董昕 張澤明
大陸構造與動力學國家重點實驗室,中國地質科學院地質研究所,北京 100037
位于青藏高原南部的拉薩地體不僅經(jīng)歷了強烈的中生代新特提斯洋北向拉薩地體之下俯沖的安第斯型造山作用,還經(jīng)歷了新生代印度與歐亞大陸碰撞、俯沖導致的喜馬拉雅型造山作用(許志琴等,2006,2011)。從北到南,拉薩地體被獅泉河-納木措蛇綠混雜巖帶和洛巴堆-米拉山斷裂帶分為北拉薩地體、中拉薩地體和南拉薩地體(Zhu et al.,2009a)。北部拉薩地體目前為止還沒有中生代以前的巖漿和變質事件報道,中生代巖漿巖的全巖Nd 同位素和巖石中的鋯石Hf同位素組成表明北拉薩地體大部分地區(qū)為新生地殼(Zhao et al.,2008;Zhu et al.,2011,2013)。中部拉薩地體不僅具有中、新元古代的巖漿作用(胡道功等,2005;Xu et al.,2013),而且經(jīng)歷了新元古代的變質作用(Dong et al.,2011a;Zhang et al.,2012a),說明其確實存在前寒武紀的變質基底,Zhu et al.(2009b,2011,2013)認為中部拉薩地體為一個微陸塊。南部拉薩地體中大量中-新生代巖漿巖以高且正的鋯石εHf(t)值和小于1.0Ga 的地殼模式年齡為主,顯示新生地殼的特征(Chung et al.,2009;Ji et al.,2009;Zhu et al.,2011;張立雪等,2013),Chu et al.(2011)認為南拉薩地體是一個年輕的洋內島弧地體。而最近的研究表明,南拉薩地體存在寒武紀和晚泥盆世-早石碳世的巖漿作用(Ji et al.,2012;Dong et al.,2010,2014)。Lin et al.(2013)在東構造結的拉薩地體中獲得了中元古代的巖漿和新元古代的變質作用年齡,但是由于中-新生代造山過程中的強烈構造運動,該年齡所代表的構造域(歸屬于中拉薩地體/南拉薩地體)還有待商榷。因此,南部拉薩地體是否存在古老的基底還存在爭論。
松多晚古生代(~260Ma)高壓變質帶和鄰區(qū)近同期的變質、變形和巖漿作用的報道(李才等,2003;張宏飛等,2007;Li et al.,2009;Yang et al.,2009;Zhu et al.,2009b,2010;Dong et al.,2011b),證實拉薩地體存在晚古生代-早中生代造山作用。Yang et al.(2009)認為該造山作用與南、北(上述中拉薩地體)拉薩地體的拼合有關;而Zhu et al.(2009b)認為拉薩地體(中拉薩地體)曾經(jīng)是古特提斯洋中的一個微地塊,晚古生代的造山作用是其與澳大利亞大陸北緣的碰撞造山作用有關。如果南拉薩地體為中-新生代形成的島弧,那么晚古生代南、北拉薩地體拼合的觀點既不成立。因此,南拉薩地體是否存在古老基底關系到松多高壓變質巖的成因,以及晚古生代-早中生代造山作用等重要問題。
筆者之前首次報道了南拉薩地體寒武紀花崗巖的形成時間(樣品TM08-41-1,496Ma;Dong et al.,2010),但對其巖石成因未做深入探討。本文在已有研究基礎上,對南拉薩地體眼球狀的寒武紀花崗巖進行了巖石學、鋯石U-Pb 定年和Hf 同位素的研究。為了對比,本文對Zhang et al.(2012b)報道的鄰區(qū)高喜馬拉雅巖系中近同期的花崗質片麻巖(503~490Ma,樣品6-10-1、6-14-1、6-17-1)進行了鋯石Hf 同位素的補充,對青藏高原東南部寒武紀花崗巖的成因和構造意義進行了探討,為青藏高原的起源提供了重要限定。
圖1 青藏高原東南部地質簡圖(據(jù)張澤明等,2007 修改)Fig.1 Geological map of the southeastern Tibetan Plateau (after Zhang et al.,2007)
圖2 米林地區(qū)眼球狀花崗巖的野外和顯微照片以及背散射圖像(a)眼球狀花崗巖的野外照片;(b)花崗巖的糜棱結構和鉀長石斑晶;(c、d)花崗巖的石榴石變斑晶;(e)石榴石變斑晶被黑云母和長石交代的殘余;(f)圖2e 中紅色虛線框部分的背散射圖像.礦物縮寫據(jù)Whitney and Evans,2010Fig.2 Field views,photomicrographs and back-scattered-electron image of the Milin augen granites
青藏高原從北到南主要由四個大陸地塊或地體組成,依次為松潘-甘孜地體、羌塘地體、拉薩地體和喜馬拉雅帶(Yin and Harrison,2000;許志琴等,2006)。研究區(qū)位于青藏高原東南部,主要由3 個構造單元組成:拉薩地體、高喜馬拉雅帶和特提斯喜馬拉雅帶。雅魯藏布江蛇綠巖混雜巖帶呈馬蹄狀分布于北部的拉薩地塊和南部的高喜馬拉雅帶和特提斯喜馬拉雅帶中(圖1)。
拉薩地體主要由古生代-中生代沉積巖、中、新生代岡底斯巖漿巖和峰期角閃巖相至麻粒巖相的林芝雜巖組成。過去的研究認為,這套中、高級的變質巖——林芝雜巖,是拉薩地體的前寒武紀變質基底,曾被命名為念青唐古拉片麻巖系/巖群、岡底斯巖群和林芝巖群(李璞,1955;甘肅省地質礦產(chǎn)局區(qū)域地質調查隊,1995①甘肅省地質礦產(chǎn)局區(qū)域地質調查隊.1995.1∶20 萬通麥-波密幅區(qū)域地質調查報告;云南省地質調查院,2003②云南省地質調查院.2003.1∶25 萬林芝幅區(qū)域地質調查報告)。而最新的研究表明,這些變質巖系的原巖主要由形成在晚古生代的沉積巖、中生代-新生代的巖漿巖和少量的古生代巖漿巖組成,其角閃巖相-麻粒巖相的變質作用發(fā)生在新特提斯洋北向拉薩地體之下俯沖導致的安第斯型造山作用和印度-歐亞大陸碰撞引起的喜馬拉雅型造山作用過程中,是中、新生代的復合變質帶(王金麗等,2009;董昕等,2012;Dong et al.,2010,2014;Zhang et al.,2010a,2013,2014;Guo et al.,2012)。本文樣品采自南拉薩地體米林縣北北東方向,屬于林芝雜巖的一部分(圖1)。野外調查表明,寒武紀巖石靠近雅江縫合帶,經(jīng)歷了強烈的變形作用,具有眼球狀或條帶狀構造,花崗巖中的長石顆粒被壓扁拉長呈橢圓形(圖2a)。
高喜馬拉雅帶中的巖石,被稱為南迦巴瓦雜巖,由高級變質的片麻巖、角閃巖、片巖、大理巖、麻粒巖和混合巖組成,原巖可能為元古代巖石(Liu and Zhong,1997;Burg et al.,1998;Ding and Zhong,1999;Geng et al.,2006)。最近的研究顯示,南迦巴瓦雜巖由古元古代晚期(1759~1594Ma)和古生代早期(約500Ma)的巖漿巖,和元古代至古生代早期的沉積巖組成(郭亮等,2008;Zhang et al.,2012b)。多數(shù)巖石經(jīng)歷了麻粒巖相變質作用,變質和混合巖化時間持續(xù)較長,約從40 至7Ma(Burg et al.,1998;Ding et al.,2001;Booth et al.,2004,2009;Liu et al.,2007;Xu et al.,2010;Zhang et al.,2010b,2012b;Su et al.,2012)。本文對比的同期寒武紀巖石,即為南迦巴瓦雜巖中原巖為503~490Ma的花崗質片麻巖(圖1;Zhang et al.,2012b)。
全巖主量和微量元素化學成分分析在國家地質實驗測試中心完成。主量元素采用XRF(X-ray fluorescence)方法進行測定,分析精度優(yōu)于5%。微量元素采用等離子質譜儀ICP-MS(Inductively Coupled Plasma Mass Spectrometry)方法進行測定,含量大于10 ×10-6的元素測試精度為5%,而小于10 ×10-6的元素測試精度為10%。CIPW 計算采用Geokit(路遠發(fā),2004)軟件完成。
