12.1%~14.5%)(圖7a),但較低的CaO(0.8%~1.9%)(圖7c)、FeO(0.8%~2.4%,圖7b)、MgO、MnO 和TiO2(表2),A/CNK >1.1,K2O/Na2O >1.4%(圖6d,除T0807-3 外)。總體來看,TZC09 和T0807 顯示富鉀過鋁質(zhì)的特征。在蜘蛛網(wǎng)圖上(圖8a),TZC09 和T0807 顯示Ba、Sr、P、Ti、Nb 和Ta 的負(fù)異常。Zr/Hf 比值和Nb/Ta 比值都低于球粒隕石,分別為25.5~29.4 和8.6~14.8(表2)。Rb/Sr 比值較高,為1.6~5.7。在稀土元素配分圖解中(圖8b),TZC09 和T0807 富集輕稀土(LREE),重稀土(HREE)平坦,(Gd/Yb)N=0.8~2.2,Eu 為明顯的負(fù)異常,Eu/Eu*=0.4~0.6。與喜馬拉雅造山帶多數(shù)眼球狀花崗片麻巖相比,這兩套眼球狀花崗質(zhì)片麻巖表現(xiàn)出類似的元素地球化學(xué)特征(圖8)。
圖7 眼球狀花崗質(zhì)片麻巖(TZC09 和T0807)的Al2O3(a)、FeOT(b)、CaO(c)和K2O/Na2O 比值(d)與SiO2的關(guān)系圖解Fig.7 Selected major oxides of Al2 O3(a),F(xiàn)eOT(b),CaO (c)and K2 O/Na2 O ratio (d)plotted against SiO2 for the augen granitic gneiss (TZC09 and T0807)
喜馬拉雅造山帶是新生代印度板塊與歐亞板塊碰撞的產(chǎn)物,近年來在藏南、藏東南、羌塘、拉薩、印度、尼泊爾、巴基斯坦等地相繼報(bào)道了古生代巖漿作用和變質(zhì)作用(Argles et al.,1999;Catlos et al.,2000,2002;Foster,2000;Godin et al.,2001;Gehrels et al.,2003,2006a,b;Booth et al.,2004;DeCelles et al.,2004;Kohn et al.,2004;Cawood et al.,2007;Lee and Whitehouse,2007;Liu et al.,2007;Quigley et al.,2008;Zhang et al.,2012;Zhu et al.,2012;許志琴等,2005;張澤明等,2008;董昕等,2009;蔡志慧等,2013),認(rèn)為在印度-歐亞板塊碰撞前,喜馬拉雅地體經(jīng)歷了古生代構(gòu)造巖漿事件。這些古生代花崗巖和花崗質(zhì)片麻巖分布于北喜馬拉雅片麻巖穹窿核部、藏南拆離系和高喜馬拉雅結(jié)晶巖系內(nèi)等,年齡集中在518~460Ma(Frank et al.,1977;Bhanot et al.,1979;Debon et al.,1981;Sch?rer and Allègre,1983;Trivedi et al.,1986;Pognante et al.,1990;Rao et al.,1990;Kaphle,1991;Arita and Sharma,1992;Einfalt et al.,1993;Decelles et al.,1998;Girard and Bussy,1999;Schelling,1999;Foster,2000;Lee et al.,2000;Marquer et al.,2000;Godin et al.,2001;Johnson et al.,2001;Miller et al.,2001;Gehrels et al.,2006a,b;Cawood et al.,2007;Liu et al.,2007;Lee and Whitehouse,2007;Wang et al.,2012)。對該套巖石,除了開展了大量地質(zhì)年代學(xué)研究之外,有關(guān)巖石地球化學(xué)特征和變質(zhì)作用性質(zhì)等方面的研究程度較低。Wang et al.(2012)中對吉隆、定結(jié)和雅拉香波地區(qū)的花崗片麻巖進(jìn)行了巖石學(xué)、地球化學(xué)、全巖Sr-Nd 和鋯石Lu-Hf 同位素以及地質(zhì)年代學(xué)的研究,認(rèn)為高喜馬拉雅和特提斯喜馬拉雅中的早古生代眼球狀片麻巖具有相同的物質(zhì)和地球化學(xué)(元素和同位素)組成和侵位時(shí)代,二者可能屬于同一套巖石,為原特提斯洋在古生代向?qū)呒{超大陸北緣俯沖過程中形成的巖漿巖。
上面年代學(xué)數(shù)據(jù)分析表明:(1)馬拉山二云母花崗巖的鋯石核部記錄了U-Pb 年齡為445~431Ma 的構(gòu)造事件(圖4、圖5),同時(shí)包括巖漿和變質(zhì)成因的鋯石;(2)馬拉山穹窿內(nèi)石英片巖的碎屑鋯石主要為巖漿成因,年齡峰值為~447Ma和~375Ma(圖3);(3)高喜馬拉雅結(jié)晶巖系內(nèi)眼球狀花崗質(zhì)片麻巖中鋯石的變質(zhì)年齡為~447Ma(圖2)。對比以上不同來源的鋯石年齡數(shù)據(jù),可以看出在馬拉山-吉隆構(gòu)造帶中,無論是淡色花崗巖的源巖、還是變雜砂巖,甚至花崗質(zhì)巖石,都記錄了時(shí)代為447~431Ma 的巖漿作用和變質(zhì)作用,比已報(bào)道的古生代構(gòu)造熱事件晚30~60Myr。有趣的是,在二云母花崗巖T0830 中,一顆鋯石記錄了487Ma(巖漿成因)和436Ma(變質(zhì)成因)兩期繼承性核部(圖5a),進(jìn)一步支持奧陶紀(jì)形成的振蕩環(huán)帶鋯石在志留紀(jì)經(jīng)歷了變質(zhì)重結(jié)晶作用,表明喜馬拉雅造山帶的確存在早奧陶紀(jì)和早志留紀(jì)兩期的構(gòu)造作用。
從全巖地球化學(xué)特征來看,眼球狀花崗質(zhì)片麻巖含有較高的SiO2(>69.9%),Al2O3、較低FeOT、MgO、MnO 和TiO2(圖7)。所有樣品的K2O/Na2O >1.0,A/CNK >1.1,這些特征表明眼球狀花崗質(zhì)片麻巖的源巖為過鋁質(zhì)富K 花崗巖。在蜘蛛網(wǎng)圖上(圖8a),這些巖石顯示Ba、Sr、P 和Ti 的負(fù)異常,虧損Nb 和Ta,Zr/Hf 比值和Nb/Ta 比值都低于球粒隕石。從稀土元素含量來看(圖8b),富集LREE,略虧損HREE,Eu 為明顯的負(fù)異常。與喜馬拉雅造山帶多數(shù)奧陶紀(jì)眼球狀花崗片麻巖相比,這兩套眼球狀花崗質(zhì)片麻巖表現(xiàn)出類似的元素地球化學(xué)特征(圖8)。在同位素組成特征上,眼球狀花崗質(zhì)片麻巖的大部分鋯石的Hf 同位素比值(εHf(t)=-15.9~-3.0)高度變化(圖6),稍微高于馬拉山二云母花崗巖鋯石核部的Hf 同位素比值(εHf(t)=- 18.3~-9.5),但與Wang et al.(2012)報(bào)道的早奧陶紀(jì)花崗巖相似。這表明這些花崗質(zhì)片麻巖的原巖可能形成于相似的部分熔融作用或經(jīng)歷了相似的巖漿過程,同時(shí)這些花崗質(zhì)片麻巖具有較低的Hf 同位素組成,可能來自于地殼巖石的部分熔融作用。通過以上分析對比,推斷本文報(bào)道的早志留紀(jì)變質(zhì)巖的源巖可能為奧陶紀(jì)花崗巖,在志留紀(jì)經(jīng)歷了變質(zhì)作用,具有振蕩環(huán)帶的巖漿鋯石發(fā)生變質(zhì)重結(jié)晶作用,但沒有改變?nèi)珟r的地球化學(xué)特征。因此,喜馬拉雅地區(qū)可能經(jīng)歷了兩期古生代與碰撞造山相關(guān)的構(gòu)造事件,時(shí)代相差至少50Myr。
