喀迪爾.阿布力孜
【摘要】如何減輕學(xué)生學(xué)習(xí)數(shù)學(xué)的負(fù)擔(dān)?如何提高我們高中數(shù)學(xué)教學(xué)的實(shí)效性?本文通過(guò)對(duì)高中學(xué)生數(shù)學(xué)思維障礙的成因及突破方法的分析,以起到拋磚引玉的作用。
【關(guān)鍵詞】數(shù)學(xué)思維 數(shù)學(xué)思維障礙
高中學(xué)生的數(shù)學(xué)思維的形成是建立在對(duì)高中數(shù)學(xué)基本概念、定理、公式理解的基礎(chǔ)上的;發(fā)展高中學(xué)生數(shù)學(xué)思維最有效的方法是通過(guò)解決問(wèn)題來(lái)實(shí)現(xiàn)的。然而,在學(xué)習(xí)高中數(shù)學(xué)過(guò)程中,我們經(jīng)常聽(tīng)到學(xué)生反映,上課時(shí)聽(tīng)老師講的課,聽(tīng)得很“明白”,但到自己解題時(shí),總感到困難重重,無(wú)從入手;同學(xué)發(fā)生困難,并不是因?yàn)檫@些問(wèn)題的解答太難以致學(xué)生無(wú)法解決,而是其思維形式或結(jié)果與具體問(wèn)題的解決存在著差異,也就是說(shuō),學(xué)生的數(shù)學(xué)思維存在著障礙。這種思維障礙,有的是來(lái)自于我們教學(xué)中的疏漏,而更多的則來(lái)自于學(xué)生自身,來(lái)自于學(xué)生中存在的非科學(xué)的知識(shí)結(jié)構(gòu)和思維模式。因此,研究高中學(xué)生的數(shù)學(xué)思維障礙對(duì)于增強(qiáng)高中學(xué)生數(shù)學(xué)教學(xué)的針對(duì)性和實(shí)效性有十分重要的意義。
一、高中數(shù)學(xué)思維障礙的具體表現(xiàn)
由于高中數(shù)學(xué)思維障礙產(chǎn)生的原因不盡相同,作為主體的學(xué)生的思維習(xí)慣、方法也都有所區(qū)別,所以,高中數(shù)學(xué)思維障礙的表現(xiàn)各異,具體的可以概括為:
1.數(shù)學(xué)思維的膚淺性:由于學(xué)生在學(xué)習(xí)數(shù)學(xué)的過(guò)程中,對(duì)一些數(shù)學(xué)概念或數(shù)學(xué)原理的發(fā)生、發(fā)展過(guò)程沒(méi)有深刻的去理解,一般的學(xué)生僅僅停留在表象的概括水平上,不能脫離具體表象而形成抽象的概念,自然也無(wú)法擺脫局部事實(shí)的片面性而把握事物的本質(zhì)。
2.數(shù)學(xué)思維的差異性:由于每個(gè)學(xué)生的數(shù)學(xué)基礎(chǔ)不盡相同,其思維方式也各有特點(diǎn),因此不同的學(xué)生對(duì)于同一數(shù)學(xué)問(wèn)題的認(rèn)識(shí)、感受也不會(huì)完全相同,從而導(dǎo)致學(xué)生對(duì)數(shù)學(xué)知識(shí)理解的偏頗。這樣,學(xué)生在解決數(shù)學(xué)問(wèn)題時(shí),不大注意挖掘所研究問(wèn)題中的隱含條件,抓不住問(wèn)題中的確定條件,影響問(wèn)題的解決。
二、高中學(xué)生數(shù)學(xué)思維障礙的突破
1.在高中數(shù)學(xué)起始教學(xué)中,教師必須著重了解和掌握學(xué)生的基礎(chǔ)知識(shí)狀況,同時(shí)要培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。興趣是最好的老師,學(xué)生對(duì)數(shù)學(xué)學(xué)習(xí)有了興趣,才能產(chǎn)生數(shù)學(xué)思維的興奮灶,也就是更大程度地預(yù)防學(xué)生思維障礙的產(chǎn)生。教師可以幫助學(xué)生進(jìn)一步明確學(xué)習(xí)的目的性,針對(duì)不同學(xué)生的實(shí)際情況,因材施教,分別給他們提出新的更高的奮斗目標(biāo)。