礦物化學成分電子探針分析在中國地質科學院地質研究所國土資源部大陸動力學實驗室完成,所用儀器為日本電子JEOL 公司生產(chǎn)的電子探針顯微分析儀(Electron Probe MicroAnylyzer),儀器型號:JXA-8100。實驗條件為加速電壓15kV,束流2 ×10-8A,束斑直徑5μm,攝譜時間10sec,ZAF校正。SPI 標準礦物校正。
鋯石陰極發(fā)光成像在中國地質科學院地質研究所北京離子探針中心完成。鋯石LA-ICP-MS U-Pb 和微量元素分析在中國地質大學(武漢)地質過程與礦產(chǎn)資源國家重點實驗室完成。所使用的ICP-MS 儀器型號為Elan6100DRC,激光剝蝕系統(tǒng)為德國Lamda Physik 公司的Geolas200M 深紫外(DUV)193nm ArF 準分子(excimer)激光剝蝕系統(tǒng),激光束斑直徑采用32μm。實驗中采用He 作為剝蝕物質的載氣,哈佛大學標準鋯石91500 作為外標,29Si 作為內標。采用ICPMSDataCal(V3.7)軟件對同位素比值數(shù)據(jù)進行處理,詳細的儀器操作條件和數(shù)據(jù)處理方法見Liu et al.(2008,2010)。ISOPLOT 程序(Ludwig,2003)進行鋯石加權平均年齡計算及諧和圖的繪制。
鋯石Hf 同位素測試在中國地質科學院礦產(chǎn)資源研究所國土資源部成礦作用與資源評價重點實驗室Neptune 多接收等離子質譜和Newwave UP213 紫外激光剝蝕系統(tǒng)(LA-MCICP-MS)上進行的,實驗過程中采用He 作為剝蝕物質載氣,剝蝕直徑采用55μm,測定時使用鋯石國際標樣GJ1 作為參考物質。相關儀器運行條件及詳細分析流程見侯可軍等(2007)。分析過程中鋯石標準GJ1 的176Hf/177Hf 測試加權平均值為0.282038 ±4(2σ,n =33)。計算初始176Hf/177Hf 時,Lu 的衰變常數(shù)采用1.865 ×10-11a-1(Scherer et al.,2001),εHf(t)值的計算時采用球粒隕石Hf 同位素值176Lu/177Hf =0.0336,176Hf/177Hf=0.282785(Bouvier et al.,2008)。在Hf的地幔模式年齡計算中,虧損地幔176Hf/177Hf 現(xiàn)在值采用0.28325,176Lu/177Hf 采用0.0384(Griffin et al.,2000),地殼模式年齡計算時采用平均地殼的176Lu/177Hf =0.015(Griffin et al.,2002)。
米林地區(qū)的眼球狀花崗巖經(jīng)歷了變形和弱的變質作用,具有斑狀變晶結構或糜棱結構,主要由斜長石、鉀長石和石英組成,含有少量石榴石、白云母、黑云母礦物和磷灰石等副礦物(圖2b-f)。碎斑/變斑晶主要為鉀長石和石榴石(圖2bd)。石榴石變斑晶他形,核部(Grt1)含有不同于基質中的他形片狀白云母(Ms1),邊部(Grt2)被黑云母和石英替代(圖2c,d);部分石榴石(Grt1)已被黑云母和他形斜長石全部替代,僅剩少量殘余(圖2e,f)。基質由細粒和重結晶條帶狀的石英、他形的斜長石和鉀長石,以及條帶狀的白云母組成(圖2b-d)。條帶狀的石英和白云母(Ms2)定向排列構成線理(圖2b-d)。
南迦巴瓦地區(qū)的寒武紀花崗質片麻巖具有片麻狀構造,主要由斜長石、條紋長石、石英和黑云母組成,含有少量石榴石、角閃石和褐簾石,礦物共生組合說明巖石經(jīng)歷了角閃巖相的變質作用(見Zhang et al.,2012b,在此不贅述)。
米林地區(qū)眼球狀花崗巖中石榴石和白云母的代表性化學成分見表1、表2,典型特征描述如下。
由于巖石變質程度低,原生的巖漿成因石榴石得以保存。原生巖漿成因的石榴石以石榴石變斑晶核部和他形殘余形式出現(xiàn)(Grt1;圖2c-f),主要由鐵鋁榴石(42.3%~62.5%)和鈣鋁榴石(14.3%~44.4%)組成;因為含有高的MnO 含量(5.58%~9.69%),錳鋁榴石端元組分相對較高(13.0%~23.1%)(表1)。石榴石變斑晶的邊部(Grt2;圖2c,d)經(jīng)歷變質作用,相比巖漿成因的石榴石具有低的MnO(2.54%和2.78%)含量,端元組分分別為鐵鋁榴石51.3%和52.1%,鈣鋁榴石42.0%和42.4%,以及錳鋁榴石5.7%和6.2%(表1)。
表1 米林眼球狀花崗巖中代表性石榴石成分(wt%)Table 1 The compositions of representative garnet from the Milin augen granites (wt%)
表2 米林眼球狀花崗巖中代表性白云母成分(wt%)Table 2 The compositions of representative muscovite from the Milin augen granites (wt%)
原生巖漿成因的白云母以包體形式產(chǎn)出在巖漿成因的石榴石核部,數(shù)量較少,他形(Ms1);變質成因的白云母全部產(chǎn)出在基質中,為長的條帶狀(Ms2)(圖2b-d)。巖漿成因的白云母較變質成因的白云母具有略低的SiO2(47.34%)含量,低的MgO(0.39%)和TiO2(0.03%)以及高的Na2O(0.54%)含量(表2)。變質成因的白云母上述成分分別:SiO2為48.41%~48.87%,MgO 為0.64%~0.78%,TiO2為0.21%~0.34%和Na2O 為0.25%~0.31%(表2)。
表3 寒武紀花崗質巖石的全巖化學成分(主量元素:wt%;微量元素:×10 -6)Table 3 Whole-rock chemical compositions from the Cambrian granitoids (major elements:wt%;trace elements:×10 -6)
圖3 青藏高原東南部寒武紀花崗巖類的全巖地球化學分類圖解(a)侵入巖的TAS 圖解;(b)A/CNK-A/NK 圖解.圖4、圖9 圖例同此圖Fig.3 Whole-rock geochemical classification diagrams of the Cambrian granitoids form the southeastern Tibetan Plateau
圖4 青藏高原東南部寒武紀花崗巖類的球粒隕石標準化稀土元素配分圖(a)和原始地幔標準化微量元素蛛網(wǎng)圖(b)(標準化值據(jù)Sun and McDonough,1989)Fig.4 Normalized trace elements diagrams of the Cambrian granitoids form the southeastern Tibetan Plateau (normalization values after Sun and McDonough,1989)
青藏高原東南部寒武紀花崗質巖石的全巖主量和微量元素成分見表3。
米林地區(qū)眼球狀花崗巖具有相似的主量元素成分:SiO2為76.0%~77.5%、Al2O3為12.4%~13.5%、CaO 為0.51%~1.73%、Na2O 為2.58%~4.84% 和K2O 為1.36%~5.35%,為鈣堿性花崗巖。在侵入巖的 TAS 圖解中(Middlemost,1994),全部落入花崗巖區(qū)域(圖3a)。鋁飽和指數(shù)(A/CNK)為1.07~1.16,為準鋁質到過鋁質(圖3b),剛玉分子數(shù)較高(均大于1,表3)。球粒隕石標準化的稀土元素圖解中(圖4a),輕、重稀土元素分異不明顯,輕稀土元素含量略高于重稀土元素((La/Yb)N=2.09~2.68),具有明顯的Eu 負異常(δEu=0.04~0.21);原始地幔標準化的多元素圖解中,顯示明顯的Ba、Nb、Sr、P 和Ti 的負異常(圖4b)。