圖8 眼球狀花崗質(zhì)片麻巖(TZC09 和T0807)的原始地幔標(biāo)準(zhǔn)化蛛網(wǎng)圖(a)和球粒隕石標(biāo)準(zhǔn)化稀土元素配分圖(b)標(biāo)準(zhǔn)化值據(jù)Sun and McDonough,1989,藍(lán)色實(shí)線陰影區(qū)域數(shù)據(jù)來自于Wang et al.,2012,黃色虛線陰影區(qū)域?yàn)檠爬悴妨?nèi)518Ma 花崗質(zhì)片麻巖(未發(fā)表數(shù)據(jù))Fig.8 Primitive mantle-normalized trace element (a)and chondrite-normalized rare earth element (b)distribution patterns for the augen granitic gneiss (TZC09 and T0807)Normalization values after Sun and McDonough,1989;The data in the blue shaded area are from Wang et al.,2012,and the yellow shaded area are granitic gneiss formed at 518Ma in the Yardoi dome(unpublished data)
東岡瓦納大陸形成于中元古代,由澳大利亞、印度、馬達(dá)加斯加、東南極和南非卡拉哈里地塊拼合組成(Rogers and Santosh,2003;Cawood et al.,2007)。570~510Ma 期間,東岡瓦納和西岡瓦納拼合形成岡瓦納超大陸,這階段的一系列造山事件統(tǒng)稱為泛非造山作用。喜馬拉雅地區(qū)屬于東岡瓦納大陸的北緣,是在印度地體太古代基底上形成的元古代到第三紀(jì)沉積巖系(Cawood et al.,2007;Wang et al.,2012;Zhu et al.,2012;許志琴等,2005;張澤明等,2008;董昕等,2009),經(jīng)歷了古生代-新生代的構(gòu)造作用后,最終在喜馬拉雅期拼貼到歐亞大陸。已有研究揭示:(1)印度陸塊和喜馬拉雅地區(qū)普遍保存有古生代(寒武-奧陶紀(jì))巖漿事件(Frank et al.,1977;DeCelles et al.,1998,2004;DeCelles,2000;Lee et al.,2000;Godin et al.,2001;Gehrels et al.,2003,2006a,b;Booth et al.,2004;Cawood et al.,2007;Lee and Whitehouse,2007;Liu et al.,2007;Quigley et al.,2008;Guynn et al.,2012)和變質(zhì)作用(Argles et al.,1999;Catlos et al.,2000,2002;Foster,2000;Marquer et al.,2000;Godin et al.,2001;Kohn et al.,2004;Gehrels et al.,2006a,b;Zhang et al.,2012);(2)碎屑鋯石記錄了寒武-奧陶紀(jì)的構(gòu)造熱事件(DeCelles,2000;Hodges,2000;Kusky et al.,2003;Gehrels et al.,2006a;Myrow et al.,2010;Spencer et al.,2012;Zhang et al.,2012;張澤明等,2008;董昕等,2009);(3)存在奧陶統(tǒng)底礫巖(Kumar et al.,1978);(4)寒武-奧陶統(tǒng)之間的地層為角度不整合接觸(Garzanti et al.,1986;Bagati et al.,1991;Brookfield,1993;Le Fort et al.,1994;Valdiya,1997;Bhargava and Bassi,1998;Wiesmayr et al.,1998;Gehrels et al.,2003;Myrow et al.,2006;周志廣等,2004);(5)存在沉積相的突變(Bordet et al.,1971;Funakawa,2001)。以上這些地質(zhì)事件表明喜馬拉雅造山帶及其由東岡瓦那大陸北緣衍生的地體都經(jīng)歷了早古生代構(gòu)造作用,即:泛非造山作用結(jié)束之后,原特提斯洋向?qū)呒{主動大陸北緣俯沖,發(fā)生安第斯型造山作用(Kusky et al.,2003;Cawood et al.,2007;Wang et al.,2012;Zhu et al.,2012;張澤明等,2008;董昕等,2009;蔡志慧等,2013)。在此造山過程中,在印度、澳大利亞、伊朗、喜馬拉雅、西羌塘、拉薩、寶山等地體或微陸塊都經(jīng)歷了時(shí)代為530~490Ma 的巖漿作用,發(fā)育雙峰式火山巖(Zhu et al.,2012)。但對該期造山作用終止的原因和時(shí)代沒有形成統(tǒng)一的認(rèn)識,目前存在以下四種模型:(1)在早奧陶紀(jì)全球板塊發(fā)生結(jié)構(gòu)性調(diào)整引起俯沖作用結(jié)束(Cawood and Buchan,2007);(2)拉薩、羌塘等微陸塊不斷增生到印度大陸邊緣,俯沖帶發(fā)生堵塞導(dǎo)致俯沖作用停止(Lister et al.,2001;Collins,2002);(3)東羌塘微陸塊(?)與岡瓦納大陸北緣500~467Ma 發(fā)生碰撞(Wang et al.,2012),引起俯沖板塊斷離造山作用結(jié)束;(4)東羌塘微陸塊和華南陸塊與拉薩地體490Ma 發(fā)生碰撞,引起板塊斷離,軟流圈上涌(Zhu et al.,2012)。
馬拉山-吉隆構(gòu)造帶記錄了447~431Ma 的變質(zhì)作用和巖漿作用,比先前認(rèn)為的安第斯型造山作用晚30~60Myr。印度與歐亞陸陸碰撞引起的新生代同碰撞巖漿作用和變質(zhì)作用發(fā)生在70~35Ma(Zhu et al.,2011;Zeng et al.,2011;Gao et al.,2012),新特提斯洋俯沖引起的弧巖漿作用發(fā)生在145~50Ma(Zhu et al.,2011),兩者之前相差20~100Myr。由此推斷喜馬拉雅地區(qū)古生代構(gòu)造事件持續(xù)時(shí)間也許比已有認(rèn)識更長,在志留紀(jì),可能發(fā)生微陸塊與岡瓦納大陸北緣的碰撞作用,除了導(dǎo)致喜馬拉雅地體的志留紀(jì)巖漿活動外,還引發(fā)奧陶紀(jì)巖漿巖的變質(zhì)作用。綜合上述分析得出,喜馬拉雅地體可能經(jīng)歷了(1)寒武紀(jì)-奧陶紀(jì)安第斯型造山作用,原特提斯洋向南俯沖,在東岡瓦納大陸北緣形成一系列巖漿巖和變質(zhì)巖,導(dǎo)致寒武-奧陶紀(jì)地層之間的角度不整合,形成奧陶紀(jì)底礫巖;和(2)志留紀(jì)(加里東期)陸陸碰撞作用,東岡瓦納大陸北緣的周緣微陸塊(羌塘微陸塊?)在俯沖板片的牽引下,最終與東岡瓦納大陸北緣發(fā)生碰撞作用,導(dǎo)致奧陶紀(jì)花崗巖發(fā)生變質(zhì)作用,形成了志留紀(jì)花崗質(zhì)片麻巖,同時(shí)下地殼物質(zhì)發(fā)生部分熔融作用形成志留紀(jì)花崗巖。石炭紀(jì)的巖漿事件在郎縣也有報(bào)道(Ji et al.,2012;董昕等,2010;王莉等,2013),是東岡瓦納大陸北緣陸內(nèi)裂解巖漿作用的記錄(Veevers and Tewari,1995)。
除了上述報(bào)道之外,在青藏高原,加里東期構(gòu)造巖漿事件具有廣泛性,如:(1)羌塘地體明顯受到晚加里東運(yùn)動的影響,主要證據(jù)包括青藏高原羌塘中部日灣茶卡組的碎屑鋯石包含有加里東期的年齡段(彭虎等,2013)和龍木錯(cuò)以東的五指山等地發(fā)現(xiàn)中上泥盆統(tǒng)不整合于奧陶系-志留系之上(夏軍等,2009);(2)在青藏高原北部的柴北緣地體中,藍(lán)片巖、榴輝巖和麻粒巖的變質(zhì)時(shí)代為450~420Ma(Song et al.,2006;Mattinson et al.,2006,2009;Zhang et al.,2008,2009;Zhang et al.,2010;Yu et al.,2012)、北祁連包含有加里東期的俯沖雜巖(許志琴等,1994)。以上分析表明:喜馬拉雅地區(qū)和青藏高原內(nèi)部諸地體記錄的加里東期巖漿作用和變質(zhì)作用具有可對比性,對于恢復(fù)青藏高原古生代的古地理格架具有參考意義。
