国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

植物吸收、轉(zhuǎn)運和積累鎘的機理研究進(jìn)展

2015-04-29 01:33:07劉利郝小花田連福戴小軍梁滿中李東屏陳良碧
生命科學(xué)研究 2015年2期
關(guān)鍵詞:液泡韌皮部木質(zhì)部

劉利 郝小花 田連福 戴小軍 梁滿中 李東屏 陳良碧

摘要:重金屬鎘(Cd)雖然不是植物生長的必需礦質(zhì)元素,但依然能被植物吸收。且部分植物具有富集鎘的特 點,從而導(dǎo)致農(nóng)產(chǎn)品鎘含量超標(biāo),并通過食物鏈危害人類健康。研究植物吸收、轉(zhuǎn)運和積累Cd的機理,對于培育低鎘作物品種、降低農(nóng)產(chǎn)品鎘含量,以及選育超富集鎘植物,修復(fù)鎘污染土壤具有重要意義。從影響植物吸 收Cd的因子,植物吸收、轉(zhuǎn)運和積累Cd的機理以及植物拒Cd和富集Cd的分子機制等方面進(jìn)行綜述,以期為低鎘作物的研究以及Cd污染土壤的綜合治理提供一些參考。關(guān)鍵詞:鎘(Cd);轉(zhuǎn)運途徑;遺傳因子;環(huán)境因子中圖分類號:Q946.92 文獻(xiàn)標(biāo)識碼:A 文章編號:1007-7847(2015)02-0176-09Research Progresses on the Mechanism of Cd Absorption, Transport and Accumulation in PlantLIU Li, HAO Xiao-hua, TIAN Lian-fu, DAI Xiao-jun, LIANG Man-zhong, LI Dong-ping' CHEN Liang-bi(College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China)Abstract: Heavy metal cadmium (Cd) is not an essential mineral element for plant growth. Yet plant can absorb cadmium, and some plants possess the feature of Cd -enrichment, hence excessive Cd content in agricultural products. Human health is thus endangered via food chain. The research on the mechanism of Cd absorption, transport and accumulation in plants shall cast great significance on the cultivation of crop varieties with low-Cd accumulation, the reduction of Cd in agricultural products, and the breeding of Cd- hyperaccumulators and the reparation of Cd-contaminated soil. The factors that affect Cd absorption in plant, the mechanism of Cd absorption, transport and accumulation in plant, and the research on the molecular mechanisms of resistance of plant to Cd stress and Cd -hyperaccumulators was summarized on the whole, expecting to provide some references for people to carry out research on plants with low-Cd accumulation and the comprehensive treatment of Cd-contaminated soil.Key words: Cd; transport pathway; genetic factors; environmental factors(Life Science Research,2015,19(2):176?184) 自然條件下,鎘(Cadmium(Cd))在土壤中的含量比較低,我國土壤Cd的背景值平均為0.097mg/kg。Cd在沒有受到污染的原狀土中毒性低,一般不會對人類造成危害[1]。但工業(yè)活動、污水灌溉、牲畜糞便、磷肥施用以及大氣沉降等使得Cd在土壤中大量積累以至形成污染[2、3]。就我國而言,受Cd污染地區(qū)巳涉及11個省市的25個地區(qū)[4]。Cd被植物吸收后,會在植物體內(nèi)轉(zhuǎn)運和積累,影響植物的生理活性并且通過食物鏈被人體吸收和積累,危害人體健康。了解植物吸收、轉(zhuǎn)運、枳累Cd的機制,對于開發(fā)Cd低積累品種,減輕Cd對人體健康的危害,或者利用Cd高富集品種進(jìn)行植物修復(fù)鎘污染土壤都具有重要意義。1鎘進(jìn)入植物的途徑以及鎘在植物體內(nèi)分配與積累的規(guī)律植物Cd的吸收、轉(zhuǎn)運與累積涉及到根系對C.1的吸收、木質(zhì)部的裝載和運輸、木質(zhì)部到韌皮部的Cd轉(zhuǎn)運、地上部莖葉等器官之間的再分配和籽粒Cd積累等過程[5]。