南迦巴瓦地區(qū)花崗質片麻巖較米林眼球狀花崗巖具有低的SiO2含量(62.5%~72.9%),高的CaO(1.80%~4.88%)含量,和相似的全堿含量,為鈣堿性。在TAS 圖解中,落入閃長巖、花崗閃長巖和花崗巖區(qū)域(圖3a)。鋁飽和指數(shù)(A/CNK)均小于1.1,為準鋁質(圖3b),剛玉分子數(shù)略低(表3)。具有明顯分異的稀土元素特征(圖4a),富集輕稀土元素、虧損重稀土元素((La/Yb)N=5.26~12.01),弱的Eu 負異常(δEu=0.32~0.72);原始地幔標準化的多元素圖解中,同樣具有Ba、Nb、Sr、P 和Ti 的負異常(圖4b)。
本文對米林地區(qū)眼球狀花崗巖的2 個樣品(T10-119-2和T10-119-6)進行了LA-ICP-MS 鋯石U-Pb 定年。鋯石定年和微量元素分析結果見表4 和表5。
圖5 米林眼球狀花崗巖的鋯石U-Pb 年齡諧和圖和代表性鋯石的陰極發(fā)光圖像陰極發(fā)光圖像中比例尺為100μmFig.5 Zircon U-Pb age concordia diagrams and cathodoluminescence images of representative zircon from the Milin augen granites,with a scale bar of 100μm
圖6 米林眼球狀花崗巖中鋯石的稀土元素球粒隕石標準化圖解Fig.6 Chondrite-normalized REE patterns of zircon from the Milin augen granites
樣品中的鋯石半自形-自形長柱狀,無色至淺褐色,顆粒長徑約為200~300μm。陰極發(fā)光圖像表明,大多數(shù)鋯石具核-邊結構,核部為形狀不規(guī)則的具不清晰環(huán)帶的繼承性碎屑鋯石,邊部較寬,具巖漿鋯石典型的振蕩環(huán)帶(圖5)。樣品T10-119-2 邊部獲得12 個諧和的測試點,206Pb/238U 年齡范圍為505~496Ma 之間,加權平均值為501.3 ± 3.7Ma(MSWD=0.16,圖5a)。樣品T10-119-6 邊部獲得13 個諧和的測試點,206Pb/238U 年齡范圍為624~493Ma 之間,剔除2個核-邊混合較老的年齡,11 個點的加權平均值為497.5 ±3.8Ma(MSWD=0.13,圖5b)。分析的巖漿鋯石的稀土元素配分模式圖表現(xiàn)為LREE 虧損,HREE 富集,具明顯的Ce 正異常和Eu 負異常(圖6),鋯石稀土元素總量較高范圍為745×10-6~2800 ×10-6(表5),Th/U 比值均大于0.1(表4),為典型巖漿成因鋯石特征(例如Rubatto,2002;Geisler et al.,2007)。因此,結合之前報道的數(shù)據(jù)(496Ma,Dong et al.,2010),米林地區(qū)眼球狀花崗巖的結晶年齡為寒武紀的501~496Ma。
本文對米林地區(qū)眼球狀花崗巖的3 個樣品(T10-119-2、T10-119-6 和TM08-41-1)和南迦巴瓦地區(qū)片麻狀花崗巖3 個樣品(6-10-1、6-14-1 和6-17-1)進行了鋯石Hf 同位素測試。鋯石Hf 同位素組成見表6。
鋯石Hf 同位素分析結果表明,米林3 個樣品中的巖漿鋯石的初始176Hf/177Hf 比值非常相似,范圍為0.282297~0.282481(表6),相應的εHf(t)值分別為- 5.4~- 2.2、-5.5~-2.8 和-6.2~0.3(表6、圖7a),地殼Hf 模式年齡變化范圍為1.85~1.43Ga(表6、圖7b)、南迦巴瓦3 個樣品中的巖漿鋯石的初始176Hf/177Hf 比值有一定變化,范圍分別為0.282111~0.282302、0.282241~0.282449 和0.282205~0.282310(表6),相應的εHf(t)值分別為-12.9~-6.2、-8.2~-0.9 和-9.3~-5.6(表6、圖7a),地殼Hf 模式年齡變化范圍分別為2.26~1.84、1.97~1.51 和2.05~1.81Ga(表6、圖7b)。
表4 米林眼球狀花崗巖中鋯石的U-Pb定年結果Table4 The U-Pb dating results of zircon from the Milin augen geanites
表5 米林眼球狀花崗巖中鋯石的稀土元素含量 ( ×10-6)Table5 Therare-earth element contents of zircon from the Milin augen granites( ×10 -6)
圖7 鋯石的U-Pb 年齡-εHf(t)值圖解(a)和地殼Hf 模式年齡直方圖(b)中拉薩地體寒武紀火山巖中鋯石的Hf 同位素數(shù)據(jù)引自Zhu et al.,2012Fig.7 Diagram of U-Pb ages vs.εHf(t)values (a)and crustal-model ages (tDMC)histogram (b)of zircon
圖8 米林寒武紀花崗巖中鋯石的微量元素雙變量圖解(a)Pb-Th 圖解;(b)δEu-(Nb/Pb)N圖解,I 型和S 型花崗巖中鋯石微量元素分區(qū)據(jù)Wang et al.(2012)Fig.8 Bivariate diagrams of zircon trace elements from the Milin Cambrian granites
鋯石U-Pb 年代學表明本文所研究的花崗巖類的結晶年齡為寒武紀的501~496Ma。由于靠近雅魯藏布江縫合帶,米林地區(qū)的寒武紀花崗巖遭受了變形和低級的變質作用,呈眼球狀或條帶狀構造,對其花崗巖源巖類型的恢復有一定難度。本次的研究表明,該期巖漿巖均為花崗質巖石(圖3a),全巖主量元素特征表明巖石具有較高的SiO2含量,為鈣堿性花崗巖、偏鋁質至弱過鋁質,盡管CIPW 計算結果表明巖石具有類似S 型花崗巖的較高剛玉分子數(shù)(表3),但還不能確定巖石的類型。巖相學的觀察表明,巖石經(jīng)歷了低級變質作用,原生巖漿成因礦物較難判別,但通過礦物化學分析,仍鑒別出了原生巖漿成因的過鋁質礦物。原生巖漿成因的石榴石較變質作用的石榴石具有較高的MnO 含量(Miller and Stoddard,1981;Villaros et al.,2009;Zhang et al.,2013),以石榴石核部和他形殘留體的形式存在(圖2c-f),鄰區(qū)林芝雜巖S 型花崗巖中的石榴石同樣以高的錳鋁榴石端元組分為特征(Zhang et al.,2013);原生巖漿成因的白云母以包體形式保存于巖漿成因的石榴石核部(圖2c,d),較基質中變質成因的條帶狀白云母具有較低的SiO2和MgO 含量(表2)。同時,花崗巖中鋯石核部保存了繼承的碎屑鋯石;巖漿成因的鋯石邊部具有較高的Pb 含量、低的(Nb/Pb)N比值和顯著的Eu 負異常(表4、表5 和圖8),這些都是S 型花崗巖中鋯石的典型特征(Wang et al.,2012)。因此,上述證據(jù)表明米林眼球狀花崗巖應為S 型的花崗巖。
由于采集的樣品數(shù)目過少,限制了巖石成因的討論。但是從僅有的米林花崗巖的稀土元素特征中,我們可以看出,巖石具有明顯且一致的Eu、Ba 和Sr 的負異常(圖4),說明巖漿經(jīng)歷了斜長石的分離結晶作用;而巖石輕稀土元素的低含量和P 的負異常(圖4)可能與褐簾石和磷灰石,或者是獨居石的分離結晶有關。獨居石發(fā)生分離結晶作用時,Th 和LREE的含量會降低(Vidal et al.,1982;Cuney et al.,1984;Guillot and Le Fort,1995),圖9 中可見二者隨SiO2含量的增高,成正相關性降低(同期南迦巴瓦花崗質片麻巖即不具這種特征),因此,本文認為米林花崗巖的上訴特征是由于獨居石的分離結晶所致,這一現(xiàn)象在喜馬拉雅帶新生代的S 型花崗巖中也廣泛存在(張宏飛等,2005;Guo and Wilson,2012;Zeng et al.,2012)。