致謝 感謝張澤明研究員和戚學(xué)祥研究員仔細(xì)審閱稿件,提出眾多建設(shè)性修改意見。
Aikman AB,Harrison TM and Lin D.2008.Evidence for Early(>44Ma) Himalayan Crustal Thickening,Tethyan Himalaya,southeastern Tibet.Earth and Planetary Science Letters,274(1-2):14-23
Argles TW,Prince CI,F(xiàn)oster GL and Vance D.1999.New garnets for old?Cautionary tales from young mountain belts.Earth and Planetary Science Letters,172(3):301-309
Arita K and Sharma MP.1992.Chemical characteristics of some granitic rocks in central Nepal.Bulletin of Department of Geology,2.Tribhuvan University,Kathmandu,1-9
Bagati TN,Kumar R and Ghosh SK.1991.Regressive-transgressive sedimentation in the Ordovician sequence of the Spiti (Tethys)basin,Himachal Pradesh,India.Sedimentary Geology,73(1-2):171-184
Bhanot VB,Bhandari AK and Singh VP.1979.Geochronological and geological studies on a granite of Higher Himalaya,northeast of Manikaran,Himachal-Pradesh.Journal of the Geological Society of India,20(2):90-94
Bhargava ON and Bassi UK.1998.Geology of Spiti-Kinnauer Himachal Himalaya.Burma:Geological Survey of India Memoir,1-210
Booth AL,Zeitler PK,Kidd WS,Wooden J,Liu YP,Idleman B,Hren M and Chamberlain CP.2004.U-Pb zircon constraints on the tectonic evolution of southeastern Tibet,Namche Barwa area.American Journal of Science,304(10):889-929
Bordet P,Colche M,Krummenacher D,Le Fort P,Mouterde R and Remy M.1971.Recherches geologiques dans I’Himalaya du Nepal,Region de la Thakkhola.Centre National de la Recherche Scientifique,Paris,279
Brookfield ME.1993.The Himalayan passive margin from Precambrian to Cretaceous times.Sedimentary Geology,84(1-4):1-35
Cai ZH,Xu ZQ,Duan XD,Li HQ,Cao H and Huang XM.2013.Early stage of Early Paleozoic orogenic event in western Yunnan Province,southeastern margin of Tibet Plateau.Acta Petrologica Sinica,29(6):2123-2140 (in Chinese with English abstract)
Catlos EJ,Sorensen SS and Harrison TM.2000.Th-Pb ion-microprobe dating of allanite.American Mineralogist,85(5-6):633-648
Catlos EJ,Harrison TM,Manning CE,Grove M,Rai SM,Hubbard MS and Upreti BN.2002.Records of the evolution of the Himalayan orogen from in situ Th-Pb ion microprobe dating of monazite:Eastern Nepal and western Garhwal.Journal of Asian Earth Sciences,20(5):459-479
Cawood PA and Buchan C.2007.Linking accretionary orogenesis with supercontinent assembly.Earth-Science Reviews,82(3-4):217-256
Cawood PA,Johnson MRW and Nemchin AA.2007.Early Palaeozoic orogenesis along the Indian margin of Gondwana:Tectonic response to Gondwana assembly.Earth and Planetary Science Letters,255(1-2):70-84
Collins WJ.2002.Nature of extensional accretionary orogens.Tectonics,21(4):1024
Debon F,Le Fort P,Sonet J,Liu GH,Jin CW and Xu RH.1981.About the Lower Paleozoic age of the Kangmar granite (Lhagoi Kangri plutonic belt,South Tibet,China).Terra Cognita Special Issue,14:67-68
Decelles PG,Gehrels GE,Quade J,Ojha TP,Kapp PA and Upreti BN.1998.Neogene foreland basin deposits,erosional unroofing,and the kinematic history of the Himalayan fold-thrust belt,western Nepal.Geological Society of America Bulletin,110(1):2-21
Decelles PG.2000.Tectonic implications of U-Pb Zircon ages of the Himalayan orogenic belt in Nepal.Science,288(5465):497-499 Decelles PG,Gehrels GE,Najman Y,Martin AJ,Carter A and Garzanti E.2004.Detrital geochronology and geochemistry of Cretaceous-Early Miocene strata of Nepal: Implications for timing and diachroneity of initial Himalayan orogenesis.Earth and Planetary Science Letters,227(3-4):313-330