例:高一年級(jí)學(xué)生剛進(jìn)校時(shí),一般我們都要復(fù)習(xí)一下二次函數(shù)的內(nèi)容,而二次函數(shù)中最大、最小值尤其是含參數(shù)的二次函數(shù)的最大、小值的求法學(xué)生普遍感到比較困難,為此我作了如下題型設(shè)計(jì),對(duì)突破學(xué)生的這個(gè)難點(diǎn)問(wèn)題有很大的幫助。設(shè)計(jì)如下:
1〉求出下列函數(shù)在x∈[0,3]時(shí)的最大、最小值:(1) ,(2)
2〉求函數(shù) ,x∈[0,3]時(shí)的最小值。
上述設(shè)計(jì)層層遞進(jìn),每做完一題,適時(shí)指出解決這類問(wèn)題的要點(diǎn),大大地調(diào)動(dòng)了學(xué)生學(xué)習(xí)的積極性,提高了課堂效率。
2.重視數(shù)學(xué)思想方法的教學(xué),指導(dǎo)學(xué)生提高數(shù)學(xué)意識(shí)。數(shù)學(xué)意識(shí)是學(xué)生在解決數(shù)學(xué)問(wèn)題時(shí)對(duì)自身行為的選擇,它既不是對(duì)基礎(chǔ)知識(shí)的具體應(yīng)用,也不是對(duì)應(yīng)用能力的評(píng)價(jià),數(shù)學(xué)意識(shí)是指學(xué)生在面對(duì)數(shù)學(xué)問(wèn)題時(shí)該做什么及怎么做,至于做得好壞,當(dāng)屬技能問(wèn)題,有時(shí)一些技能問(wèn)題不是學(xué)生不懂,而是不知怎么做才合理,有的學(xué)生面對(duì)數(shù)學(xué)問(wèn)題,首先想到的是用哪個(gè)公式,模仿那道做過(guò)的題目求解,對(duì)沒(méi)見(jiàn)過(guò)或背景稍微陌生一點(diǎn)的題型便無(wú)從下手,無(wú)法解決,這是數(shù)學(xué)意識(shí)落后的表現(xiàn)。數(shù)學(xué)教學(xué)中,在強(qiáng)調(diào)基礎(chǔ)知識(shí)的準(zhǔn)確性、規(guī)范性、熟練程度的同時(shí),我們應(yīng)該加強(qiáng)數(shù)學(xué)意識(shí)教學(xué),指導(dǎo)學(xué)生以意識(shí)帶動(dòng)雙基,將數(shù)學(xué)意識(shí)滲透到具體問(wèn)題之中。
3.誘導(dǎo)學(xué)生暴露其原有的思維框架,消除思維定勢(shì)的消極作用。在高中數(shù)學(xué)教學(xué)中,培養(yǎng)學(xué)生的思維能力應(yīng)是我們的教學(xué)活動(dòng)中相當(dāng)重要的一部分。而誘導(dǎo)學(xué)生暴露其原有的思維框架,包括結(jié)論、例證、推論等對(duì)于突破學(xué)生的數(shù)學(xué)思維障礙會(huì)起到極其重要的作用。
當(dāng)然,為了消除學(xué)生在思維活動(dòng)中只會(huì)“按部就班”的傾向,在教學(xué)中還應(yīng)鼓勵(lì)學(xué)生進(jìn)行求異思維活動(dòng),培養(yǎng)學(xué)生善于思考、獨(dú)立思考的方法,不滿足于用常規(guī)方法取得正確答案,而是多嘗試、探索最簡(jiǎn)單、最好的方法解決問(wèn)題的習(xí)慣,發(fā)展思維的創(chuàng)造性也是突破學(xué)生思維障礙的一條有效途徑。