表6 寒武紀花崗質巖石中鋯石的Hf 同位素組成Table 6 The Hf isotope components of zircon from the Cambrian granitoids
續(xù)表6Continued Table 6
相對于拉薩地體廣泛分布的與中、新生代造山作用相關的巨型岡底斯巖漿巖(Chung et al.,2003,2005;Hou et al.,2004;Nomade et al.,2004;莫宣學等,2005,2007,2009;許志琴等,2006;Chu et al.,2006;Mo et al.,2007,2008;侯增謙等,2008;朱弟成等,2008a,b;Wen et al.,2008a,b;Zhu et al.,2008,2009a,b,2011;Ji et al.,2009;Zhao et al.,2009;Zhang et al.,2010;Xu et al.,2012),古生代以及之前的巖漿作用寥寥可數(shù)。至今,北拉薩地體還沒有中生代以前的巖漿事件相關報道。中拉薩地體目前已報道的最古老的結晶基底是東構造結墨脫地區(qū)的~1.3Ga 中元古代花崗巖類,鋯石Hf 模式年齡集中在2.0~1.6Ga,并具有正的εHf(t)值(Xu et al.,2013),中部申扎地區(qū)出露了525~490Ma 的火山巖(計文化等,2009;Zhu et al.,2012;Hu et al.,2013;Ding et al.,2014)和510Ma 的花崗巖(Gehrels et al.,2011)。申扎地區(qū)寒武紀酸性火山巖中的鋯石具有極負的εHf(t)值,范圍為-14.8~-4.6,古老的地殼模式年齡(2.4~1.8Ga)(圖7;Zhu et al.,2012)。此外,Dong et al.(2011a)和Zhang et al.(2012a)的研究證明在納木措西存在新元古代的高壓-中壓變質巖。以上證據(jù)均表明,中拉薩地體存在中元古代甚至更老的結晶基底。
圖9 米林寒武紀花崗巖的Th-LREE 圖解Fig.9 Diagram of Th vs.LREE from the Milin Cambrian granites
最新的研究表明,在南拉薩地體東南部的朗縣和加查縣附近存在晚泥盆世-早石炭世(371~346Ma)的巖漿作用,酸性巖中鋯石的地殼Hf 模式年齡范圍為1.9~1.4Ga;基性巖中鋯石的地幔Hf 模式年齡為1.3~1.1Ga(Ji et al.,2012;Dong et al.,2014)。而本文報道的寒武紀花崗巖類位于其東側的米林地區(qū),鋯石U-Pb 年代學證明其結晶年齡為501~496Ma,Hf 同位素具有近一致的負εHf(t)值(表6),地殼Hf模式年齡年齡范圍為1.9~1.4Ga,集中在1.8~1.6Ga(圖7b),說明該寒武紀花崗巖可能來源于中-新元古代物質的部分熔融。同時,筆者未發(fā)表數(shù)據(jù)表明南拉薩地體存在約600Ma 的巖漿巖,因此,本文認為南拉薩地體存在前寒武紀的結晶基底,而并不是一個年輕的島弧地體(Chu et al.,2011)。
通常認為,隨著分割東、西岡瓦納大陸的Mozambique 洋的閉合和東非造山作用(570~520Ma),南方大陸岡瓦納大陸最終拼合起來(McWilliams,1981;Stern,1994)。但是,最近的研究表明,岡瓦納大陸的拼合涉及到其內部一系列的造山作 用(Fitzsimons,2000a,b;Collins et al.,2003a,b;Meert,2003;Boger and Miller,2004;Johnson and Oliver,2004;Collins and Pisarevsky,2005;Fitzsimons and Hulscher,2005)。其中,東岡瓦納大陸的拼合過程包括:Kalahari、Mawson 和India 地塊之間的Kuunga 造山帶(560~530Ma),Australia-Mawson 和India 地塊之間的Pinjarra 造山帶(560~520Ma)。隨著岡瓦納大陸拼合的結束,其周緣又開始形成新的俯沖帶和增生造山作用,岡瓦納大陸周緣轉變?yōu)榛顒雨懢?,南部大陸邊緣由于原太平洋的俯沖,形成從Australia 東部、New Zealand、Antarctica、South Africa 持續(xù)到American 西南海岸的Terra-Australis 造山帶(530~490Ma)。北部由于原特提斯洋的俯沖,在印度地塊北部形成北印度造山帶(又名Bhimphedian 造山帶,530~470Ma)(Cawood et al.,2007)。
Ji et al.(2012)研究表明中、南拉薩地體在晚古生代之前為一個塊體。他們和高喜馬拉雅帶共同位于東岡瓦納大陸的北緣(Cawood et al.,2007)。高喜馬拉雅帶南迦巴瓦雜巖中的正變質巖主要由古元古代晚期(1759~1594Ma)和古生代早期(約500Ma)的巖漿巖組成(郭亮等,2008;Zhang et al.,2012b)。其中,寒武紀花崗質片麻巖具有低的鋁飽和指數(shù)和剛玉分子數(shù),樣品中的鋯石核部均為巖漿成因,巖漿核獲得了正片麻巖的原巖年齡為503~490Ma(Zhang et al.,2012b)。鋯石具有負的εHf(t)值(表6、圖7a),地殼Hf 模式年齡范圍為元古代的2.3~1.5Ga(圖7b)。因此,本文推測其可能為元古代的地殼物質部分熔融產(chǎn)生的I 型花崗巖。同時,南迦巴瓦雜巖還經(jīng)歷了538Ma 的變質作用(Zhang et al.,2012b)。上述巖漿和變質作用與南拉薩地體米林地區(qū)S 型花崗巖和中拉薩地體申扎地區(qū)雙峰式火山巖近同期。這種I 型和S 型花崗巖同時產(chǎn)生的現(xiàn)象在典型的安第斯型造山過程中,例如澳大利亞的Delamerian、Lachlan 和New England 造山帶廣泛存在(Chappell and White,1992;Kemp et al.,2009)。這一安第斯型的造山作用在印度北部喜馬拉雅帶、中拉薩地體申扎和滇西地區(qū)還造成早古生代地層的不整合(Funakawa,2001;Miller et al.,2001;Gehrels et al.,2003,2006,2011;李才等,2010;黃勇等,2012;蔡志慧等,2013)。因此,本文報道的青藏高原東南部的寒武紀花崗質巖石為古生代早期原特提斯洋俯沖導致的安第斯型造山作用的產(chǎn)物。
(1)青藏高原東南部寒武紀花崗質巖石位于南拉薩地體的米林地區(qū)和高喜馬拉雅帶的南迦巴瓦地區(qū),原巖類型包括閃長巖、花崗閃長巖和花崗巖。米林地區(qū)眼球狀花崗巖中保存了原生巖漿成因的過鋁質礦物石榴石和白云母。結合全巖化學成分、鋯石結構及微量元素成分特征,本文推測其為S型花崗巖類,巖漿演化過程中發(fā)生了斜長石和獨居石的分離結晶作用。
(2)鋯石U-Pb 年代學和Hf 同位素研究表明,南拉薩地體眼球狀花崗巖的結晶年齡為501~496Ma,鋯石具有近一致負的εHf(t)值,地殼Hf 模式年齡主要集中在1.8~1.6Ga,說明其可能來源于中-新元古代物質的部分熔融,南拉薩地體并不是一個年輕的島弧地體。高喜馬拉雅帶寒武紀花崗質片麻巖具有負的εHf(t)值,地殼Hf 模式年齡范圍為元古代的2.3~1.5Ga。
(3)青藏高原東南部S 型和I 型的花崗巖類共同記錄了原特提斯洋俯沖過程中安第斯型造山作用。
致謝 感謝中國地質大學(北京)趙志丹和朱弟成教授在文章發(fā)表過程中的指導,中國地質科學院地質研究所戚學祥研究員和于勝堯副研究員在評審過程中提出的寶貴意見,以及中國地質科學院地質研究所蔡志慧、田作林博士在文章撰寫中和中國地質科學院礦產(chǎn)研究所郭春麗副研究員在實驗中的幫助!