Dewey JF.2005.Orogeny can be very short.Proceedings of the National Academy of Sciences of the United States of America,102(43):15286-15293
Dong X,Zhang ZM,Wang JL,Zhao GC,Liu F,Wang W and Yu F.2009.Provenance and formation age of the Nyingchi Group in the southern Lhasa terrane,Tibetan Plateau:Petrology and zircon U-Pb geochronology.Acta Petrologica Sinica,25(7):1678-1694 (in Chinese with English abstract)
Dong X,Zhang ZM,Geng GS,Liu F,Wang W and Yu F.2010.Devonian magmatism from the southern Lhasa terrane,Tibetan Plateau.Acta Petrologica Sinica,26(7):2226-2232 (in Chinese with English abstract)
Einfalt HC,Hoehndorf A and Kaphle KP.1993.Radiometric age determination of the Dadeldhura granite,Lesser Himalaya,far western Nepal.Schweizerische Mineralogische und Petrographische Mitteilungen,73(1):97-106
Foster GL.2000.The pre-Neogene thermal history of the Nanga Parbat Haramosh Massif and the NW Himalaya.Ph.D.Dissertation.United Kingdom:Open University,1-345
Frank W,Thoni M and Purtscheller F.1977.Geology and petrography of Kulu-South Lahul area.Colloq.Int.Cent.Natl.Rech.Sci.,33:147-172
Funakawa S.2001.Lower Paleozoic Tethys sediments from the Kathmandu nappe,Phulchauki area,central Nepal.Journal of Nepal Geological Society,25:123-134
Gao LE,Zeng LS and Xie KJ.2012.Eocene high grade metamorphism and crustal anatexis in the North Himalaya Gneiss Domes,Southern Tibet.Chinese Science Bulletin,57(6):639-650
Gao LE,Zeng LS,Hou KJ,Guo CL,Tang SH,Xie KJ,Hu GY and Wang L.2013.Episodic crustal anatexis and the formation of Paiku composite leucogranitic pluton in the Malashan Gneiss Dome,Southern Tibet.Chinese Science Bulletin,58(28- 29):3546-3563
Gao LE,Zeng LS,Wang L,Hou KJ,Guo CL and Tang SH.2013.Age and formation mechanism of the Malashan high-Ca two-mica granite within the Northern Himalayan Gneiss Domes,southern Tibet.Acta Petrologica Sinica,29(6):1995-2012 (in Chinese with English abstract)
Gao LE.2014.Anatetic events along the Malashan-Gyirong rift,southern Tibet and their implication for the tectonic evolution of the Himalayan orogenic belt.Ph.D.Dissertation.Beijing:Chinese Academy of Geological Sciences,1-365 (in Chinese with English summary)
Gao LE and Zeng LS.2014.Fluxed melting of metapelite and the formation of Miocene high-CaO two-mica granites in the Malashan gneiss dome,southern Tibet.Geochimica et Cosmochimica Acta,130:135-155
Garzanti E,Casnedi R and Jadoul F.1986.Sedimentary evidence of a Cambro-Ordovician orogenic event in the northwestern Himalaya.Sedimentary Geology,48(3-4):237-265
Gehrels GE,Decelles PG,Martin A,Ojha TP and Pinhassi G.2003.Initiation of the Himalayan orogen as an Early Paleozoic thin-skinned thrust belt.GSA Today,13(9):4-9
Gehrels GE,Decelles PG,Ojha TP and Upreti BN.2006a.Geologic and U-Th-Pb geochronologic evidence for Early Paleozoic tectonism in the Kathmandu thrust sheet,central Nepal Himalaya.Geological Society of America Bulletin,118(1-2):185-198
Gehrels GE,Decelles PG,Ojha TP and Upreti BN.2006b.Geologic and U-Pb geochronologic evidence for Early Paleozoic tectonism in the Dadeldhura thrust sheet,far-west Nepal Himalaya.Journal of Asian Earth Sciences,28(4-6):385-408
Gehrels GE,Kapp P,DeCelles P,Pullen A,Blakey R,Weislogel A,Ding L,Guynn J,Martin A,McQuarrie N and Yin A.2011.Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen.Tectonics,30 (5 ): TC5016, doi: 10.1029/2011TC002868
Girard M and Bussy F.1999.Late Pan-African magmatism in the Himalaya:New geochronological and geochemical data from the Ordovician Tso Morari metagranites (Ladakh, NW India ).Schweizerische Mineralogische und Petrographische Mitteilungen,79(3):399-418