Boger SD and Miller JM.2004.Terminal suturing of Gondwana and the onset of the Ross-Delamerian Orogeny:The cause and effect of an Early Cambrian reconfiguration of plate motions.Earth and Planetary Science Letters,219 (1-2):35-48
Booth A,Zeitler P,Kidd W,Wooden J,Liu Y,Idleman B,Hren M and Chamberlain P.2004.U-Pb zircon constraints on the tectonic evolution of southeastern Tibet,Namche Barwa area.American Journal of Science,304(10):889-929
Booth AL,Chamberlain CP,Kidd WSF and Zeitler PK.2009.Constraints on the metamorphic evolution of the eastern Himalayan Syntaxis from geochronologic and petrologic studies of Namche Barwa.Geological Society of America Bulletin,121(3-4):385-407
Bouvier A,Vervoort JD and Patchett PJ.2008.The Lu-Hf and Sm-Nd isotopic composition of CHUR:Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets.Earth and Planetary Science Letters,273(1-2):48-57 Burg JP,Nievergelt P,Oberli F,Seward D,Davy P,Maurin JC,Diao ZZ and Meier M.1998.The Namche Barwa syntaxis:Evidence for exhumation related to compressional crustal folding.Journal of Asian Earth Sciences,16(2-3):239-252
Cai ZH,Xu ZQ,Duan XD,Li HQ,Cao H and Huang XM.2013.Early stage of Early Paleozoic orogenic event in western Yunman Province,southeastern margin of Tibet Plateau.Acta Petrologica Sinica,29(6):2013-2140 (in Chinese with English abstract)
Cawood PA,Johnson MRW and Nemchin AA.2007.Early Palaeozoic orogenesis along the Indian margin of Gondwana:Tectonic response to Gondwana assembly.Earth and Planetary Science Letters,255(1-2):70-84
Chappell BW and White AJR.1992.I- and S-type granites in the Lachlan Fold Belt.Transactions of the Royal Society of Edinburgh,83(1-2):1-26
Chu MF,Chung SL,Liu DY,O’Reilly SY,Pearson NJ,Ji JQ and Wen DJ.2006.Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet.Geological Society of America,34(9):745-748
Chu MF,Chung SL,O’Reilly SY,Pearson NJ,Wu FY,Li XH,Liu DY,Ji JQ,Chu CH and Lee HY.2011.India’s hidden inputs to Tibetan orogeny revealed by Hf isotopes of Transhimalayan zircons and host rocks.Earth and Planetary Science Letters,307(3-4):479-486
Chung SL,Liu DY,Ji WQ,Chu MF,Lee HY,Wen DJ,Lo CH,Lee TY,Qing Q and Zhang Q.2003.Adakites from continental collision zones:Melting of thickened lower crust beneath southern Tibet.Geology,31(11):1021-1024
Chung SL,Chu MF,Zhang Y,Lo CH,Lee TY,Lan CY,Li X,Zhang Q and Wang Y.2005.Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism.Earth Science Reviews,68(3-4):173-196
Chung SL,Chu MF,Ji JQ,O’Reilly SY,Pearson NJ,Liu DY,Lee TY and Lo CH.2009.The nature and timing of crustal thickening in Southern Tibet:Geochemical and zircon Hf isotopic constraints from postcollisional adakites.Tectonophysics,477(1-2):36-48
Collins AS,F(xiàn)itzsimons ICW,Hulscher B and Razakamanana T.2003a.Structure of the eastern margin of the East African Orogen in central Madagascar.Precambrian Research,123(2-4):111-133
Collins AS,Kr?ner A,F(xiàn)itzsimons ICW and Razakamanana T.2003b.Detrital footprint of the Mozambique ocean:U-Pb SHRIMP and Pb evaporation zircon geochronology of metasedimentary gneisses in eastern Madagascar.Tectonophysics,375(1-4):77-99
Collins AS and Pisarevsky S.2005.Amalgamating eastern Gondwana:The evolution of the circum-Indian orogens.Earth-Science Reviews,71(3-4):229-270
Cuney M,Le Fort P and Wang ZX.1984.Uranium and thorium geochemistry and mineralogy in the Manaslu leucogranite (Nepal,Himalaya).In:Xu KQ and Tu GC (eds.).Proceedings of the Sympoium on “Geology of Granites and Their Metallogenic Relations”Nanjing Univ.,China 1982.Beijing:Science Press,853-873
Ding HX,Zhang ZM,Dong X,Yan Y,Lin YH and Jiang HY.2014.Cambrian ultrapotassic rhyolites from the Lhasa terrane,South Tibet:Evidence for Andean-type magmatism along the northern active margin of Gondwana.Gondwana Research,27(4):1616-1629
Ding L and Zhong DL.1999.Metamorphic characteristics and geotectonic implications of the high-pressure granulites from Namjag Barwa,eastern Tibet.Science in China (Series D),42(5):491-505
Ding L,Zhong DL,Yin A,Kapp P and Harrison TM.2001.Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis(Namche Barwa).Earth and Planetary Science Letters,192(3):423-438
Dong X,Zhang ZM and Santosh M.2010.Zircon U-Pb chronology of the Nyingtri Group, Southern Lhasa Terrane, Tibetan Plateau:Implications for Grenvillian and Pan-African Provenance and Mesozoic-Cenozoic metamorphism.The Journal of Geology,118(6):677-690
Dong X,Zhang ZM,Santosh M,Wang W,Yu F and Liu F.2011a.Late Neoproterozoic thermal events in the northern Lhasa terrane,South Tibet:Zircon chronology and tectonic implications.Journal of Geodynamics,52(5):389-405
Dong X,Zhang ZM,Liu F,Wang W,Yu F and Shen K.2011b.Zircon U-Pb geochronology of the Nyainqentanglha Group from the Lhasa terrane:New constraints on the Triassic orogeny of the South Tibet.Journal of Asian Earth Sciences,42(4):732-739
Dong X,Zhang ZM,Liu F,Wang W,Yu F,Lin YH,Jiang HY and He ZY.2012.Genesis of the metamorphic rock from southeastern Lhasa terrane and the Mesozoic-Cenozoic orogenesis.Acta Petrologica Sinica,28(6):1765-1784 (in Chinese with English abstract)
Dong X,Zhang ZM,Liu F,He ZY and Lin YH.2014.Late Paleozoic intrusive rocks from the southeastern Lhasa terrane,Tibetan Plateau,and their Late Mesozoic metamorphism and tectonic implications.Lithos,198-199:249-262
Fitzsimons ICW.2000a.Grenville-age basement provinces in East Antarctica:Evidence for three separate collisional orogens.Geology,28(10):879-882
Fitzsimons ICW.2000b.A review of tectonic events in the East Antarctic Shield and their implications for Gondwana and earlier supercontinents.Journal of African Earth Sciences,31(1):3-23
Fitzsimons ICW and Hulscher B.2005.Out of Africa:Detrital zircon provenance of central Madagascar and Neoproterozoic terrane transfer across the Mozambique Ocean.Terra Nova,17(3):224-235
Funakawa S.2001.Lower Palaeozoic Tethys sediment from the Kathmandu nappe,Phulchauki area,central Nepal.Journal of Nepal Geological Society,25:123-134
Gehrels G,Decelles PG,Martin A,Ojha TP,Pinhassi G and Upreti BN.2003.Initiation of the Himalayan Orogen as an Early Paleozoic thinskinned thrust belt.GSA Today,13(9):4-9
Gehrels G,Decelles PG,Ojha TP and Upreti BN.2006.Geologic and UTh-Pb geochronologic evidence for Early Paleozoic tectonism in the Kathmandu thurst sheet,central Nepal Himalaya.Geological Society of America Bulletin,118(1-2):185-195
Gehrels G,Kapp P,Decelles P,Pullen A,Blakey R,Weislogel A,Ding L,Guynn J,Martin A,McQuarrie N and Yin A.2011.Detrital zircon geochronology of pre-Tertiary strata in the Tibetan Himalayan orogen.Tectonics,30(5):TC5016,doi:10.1029/2011TC002868
Geisler T,Schaltegger U and Tomaschek F.2007.Re-equilibration of zircon in aqueous fluids and melts.Elements,3(1):43-50
Geng QR,Pan GT,Zheng LL,Chen ZL,F(xiàn)isher RD,Sun ZM,Ou CS,Dong H.Wang XW,Li S,Lou XY and Fu H.2006.The eastern Himalayan syntaxis:Major tectonic domains,ophiolitic mélanges and geologic evolution.Journal of Asian Earth Sciences,27(3):265-285
Griffin WL,Pearson NJ,Belousova E,Jackson SE,van Achterbergh E,O’Reilly SY and Shee SR.2000.The Hf isotope composition of cratonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites.Geochimica et Cosmochimica Acta,64(1):133-147
Griffin WL,Wang X,Jackson SE,Pearson NJ,O’Reilly SY,Xu XS and Zhou XM.2002.Zircon chemistry and magma mixing,SE China:In-situ analysis of Hf isotopes,Tonglu and Pingtan igneous complexes.Lithos,61(3-4):237-269
Guillot S and Le Fort P.1995.Geochemical constraints on the bimodal origin of High Himalayan leucogranites.Lithos,35(3-4):221-234
Guo L,Zhang HF and Xu WC.2008.U-Pb zircon ages of migmatite and granitic gneiss from Duoxiongla in eastern Himalayan syntaxis and their geological implications.Acta Petrologica Sinica,24(3):421-429 (in Chinese with English abstract)
Guo L,Zhang HF,Harris N,Parrish R,Xu WC and Shi ZL.2012.Paleogene crustal anatexis and metamorphism in Lhasa terrane,eastern Himalayan syntaxis:Evidence from U-Pb zircon ages and Hf isotopic compositions of the Nyingchi Complex.Gondwana Research,21(1):100-111
Guo ZF and Wilson M.2012.The Himalayan leucogranites:Constraints on the nature of their crustal source region and geodynamic setting.Gondwana Research,22(2):360-376
Hou KJ,Li YH,Zou TR,Qu XM,Shi YR and Xie GQ.2007.Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications.Acta Petrologica Sinica,23(10):2595-2604 (in Chinese with English abstract)
Hou ZQ,Gao YF,Qu XM,Rui ZY and Mo XX.2004.Origin of adakitic intrusives generated during Mid-Miocene east-west extension in southern Tibet.Earth and Planetary Science Letters,220(1-2):139-155
Hou ZQ,Wang EQ,Mo XX,Ding L,Pan GT and Zhang ZJ.2008.Collision Orogeny and Mineralization of Tibetan Plateau.Beijing:Geological Publishing House (in Chinese)
Hu DG,Wu ZH,Jiang W,Shi YR,Ye PS and Liu QS.2005.SHRIMP zircon U-Pb dating and Nd isotope research of Nyainqentanglha Group,Tibet.Science in China (Series D),35(1):29-37 (in Chinese)
Hu PY,Li C,Wang M,Xie CM and Wu YW.2013.Cambrian volcanism in the Lhasa terrane,southern Tibet:Record of an Early Paleozoic Andean-type magmatic arc along the Gondwana proto-Tethyan margin.Journal of Asian Earth Sciences,77:91-107
Huang Y,Hao JX,Bai L,Deng GB,Zhang GX and Huang WJ.2012.Stratigraphic and petrologic response to Late Pan-African Movement in Shidian area,western Yunnan Province.Geological Bulletin of China,31(2-3):306-313 (in Chinese with English abstract)
Ji WH,Chen SJ,Zhao ZM,Li RS,He SP and Wang C.2009.Discovery of the Cambrian volcanic rocks in the Xainza area,Gangdese orogenic belt, Tibet, China and its significance.Geological Bulletin of China,28(9):1350-1354 (in Chinese with English abstract)
Ji WQ,Wu FY,Chung SL,Li JX and Liu CZ.2009.Zircon U-Pb chronology and Hf isotopic constraints on petrogenesis of the Gangdese batholiths,southern Tibet.Chemical Geology,262(3-4):229-245
Ji WQ,Wu FY,Liu CZ and Chung SL.2012.Identification of Early Carboniferous granitoids from southern Tibet and implications for terrane assembly related to the Paleo-Tethyan evolution.The Journal of Geology,120(5):531-541
Johnson SP and Oliver GJH.2004.Tectonothermal history of the Kaouren arc,northern Zimbabwe:Implications for the tectonic evolution of the Irumide and Zambezi Belts of south central Africa.Precambrian Research,130(1-4):71-97
Kemp AIS,Hawkesworth CJ,Collins WJ,Gray CM,Blevin PL and EIMF.2009.Isotopic evidence for rapid continental growth in an extensional accretionary orogen:The Tasmanides,eastern Australia.Earth and Planetary Science Letters,284(3-4):455-466
Li C,Wang TW,Li HM and Zeng QG.2003.Discovery of Indosinian megaporphyritic granodiorite in the Gangdise area:Evidence for the existence of Paleo-Gangdise.Geological Bulletin of China,22(5):364-366 (in Chinese with English abstract)
Li C,Wu YW,Wang M and Yang HT.2010.Significant progress on Pan-African and Early Paleozoic orogenic events in Qinghai-Tibet Plateau: Discovery of Pan-African orogenic unconformity and Cambrian System in the Gangdise area,Tibet,China.Geological Bulletin of China,29(12):1733-1736 (in Chinese with English abstract)
Li HQ,Xu ZQ,Yang JS,Cai ZH,Chen SY and Tang ZM.2009.Records of Indosinian orogenesis in Lhasa terrane,Tibet.Journal of Earth Science,20(2):348-363
Li P.1955.Primary understanding of geology,Eastern Tibet.Chinese Science Bulletin,(7):62-71 (in Chinese)
Lin YH,Zhang ZM,Dong X,Shen K and Lu X.2013.Precambrian evolution of the Lhasa terrane,Tibet:Constraint from the zircon UPb geochronology of the gneisses.Precambrian Research,237:64-77
Liu Y and Zhong D.1997.Petrology of high-pressure granulites from the eastern Himalayan syntaxis.Journal of Metamorphic Geology,15(4):451-466
Liu Y,Yang ZQ and Wang M.2007.History of zircon growth in a highpressure granulite within the eastern Himalayan Syntaxis and tectonic implications.International Geology Review,49(9):861-872
Liu YS,Hu ZC,Gao S,Günthe D,Xu J,Gao CG and Chen HH.2008.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard.Chemical Geology,257(1-2):34-43
Liu YS,Gao S,Hu ZC,Gao CG,Zong KQ and Wang DB.2010.Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating,Hf isotopes and trace elements in zircons from mantle xenoliths.Journal of Petrology,51(1-2):537-571
Lu YF.2004.GeoKit:A geochemical toolkit for Microsoft Excel.Geochemistry,33 (5):459- 464 (in Chinese with English abstract)
Ludwig KR.2003.ISOPLOT 3.00:A Geochronological Toolkit for Microsoft Excel.Berkeley,CA:Berkeley Geochronology Center
McWilliams MO.1981.Palaeomagnetism and Precambrian tectonic evolution of Gondwana.In:Kr?ner A (ed.).Precambrian Plate Tectonics.Amsterdam:Elsevier,649-687
Meert JG.2003.A synopsis of events related to the assembly of eastern Gondwana.Tectonophysics,362(1-4):1-40