Godin L,Parrish RR,Brown RL and Hodges KV.2001.Crustal thickening leading to exhumation of the Himalayan metamorphic core of central Nepal:Insight from U-Pb geochronology and40Ar/39Ar thermochronology.Tectonics,20(5):729-747
Guynn J,Kapp P,Gehrels GE and Ding L.2012.U-Pb geochronology of basement rocks in central Tibet and paleogeographic implications.Journal of Asian Earth Sciences,43(1):23-50
Harrison MT,Lovera OM and Grove M.1997.New insights into the origin of two contrasting Himalayan granite belts.Geology,25(10):899-902
Harrison TM,Grove M,Lovera OM and Catlos EJ.1998.A model for the origin of Himalayan anatexis and inverted metamorphism.Journal of Geophysical Research:Solid Earth,103(B11):27017-27032
Hodges KV.2000.Tectonics of the Himalaya and southern Tibet from two perspectives.Geological Society of America Bulletin,112(3):324-350
Hou KJ,Li YH,Zou TR,Qu XM,Shi YR and Xie GQ.2007.Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications.Acta Petrologica Sinica,23(10):2595-2604 (in Chinese with English abstract)
Hsü KJ,Pan G and ?eng?r AMC.1995.Tectonic evolution of the Tibetan Plateau:A working hypothesis based on the archipelago model of orogenesis.International Geology Review,37(6):473-508
Ji WQ,Wu FY,Chung SL and Liu CZ.2012.Identification of Early Carboniferous granitoids from southern Tibet and implications for terrane assembly related to the Paleo-tethyan evolution.The Journal of Geology,120(5):531-541
Johnson MRW,Oliver GJH,Parrish RR and Johnson SP.2001.Synthrusting metamorphism,cooling,and erosion of the Himalayan Kathmandu Complex,Nepal.Tectonics,20(3):394-415
Kaphle KP.1991.Geochemistry of Dadeldhura granite and its mineral potential.Journal of Nepal Geological Society,7:21-38
Kohn MJ,Wieland M,Parkinson CD and Upreti BN.2004.Miocene faulting at plate tectonic velocity in the Himalaya of central Nepal.Earth and Planetary Science Letters,228(3-4):299-310
Kumar R,Shah AN and Bingham DK.1978.Positive evidence of a Precambrian tectonic phase in central Nepal,Himalaya.Journal of the Geological Society of India,19(11):519-522
Kusky TM,Abdelsalam M,Tucker RD and Stern RJ.2003.Evolution of the East African and related orogens, and the assembly of Gondwana.Precambrian Research,123(2):81-85
Le Fort P,Tongiorgi M and Gaetani M.1994.Discovery of a crystalline basement and Early Ordovician marine transgression in the Karakorum mountain range,Pakistan.Geology,22(10):941-944 Lee J,Hacker BR,Dinklage WS,Wang Y,Gans P,Calvert A,Wan JL,Chen WJ,Blythe AE and McClelland M.2000.Evolution of the Kangmar Dome, southern Tibet: Structural, petrologic, and thermochronologic constraints.Tectonics,19(5):872-895
Lee J and Whitehouse MJ.2007.Onset of mid-crustal extensional flow in southern Tibet:Evidence from U/Pb zircon ages.Geology,35(1):45-48
Lister GS,F(xiàn)orster MA and Rawling TJ.2001.Episodicity during orogenesis.Geological Society,London,Special Publications,184(1):89-113
Liu WC,Liang DY,Wang KY,Zhou ZG,Li GB and Zhang XX.2002.The discovery and geological implication of Ordovician in Kangmar area.Geoscience Frontiers,9(4):247-248 (in Chinese)
Liu Y,Siebel W,Massonne HJ and Xiao XC.2007.Geochronological and petrological constraints for tectonic evolution of the central Greater Himalayan Sequence in the Kharta area,southern Tibet.The Journal of Geology,115(2):215-230
Liu Y,Gao S,Hu Z,Gao C,Zong K and Wang D.2010.Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating,Hf isotopes and trace elements in zircons from mantle xenoliths.Journal of Petrology,51(1-2):537-571
Marquer D,Chawla HS and Challandes N.2000.Pre-alpine high-grade metamorphism in High Himalaya crystalline sequences:Evidence from Lower Palaeozoic Kinnaur Kailas granite and surrounding rocks in the Sutlej Valley (Himachal Pradesch, India).Eclogae Geologicae Helvetiae,93(2):207-220
Martin AJ,Gehrels GE and DeCelles PG.2007.The tectonic significance of (U,Th)/Pb ages of monazite inclusions in garnet from the Himalaya of central Nepal.Chemical Geology,244(1-2):1-24 Mattinson CG,Wooden JL,Liou JG,Bir DK and Wu CL.2006.Age and duration of eclogite-facies metamorphism,North Qaidam HP/UHP Terrane,western China.American Journal of Science,306(9):683-711
Mattinson CG,Wooden JL,Zhang JX and Bird DK.2009.Paragneiss zircon geochronology and trace element geochemistry,North Qaidam HP/UHP terrane,western China.Journal of Asian Earth Sciences,35(3-4):298-309
Miller C,Th?ni M,F(xiàn)rank W,Grasemann B,Klotzli U,Guntli P and Draganits E.2001.The Early Palaeozoic magmatic event in the Northwest Himalaya,India:Source,tectonic setting and age of emplacement.Geological Magazine,138(3):237-251
Morel MLA,Nebel O,Nebel-Jacobsen YJ,Miller JS and Vroon PZ.2008.Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS.Chemical Geology,255(1-2):231-235
Myrow PM,Thompson KR,Hughes NC,Paulsen TS,Sell BK and Parcha SK.2006.Cambrian stratigraphy and depositional history of the northern Indian Himalaya, Spiti Valley, north-central India.Geological Society of America Bulletin,118(3-4):491-510
Myrow PM,Hughes NC,Goodge JW,F(xiàn)anning CM,Williams IS,Peng SC,Bhargaca ON,Parcha SK and Pogue KR.2010.Extraordinary transport and mixing of sediment across Himalayan central Gondwana during the Cambrian-Ordovician.Geological Society of America Bulletin,122(9-10):1660-1670
Pan GT,Ding J and Yao DS.2004.Guidebook of 1∶1500000 Geologic Map of the Qinghai-Xizang (Tibet)Plateau and Adjacent Areas.Chengdu:Chengdu Cartographic Publishing House,1-48
Peng H,Li C and Xie CM.2013.Tracing the provenance of inherited zircon from Riwanchaka Group in the Middle Qiangtang terrane of the Tibet.Guangzhou:Abstract of 2013’s National Symposium on Petrology and Geodynamics,507-509 (in Chinese)
Pognante U,Castelli D,Benna P,Genocese G,Oberli F,Meier M and Tonarini S.1990.The crystalline units of the High Himalayas in the Lahul-Zanskar region (Northwest India):Metamorphic-tectonic history and geochronology of the collided and imbricated Indian plate.Geological Magazine,127(2):101-116
Quigley MC,Yu LJ,Gregory C,Corvino A,Sandiford M,Wilson CJL and Liu XH.2008.U-Pb SHRIMP zircon geochronology and T-t-d history of the Kampa Dome,southern Tibet.Tectonophysics,446(1-4):97-113
Rao DR,Sharma KK,Sivaraman TV,Gopalan K,Trivedi JR and Himalaya K.1990.Rb/Sr dating and petrochemistry of Hant granite(Baramulla area) Kashmir Himalaya.Journal of Himalayan Geology,1:57-63
Rogers JJ and Santosh M.2003.Supercontinents in Earth history.Gondwana Research,6(3):357-368
Sch?rer U and Allègre CJ.1983.The Palung granite (Himalaya):Highresolution U-Pb systematics in zircon and monazite.Earth and Planetary Science Letters,63(3):423-432
Sch?rer U,Xu RH and Allègre CJ.1986.U-(Th)-Pb systematics and ages of Himalayan leucogranites,south Tibet.Earth and Planetary Science Letters,77(1):35-48
Schelling D.1999.Geological map of the eastern Nepal Himalaya at 1∶650000 scale.Journal of Asian Earth Sciences,AD9-AD20
Sláma J,Ko?ler J,Condon DJ,Crowley JL,Gerdes A,Hanchar JM,Horstwood MSA,Morris GA,Nasdala L,Norberg N,Schaltegger U,Schoene B,Tubrett MN and Whitehouse MJ.2008.Ple?ovice zircon-A new natural reference material for U-Pb and Hf isotopic microanalysis.Chemical Geology,249(1-2):1-35