Middlemost EAK.1994.Naming materials in the magma/igneous rock system.Earth Science Reviews,37(3-4):215-224
Miller C,Th?ni M,F(xiàn)rank W,Grasemann B,Kl?tzli U,Guntli P and Draganits E.2001.The Early Palaeozoic magmatic event in the Northwest Himalaya,India:Source,tectonic setting and age of emplacement.Geological Magazine,138(3):237-251
Miller CF and Stoddard EF.1981.The role of manganese in the paragenesis of magmatic garnet:An example from the Old Woman-Piute Range,California.The Journal of Geology,89(2):233-246 Mo XX,Dong GC,Zhao ZD,Zhou S,Wang LL,Qiu RZ and Zhang FQ.2005.Spatial and temporal distribution and characteristics of granitoids in the Gangdese,Tibet and implication for crustal growth and evolution.Geological Journal of China Universities,11(3):281-290 (in Chinese with English abstract)
Mo XX,Hou ZQ,Niu YL,Dong GC,Qu XM,Zhao ZD and Yang ZM.2007.Mantle contributions to crustal thickening during continental collision:Evidence from Cenozoic igneous rocks in southern Tibet.Lithos,96(1-2):225-242
Mo XX,Zhao ZD,Zhou S,Dong GC and Liao ZL.2007.On the timing of India-Asia continental collision.Geological Bulletin of China,26(10):1240-1244 (in Chinese with English abstract)
Mo XX,Niu YL,Dong GC,Zhao ZD,Hou ZQ,Zhou S and Ke S.2008.Contribution of syncollisional felsic magmatism to continental crust growth:A case study of the Paleogene Linzizong volcanic succession in southern Tibet.Chemical Geology,250(1-4):46-67
Mo XX,Zhao ZD,Yu XH,Dong GC,Li YG,Zhou S,Liao ZL and Zhu DC.2009.Cenozoic Collisional-postcollisional Igneous Rocks in the Tibetan Plateau.Beijing:Geological Publishing House (in Chinese)
Nomade S,Renne PR,Mo XX,Zhao ZD and Zhou S.2004.Miocene volcanism in the Lhasa block,Tibet:Spatial trends and geodynamic implications.Earth and Planetary Science Letters,221(1-4):227-243
Rubatto D.2002.Zircon trace element geochemistry:Partitioning with garnet and the link between U-Pb ages and metamorphism.Chemical Geology,184(1-2):123-138
Scherer E,Munker C and Mezger K.2001.Calibration of the Lutetium-Hafnium clock.Science,293(5530):683-687
Stern RJ.1994.Arc assembly and continental collision in the Neoproterozoic East African Orogen: Implications for the consolidation of Gondwanaland.Annual Review of Earth and Planetary Sciences,22(1):319-351
Su W,Zhang M,Liu XH,Lin JF,Ye K and Liu X.2012.Exact timing of granulite metamorphism in the Namche-Barwa,eastern Himalayan syntaxis:New constrains from SIMS U-Pb zircon age.International Journal of Earth Sciences,101(1):239-252
Sun SS and McDonough WF.1989.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes.In:Sanders AD and Norry MJ (eds.).Magmatism in Ocean Basins.Geological Society,London,Special Publication,42(1):313-345
Vidal P,Cocherie A and Le Fort P.1982.Geochemical investigations of the origin of the Manaslu leucogranite (Himalaya, Nepal).Geochimica et Cosmochimica Acta,46(11):2279-2292
Villaros A,Stevens G and Buick IS.2009.Tracking S-type granite from source to emplacement:Clues from garnet in the Cape Granite Suite.Lithos,112(3-4):217-235
Wang JL,Zhang ZM,Dong X,Liu F,Yu F,Wang W,Xu FJ and Shen K.2009.Discovery of Late Cretaceous garnet two-pyroxene granulite in the southern Lhasa terrane,Tibet and its tectonic significances.Acta Petrologica Sinica,25(7):1695- 1706 (in Chinese with English abstract)
Wang Q,Zhu DC,Zhao ZD,Guan Q,Zhang XQ,Sui QL,Hu ZC and Mo XX.2012.Magmatic zircons from I-,S-and A-type granitoids in Tibet:Trace element characteristics and their application to detrital zircon provenance study.Journal of Asian Earth Sciences,53:59-66
Wen DR,Chung SL,Song B,Iizuka Y,Yang HJ,Ji JQ,Liu DY and Gallet S.2008a.Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics,SE Tibet:Petrogenesis and tectonic implications.Lithos,105(1-2):1-11
Wen DR,Liu DY,Chung SL,Chu MF,Ji JQ,Zhang Q,Song B,Lee TY,Yeh MW and Lo CH.2008b.Zircon SHRIMP U-Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet.Chemical Geology,252(3-4):191-201
Whitney DL and Evans BW.2010.Abbreviations for names of rockforming minerals.American Mineralogist,95(1):185-187
Xu WC,Zhang HF,Parrish R,Harris N,Guo L and Yuan HL.2010.Timing of granulite-facies metamorphism in the eastern Himalayan syntaxis and its tectonic implications.Tectonophysics,485(1-4):231-244
Xu WC,Zhang HF,Harris N,Guo L,Pan FB and Wang S.2013.Geochronology and geochemistry of Mesoproterozoic granitoids inthe Lhasa terrane,south Tibet:Implications for the early evolution of Lhasa terrane.Precambrian Research,236:46-58
Xu ZQ,Li HB and Yang JS.2006.An orogenic plateau:The orogenic collage and orogenic types of the Qinghai-Tibet Plateau.Earth Science Frontiers,13 (4):1- 17 (in Chinese with English abstract)
Xu ZQ,Yang JS,Li HB,Ji SC,Zhang ZM and Liu Y.2011.On the tectonics of the India-Asja collision.Acta Geologica Sinica,85(1):1-33 (in Chinese with English abstract)
Xu ZQ,Ji SC,Cai ZH,Zeng LS,Geng QR and Cao H.2012.Kinematics and dynamics of the Namche Barwa Syntaxis,eastern Himalaya:Constraints from deformation,fabrics and geochronology.Gondwana Research,21(1):19-36
Yang JS,Xu ZQ,Li ZL,Xu XZ,Li TF,Ren YF,Li HQ,Chen SY and Robinson PT.2009.Discovery of an eclogite belt in the Lhasa block,Tibet:A new border for Paleo-Tethys?Journal of Asian Earth Sciences,34(1):76-89
Yin A and Harrison TM.2000.Geologic evolution of the Himalayan-Tibetan orogen.Annual Review of Earth and Planetary Science Letters,28(1):211-280
Zeng LS,Gao LE,Dong CY and Tang SH.2012.High-pressure melting of metapelite and the formation of Ca-rich granitic melts in the Namche Barwa Massif,southern Tibet.Gondwana Research,21(1):138-151
Zhang HF,Harris N,Parrish R,Zhang L,Zhao ZD and Li DW.2005.Geochemistry of North Himalayan leucogranites: Regional comparison,petrogenesis and tectonic implications.Earth Science,30(3):275-288 (in Chinese with English abstract)
Zhang HF,Xu WC,Guo JQ,Zong KQ,Cai HM and Yuan HL.2007.Indosinian orogenesis of the Gangdise terrane:Evidences from zircon U-Pb dating and petrogenesis of granitoids.Earth Science,32(2):155-166 (in Chinese with English abstract)
Zhang HF,Harris N,Guo L and Xu WC.2010.The significance of Cenozoic magmatism from the western margin of the eastern syntaxis,southeast Tibet.Contributions to Mineralogy and Petrology,160(1):83-98