Song SG,Zhang LF,Niu YL,Su L,Song B and Liu DY.2006.Evolution from oceanic subduction to continental collision:A case study of the Northern Tibetan Plateau inferred from geochemical and geochronological data.Journal of Petrology,47(3):435-455
Spencer CJ,Harris RA and Dorais MJ.2012.Depositional provenance of the Himalayan metamorphic core of Garhwal region, India:Constrained by U-Pb and Hf isotopes in zircons.Gondwana Research,22(1):26-35
Sun SS and McDonough WF.1989.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes.In:Saunders AD and Norry MJ (eds.).Magmatism in the Ocean Basins.Geological Society,London,Special Publications,42(1):313-345
Trivedi JR,Sharma KK and Gopalan K.1986.Widespread Caledonian magmatism in Himalaya and its tectonic significance.Terra Cognita,6:144
Valdiya KS.1997.Himalaya, the northern frontier of East Gondwanaland.Gondwana Research,1(1):3-9
Veevers JJ and Tewari RC.1995.Permian-Carboniferous and Permian-Triassic magmatism in the rift zone bordering the Tethyan margin of southern Pangea.Geology,23(5):467-470
Wang L,Zeng LS,Gao LE and Chen ZY.2013.Early Cretaceous high Mg#and high Sr/Y clinopyroxene-bearing diorite in the Southeast Gangdese batholith,Southern Tibet.Acta Petrologica Sinica,29(6):1977-1994 (in Chinese with English abstract)
Wang XX,Zhang JJ,Santosh M,Liu J,Yan SY and Guo L.2012.Andean-type orogeny in the Himalayas of south Tibet:Implications for Early Paleozoic tectonics along the Indian margin of Gondwana.Lithos,154:248-262
Wiesmayr G,Grasemann B,Draganits E and Frank F.1998.The main pre-Himalayan and Himalayan deformation phases in the Pin Valley(Spiti,Tethyan Himalaya,NW India).Geological Bulletin of University of Peshawar,31:212-213
Xia J,Wang LT,Zhong HM,Tong JS,Lu RK and Wang M.2009.Discovery of large-scale Silurian ancient delta deposition system in Longmu Co area,Qinghai-Tibet Plateau.China and its significance.Geological Bulletin of China,28(9):1267-1275 (in Chinese with English abstract)
Xu ZQ,Xu HF,Zhang JX,Li HB,Zhu ZZ,Qu JC,Chen DZ,Chen JL
and Yang KC.1994.The Zhoulangnanshan Caledonian subductive complex in the northern Qilian Mountains and its dynamics.Acta Geologica Sinica,68(1):1-15 (in Chinese with English abstract)
Xu ZQ,Yang JS,Liang FH,Qi XX,Liu FL,Zeng LS,Liu DY,Li HB,Wu CL,Shi RD and Cheng SY.2005.Pan-African and Early Paleozoic orogenic events in the Himalaya terrane:Inference from SHRIMP U-Pb zircon ages.Acta Petrologica Sinica,21(1):1-21(in Chinese with English abstract)
Xu ZQ,Yang JS,Li HB,Zhang JX,Zeng LS and Jiang M.2006.The Qinghai-Tibet Plateau and continental dynamics:A review on terrain tectonics,collisional orogenesis,and process and mechanisms for the rise of the plateau.Geology in China,33(2):221- 238 (in Chinese with English abstract)
Yin A and Harrison TM.2000.Geologic evolution of the Himalayan-Tibetan orogen.Annual Review of Earth and Planetary Sciences,28:211-280
Yu SY,Zhang JX and Pablo García DR.2012.Geochemistry and zircon U-Pb ages of adakitic rock from the Dulan area of the North Qaidam UHP terrane,North Tibet:Constraints on the timing and nature of regional tectonothermal events associated with collisional orogeny.Gondwana Research,21(1):161-179
Zeng LS,Gao LE,Xie KJ and Liu ZJ.2011.Mid-Eocene high Sr/Y granites in the Northern Himalayan Gneiss Domes:Melting thickened lower continental crust.Earth and Planetary Science Letters,303(3-4):251-266
Zhang GB,Song SG,Zhang LF and Niu YL.2008.The subducted oceanic crust within continental-type UHP metamorphic belt in the North Qaidam,NW China:Evidence from petrology,geochemistry and geochronology.Lithos,104(1-4):99-118
Zhang GB,Zhang LF,Song SG and Niu YL.2009.UHP metamorphic evolution and SHRIMP geochronology of a coesite-bearing metaophiolitic gabbro in the North Qaidam,NW China.Journal of Asian Earth Sciences,35(3-4):310-322
Zhang JX,Mattinson CG,Yu SY,Li JP and Meng FC.2010.U-Pb zircon geochronology of coesite-bearing eclogites from the southern Dulan area of the North Qaidam UHP terrane,northwestern China:Spatially and temporally extensive UHP metamorphism during continental subduction.Journal of Metamorphic Geology,28(9):955-978
Zhang ZM,Wang JL,Shen K and Shi C.2008.Paleozoic circum-Gondwana orogens:Petrology and geochronology of the Namche Barwa Complex in the eastern Himalayan syntaxis,Tibet.Acta Petrologica Sinica,24(7):1627-1637 (in Chinese with English abstract)
Zhang ZM,Dong X,Santosh M,Liu F,Wang W,Yiu F,He ZY and Shen K.2012.Petrology and geochronology of the Namche Barwa Complex in the eastern Himalayan syntaxis,Tibet:Constraints on the origin and evolution of the north-eastern margin of the Indian Craton.Gondwana Research,21(1):123-137
Zhou ZG,Liu WC and Liang DY.2004.Discovery of the Ordovician and its basal conglomerate in the Kangmar area,southern Tibet:With a discussion of the relation of the sedimentary cover and unifying basement in the Himalayas.Geological Bulletin of China,23(7):655-663 (in Chinese with English abstract)
Zhu DC,Zhao ZD,Niu YL,Mo XX,Chung SL,Hou ZQ,Wang LQ and Wu FY.2011.The Lhasa Terrane:Record of a microcontinent and its histories of drift and growth.Earth and Planetary Science Letters,301(1-2):241-255
Zhu DC,Zhao ZD,Niu YL,Dilek Y,Wang Q,Ji WH,Dong GC,Sui QL,Liu YS,Yuan HL and Mo XX.2012.Cambrian bimodal volcanism in the Lhasa Terrane,southern Tibet:Record of an Early Paleozoic Andean-type magmatic arc in the Australian proto-Tethyan margin.Chemical Geology,328:290-308
Zhu DC,Zhao ZD,Niu YL,Yildirim D,Hou ZQ and Mo XX.2013.The origin and pre-Cenozoic evolution of the Tibetan Plateau.Gondwana Research,23(4):1429-1454
附中文參考文獻(xiàn)
蔡志慧,許志琴,段向東,李化啟,曹匯,黃學(xué)猛.2013.青藏高原東南緣滇西早古生代早期造山事件.巖石學(xué)報(bào),29(6):2123-2140
董昕,張澤明,王金麗,趙國春,劉峰,王偉,于飛.2009.青藏高原拉薩地體南部林芝巖群的物質(zhì)來源與形成年代:巖石學(xué)與鋯石U-Pb 年代學(xué).巖石學(xué)報(bào),25(7):1678-1694
董昕,張澤明,耿官升,劉峰,王偉,于飛.2010.青藏高原拉薩地體南部的泥盆紀(jì)花崗巖.巖石學(xué)報(bào),26(7):2226-2232
高利娥,曾令森,王莉,侯可軍,郭春麗,唐索寒.2013.藏南馬拉山高鈣二云母花崗巖的年代學(xué)特征及其形成機(jī)制.巖石學(xué)報(bào),29(6):1995-2012
高利娥.2014.藏南馬拉山-吉隆裂谷帶深熔事件及其構(gòu)造動力學(xué)意義.博士學(xué)位論文.北京:中國地質(zhì)科學(xué)院
侯可軍,李延河,鄒天人,曲曉明,石玉若,謝桂青.2007.LA-MCICP-MS 鋯石Hf 同位素的分析方法及地質(zhì)應(yīng)用.巖石學(xué)報(bào),23(10):2595-2604
劉文燦,梁定益,王克友,周志廣,李國彪,張祥信.2002.藏南康馬地區(qū)奧陶系的發(fā)現(xiàn)及其地質(zhì)意義.地學(xué)前緣,9(4):247-248
彭虎,李才,解超明.2013.青藏高原羌塘中部日灣茶卡組的物源探討——來自碎屑鋯石的研究.廣州:全國巖石學(xué)與地球動力學(xué)研討會摘要
王莉,曾令森,高利娥,陳振宇.2013.藏南岡底斯巖基東南緣早白堊世高鎂-高Sr/Y 含單斜輝石閃長巖.巖石學(xué)報(bào),29(6):1977-1994
夏軍,王陸太,鐘華明,童勁松,魯如魁,王明.2009.青藏高原龍木錯(cuò)地區(qū)志留紀(jì)大型古三角洲沉積體系的識別及其意義.地質(zhì)通報(bào),28(9):1267-1275
許志琴,徐惠芬,張建新,李海兵,朱志直,曲景川,陳代璋,陳金祿,楊開春.1994.北祁連走廊南山加里東俯沖雜巖增生地體及其動力學(xué).地質(zhì)學(xué)報(bào),68(1):1-15
許志琴,楊經(jīng)綏,梁鳳華,戚學(xué)祥,劉福來,曾令森,劉敦一,李海兵,吳才來,史仁燈,陳松永.2005.喜馬拉雅地體的泛非-早古生代造山事件年齡記錄.巖石學(xué)報(bào),21(1):1-21
許志琴,楊經(jīng)綏,李海兵,張建新,曾令森,姜枚.2006.青藏高原與大陸動力學(xué)——地體拼合碰撞造山及高原隆升的深部驅(qū)動力.中國地質(zhì),33(2):221-238
張澤明,王金麗,沈昆,石超.2008.環(huán)東岡瓦納大陸周緣的古生代造山作用:東喜馬拉雅構(gòu)造結(jié)南迦巴瓦巖群的巖石學(xué)和年代學(xué)證據(jù).巖石學(xué)報(bào),24(7):1627-1637
周志廣,劉文燦,梁定益.2004.藏南康馬奧陶系及其底礫巖的發(fā)現(xiàn)并初論喜馬拉雅沉積蓋層與統(tǒng)一變質(zhì)基底的關(guān)系.地質(zhì)通報(bào),23(7):655-663