Zhang LX,Wang Q,Zhu DC,Jia LL,Wu XY,Liu SA,Hu ZC and Zhao TP.2013.Mapping the Lhasa terrane through zircon Hf isotopes:Constraints on the nature of the crust and metallogenic potential.Acta Petrologica Sinica,29 (11):3681- 3688 (in Chinese with English abstract)Zhang ZM,Zheng LL,Wang JL,Zhao XD and Shi C.2007.Garnet pyroxenite in the Namjagbarwa Group-complex in the eastern Himalayan tectonic syntaxis,Tibet,China:Evidence for subduction of the Indian continent beneath the Eurasian plate at 80~100km depth.Geological Bulletin of China,26(1):1-12 (in Chinese with English abstract)Zhang ZM,Zhao GC,Santosh M,Wang JL,Dong X and Shen K.2010a.Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith,southeastern Tibet:Evidence for Neo-Tethyan mid-ocean ridge subduction?Gondwana Research,17 (4):615-631 Zhang ZM,Zhao GC,Wang JL,Dong X and Liou JG.2010b.Two stages of granulite facies metamorphism in the eastern Himalayan syntaxis, South Tibet: Petrology, zircon geochronology and implications for the subduction of Neo-Tethys and the Indian continent beneath Asia.Journal of Metamorphic Geology,28(7):719-733
Zhang ZM,Dong X,Liu F,Lin YH,Yan R,He ZY and Santosh M.2012a.The making of Gondwana:Discovery of 650Ma HP granulites from the North Lhasa,Tibet.Precambrian Research,212- 213:107-116
Zhang ZM,Dong X,Santosh M,Liu F,Wang W,Yiu F,He ZY and Shen K.2012b.Petrology and geochronology of the Namche Barwa Complex in the eastern Himalayan syntaxis,Tibet:Constraints on the origin and evolution of the north-eastern margin of the Indian Craton.Gondwana Research,21(1):123-137
Zhang ZM,Dong X,Xiang H,Liou JG and Santosh M.2013.Building of the deep Gangdese arc,South Tibet:Paleocene plutonism and granulite-facies metamorphism.Journal of Petrology,54(12):2547-2580
Zhang ZM,Dong X,Santosh M and Zhao GC.2014.Metamorphism and tectonic evolution of the Lhasa terrane,Central Tibet.Gondwana Research,25(1):170-189
Zhao TP,Zhou MF,Zhao JH,Zhang KJ and Chen W.2008.Geochronology and geochemistry of the ca.80Ma Rutog granitic pluton,northwestern Tibet:Implications for the tectonic evolution of the Lhasa Terrane.Geological Magazine,145(6):845-857
Zhao ZD,Mo XX,Dilek Y,Niu YL,Depaolo DJ,Robinson P,Zhu DC,Sun CG,Dong GC,Zhou S,Luo ZH and Hou ZQ.2009.Geochemical and Sr-Nd-Pb-O isotopic compositions of the postcollisional ultrapotassic magmatism in SW Tibet:Petrogenesis and implications for India intra-continental subduction beneath southern Tibet.Lithos,113(1-2):190-212
Zhu DC,Pan GT,Chung SL,Liao ZL,Wang LQ and Li GM.2008.SHRIMP zircon age and geochemical constraints on the origin of Lower Jurassic volcanic rocks from the Yeba Formation,southern Gangdese,South Tibet.International Geology Review,50(5):442-471
Zhu DC,Pan GT,Wang LQ,Mo XX,Zhao ZD,Zhou CY,Liao ZL,Dong GC and Yuan SH.2008a.Spatial-temporal distribution and tectonic setting of Jurassic magmatism in the Gangdise belt,Tibet,China.Geological Bulletin of China,27(4):458-468 (in Chinese with English abstract)
Zhu DC,Pan GT,Wang LQ,Mo XX,Zhao ZD,Zhou CY,Liao ZL,Dong GC and Yuan SH.2008b.Tempo-spatial variations of Mesozoic magmatic rocks in the Gangdise belt,Tibet,China,with a discussion of geodynamic setting-related issues.Geological Bulletin of China,27(9):1535-1550 (in Chinese with English abstract)
Zhu DC,Mo XX,Niu YL,Zhao ZD,Wang LQ,Liu YS and Wu FY.2009a.Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane,Tibet.Chemical Geology,268(3-4):298-312
Zhu DC,Mo XX,Niu YL,Zhao ZD,Wang LQ,Pan GT and Wu FY.2009b.Zircon U-Pb dating and in-situ Hf isotopic analysis of Permian peraluminous granite in the Lhasa terrane,southern Tibet:Implications for Permian collisional orogeny and paleogeography.Tectonophysics,469(1-4):48-60
Zhu DC,Mo XX,Zhao ZD,Niu YL,Wang LQ,Chu QH,Pan GT,Xu JF and Zhou CY.2010.Presence of Permian extension-and arc-type magmatism in southern Tibet: Paleogeographic implications.Geological Society of America Bulletin,122(7-8):979-993
Zhu DC,Zhao ZD,Niu YL,Mo XX,Chung SL,Hou ZQ,Wang LQ and Wu FY.2011.The Lhasa Terrane:Record of a microcontinent and its histories of drift and growth.Earth and Planetary Science Letters,301(1-2):241-255
Zhu DC,Zhao ZD,Niu YL,Dilek Y,Wang Q,Ji WH,Dong GC,Sui QL,Liu YS,Yuan HL and Mo XX.2012.Cambrian bimodal volcanism in the Lhasa Terrane,southern Tibet:Record of an early Paleozoic Andean-type magmatic arc in the Australian proto-Tethyan margin.Chemical Geology,328:290-308 Zhu DC,Zhao ZD,Niu YL,Dilek Y,Hou ZQ and Mo XX.2013.The origin and pre-Cenozoic evolution of the Tibetan Plateau.Gondwana Research,23(4):1429-1454
附中文參考文獻
蔡志慧,許志琴,段向東,李化啟,曹匯,黃學猛.2013.青藏高原東南緣滇西早古生代早期造山事件.巖石學報,29(6):2123-2140
董昕,張澤明,劉峰,王偉,于飛,林彥蒿,姜洪穎,賀振宇.2012.拉薩地體東南部變質巖的成因與中-新生代造山作用.巖石學報,28(6):1765-1784
郭亮,張宏飛,徐旺春.2008.東喜馬拉雅構造結多雄拉混合巖和花崗片麻巖鋯石U-Pb 年齡及其地質意義.巖石學報,24(3):421-429
侯可軍,李延河,鄒天人,曲曉明,石玉若,謝桂青.2007.LA-MCICP-MS 鋯石Hf 同位素的分析方法及地質應用.巖石學報,23(10):2595-2604
侯增謙,王二七,莫宣學,丁林,潘桂棠,張中杰.2008.青藏高原碰撞造山與成礦作用.北京:地質出版社
胡道功,吳珍漢,江萬,石玉若,葉培盛,劉琦勝.2005.西藏念青唐古拉巖群SHRIMP 鋯石U-Pb 年齡和Nd 同位素研究.中國科學(D 輯),35(1):29-37
黃勇,郝家栩,白龍,鄧貴標,張國祥,黃文俊.2012.滇西施甸地區(qū)晚泛非運動的地層學和巖石學響應.地質通報,31(2-3):306-313
計文化,陳守建,趙振明,李榮社,何世平,王超.2009.西藏岡底斯構造帶申扎一帶寒武系火山巖的發(fā)現(xiàn)及其地質意義.地質通報,28(9):1350-1354
李才,王天武,李慧民,曾慶高.2003.岡底斯地區(qū)發(fā)現(xiàn)印支期巨斑花崗閃長巖:古岡底斯造山的存在證據(jù).地質通報,22(5):364-366
李才,吳彥旺,王明,楊韓濤.2010.青藏高原泛非-早古生代造山事件研究重大進展——岡底斯地區(qū)寒武系和泛非造山不整合的發(fā)現(xiàn).地質通報,29(12):1733-1736
李璞.1955.西藏東部地質的初步認識.科學通報,(7):62-71
路遠發(fā).2004.GeoKit:一個用VBA 構建的地球化學工具軟件包.地球化學,33(5):459-464
莫宣學,董國臣,趙志丹,周肅,王亮亮,邱瑞照,張風琴.2005.西藏岡底斯帶花崗巖的時空分布特征及地殼生長演化信息.高校地質學報,11(3):281-290
莫宣學,趙志丹,周肅,董國臣,廖忠禮.2007.印度-亞洲大陸碰撞的時限.地質通報,26(10):1240-1244
莫宣學,趙志丹,喻學惠,董國臣,李佑國,周肅,廖忠禮,朱弟成.2009.青藏高原新生代碰撞-后碰撞火成巖.北京:地質出版社
王金麗,張澤明,董昕,劉峰,于飛,王偉,徐方建,沈昆.2009.西藏拉薩地體南部晚白堊紀石榴石二輝麻粒巖的發(fā)現(xiàn)及其構造意義.巖石學報,25(7):1695-1706
許志琴,李海兵,楊經(jīng)綏.2006.造山的高原——青藏高原巨型造山拼貼體和造山類型.地學前緣,13(4):1-17
許志琴,楊經(jīng)綏,李海兵,嵇少丞,張澤明,劉焰.2011.印度-亞洲碰撞大地構造.地質學報,85(1):1-33
張宏飛,Harris N,Parrish R,張利,趙志丹,李德威.2005.北喜馬拉雅淡色花崗巖地球化學:區(qū)域對比、巖石成因及其構造意義.地球科學,30(3):275-288
張宏飛,徐旺春,郭建秋,宗克清,蔡宏明,袁洪林.2007.岡底斯印支期造山事件:花崗巖類鋯石U-Pb 年代學和巖石成因證據(jù).地球科學,32(2):155-166
張立雪,王青,朱弟成,賈黎黎,吳興源,劉盛遨,胡兆初,趙天培.2013.拉薩地體鋯石Hf 同位素填圖:對地殼性質和成礦潛力的約束.巖石學報,29(11):3681-3688
張澤明,鄭來林,王金麗,趙旭東,石超.2007.東喜馬拉雅構造結南迦巴瓦巖群中的石榴輝石巖——印度大陸向歐亞板塊之下俯沖至80~100km 深度的證據(jù).地質通報,26(1):1-12
朱弟成,潘桂棠,王立全,莫宣學,趙志丹,周長勇,廖忠禮,董國臣,袁四化.2008a.西藏岡底斯帶侏羅紀巖漿作用的時空分布及構造環(huán)境.地質通報,27(4):458-468
朱弟成,潘桂棠,王立全,莫宣學,趙志丹,周長勇,廖忠禮,董國臣,袁四化.2008b.西藏岡底斯帶中生代巖漿巖的時空分布和相關問題的討論.地質通報,27(9):1535-1550