土壤中的Cd離子通過植物根部吸收而進(jìn)入植物體。跟其他礦質(zhì)元素一樣,Cd離子進(jìn)入根部有兩種途徑,一種通過根表皮細(xì)胞間隙,自由擴散進(jìn)入,另一種通過根表皮細(xì)胞(主要為根毛細(xì)胞)膜上的運輸?shù)鞍走\進(jìn)細(xì)胞內(nèi)。在形成菌根的植物中,植物依靠根部外生菌的菌絲體細(xì)胞吸收土壤中的Cd。礦質(zhì)元素的運行路徑包括質(zhì)外體途徑和共質(zhì)體途徑,質(zhì)外體途徑主要是通過細(xì)胞壁、細(xì)胞間隙、導(dǎo)管等質(zhì)外空間進(jìn)行,共質(zhì)體途徑則通過胞間連絲和內(nèi)質(zhì)網(wǎng)等膜系統(tǒng)相聯(lián)而成的連續(xù)體進(jìn)行。Cd在進(jìn)入根毛區(qū)表皮細(xì)胞后,首先在根中橫向運輸?shù)骄S管柱,再通過木質(zhì)部由根部向上運輸?shù)降厣喜糠?。從根表皮?xì)胞到維管柱需要經(jīng)過皮層細(xì)胞、內(nèi)皮層細(xì)胞緊密排列的內(nèi)皮層細(xì)胞壁上栓質(zhì)化的凱氏帶結(jié)構(gòu),阻斷了質(zhì)外體通路,使得從皮層介向來的Cd需要通過共質(zhì)體途徑到達(dá)維管柱的中柱鞘細(xì)胞,在維管柱內(nèi),Cd離子由中柱鞘細(xì)胞輸送到木質(zhì)部,完成Cd在根中的橫向運輸。Cd進(jìn)入根木質(zhì)部中,經(jīng)過木質(zhì)部裝載(xylemu-pload)、運輸和卸載(xylemdownload)的過程,Cd被向上運輸?shù)角o、葉、花等器官的各個組織。Cd經(jīng)過木質(zhì)部轉(zhuǎn)運到植物地上部以后,也會在莖節(jié)點處的分散維管束內(nèi)進(jìn)行木質(zhì)部到韌皮部的Cd轉(zhuǎn)運[6]。Cd在根部木質(zhì)部汁液中一般以自由離子的形式存在,也與組氨酸、煙草胺和檸檬酸等結(jié)合形成復(fù)合物,繼而在蒸騰作用和根壓的共同作用下向地上部分運輸[7]。蒸騰作用越強,Cd通過木質(zhì)部向地上部轉(zhuǎn)運速率就越快,地上部Cd含量就越多。在營養(yǎng)液中添加ABA,蒸騰作用減弱,水培植物體的木質(zhì)部汁液和嫩枝內(nèi)Cd濃度均減小[8]。但目前還不清楚,Cd的自由態(tài)和結(jié)合態(tài)在木質(zhì)部汁液中轉(zhuǎn)換時受哪些因素的影響,結(jié)合態(tài)的Cd在木質(zhì)部中被轉(zhuǎn)運時受哪些因子的調(diào)節(jié)。Cd經(jīng)木質(zhì)部從根部運輸?shù)降厣喜?,此過程被認(rèn)為是決定地上部分Cd含量的關(guān)鍵因素以水稻為例,大多數(shù)水稻吸收的Cd主要積累在根系,真正轉(zhuǎn)到地上部各組織中的Cd并不多。Ishikaw[9]等以3個籽粒低Cd的粳稻品種和3個籽粒高Cd的秈稻品種為材料,研究它們的Cd動力學(xué)曲線時發(fā)現(xiàn),籽粒低Cd的粳稻品種根部吸Cd量反而更高。地上部分的Cd在實現(xiàn)了木質(zhì)部到韌皮部的轉(zhuǎn)運以后,會隨著植物生長發(fā)育在莖葉等器官之間通過韌皮部進(jìn)行再分配。Kashiwagi[10]等以粳稻品種日本晴為材料,對由一個分蘗發(fā)育形成的具有3片功能葉的有效穗各器官的Cd積累規(guī)律進(jìn)行了研究,發(fā)現(xiàn)莖稈和稻穗中的Cd含量隨發(fā)育逐步增加,而葉從抽穗期開始到完熟期,其含Cd量呈穩(wěn)步下降趨勢,暗示在發(fā)育后期,功能葉中的Cd被再分配到了稻穗等組織。此外,查燕[11]等研究發(fā)現(xiàn),水稻進(jìn)入開花期后,最重要的代謝活動變?yōu)楹昧5纳L發(fā)育,此時,根系吸收的Cd離子以及營養(yǎng)器官中儲存的Cd離子也會部分流入籽粒中,或者參與氧化應(yīng)激等代謝活動,或者積累在籽粒中。地上部分的Cd含量由抽穗前植物各部分積累的Cd,以及抽穗后根部從土壤吸收的Cd這兩部分共同決定。抽穗后,Cd轉(zhuǎn)運有兩條路徑,即從莖、葉的各部分再分配到籽粒和從根到木質(zhì)部再經(jīng)韌皮部積累在地上部分。但這兩條途徑對抽穗后植物Cd轉(zhuǎn)運的貢獻(xiàn)率還不清楚。同時,地上部分Cd含量與植物往根部或者土壤的外排有關(guān)。有研究表明,抽穗后,部分Cd會轉(zhuǎn)到根部或者土壤(包括死葉或者落葉),就像鉀從嫩枝重新轉(zhuǎn)運到根部一樣[12、13]。將Cd在地上部莖葉等器官之間再分配的生理過程以及它的影響因子弄明白,有利于找出植物的合適的收獲時期,并且有可能人為干涉使得Cd在某個部位高積累,從而減少籽粒Cd積累量。莖維管系統(tǒng)的Cd裝載到籽粒前需要先從韌皮部卸載。韌皮部裝載和卸載是籽粒Cd積累的主要途徑[14]。Tanaka[6]等研究發(fā)現(xiàn),水稻籽粒中91%以上的Cd是通過韌皮部轉(zhuǎn)運進(jìn)來的。只是目前還不清楚Cd在韌皮部的卸載和Cd在籽粒的裝載機制。此外,關(guān)于籽粒Cd積累的發(fā)生途徑和時間也存在矛盾之處。Rodda[15]等認(rèn)為,籽粒Cd含量的60%來源于對開花前植物積累的Cd進(jìn)行再分配,40%來源于籽粒成熟階段,由根部吸收,在莖桿基部、葉軸、花梗直接發(fā)生木質(zhì)部到韌皮部的快速轉(zhuǎn)移。然而,Harris等用小麥的近等基因系為材料,發(fā)現(xiàn)灌漿期沒有發(fā)生從葉到籽粒的Cd轉(zhuǎn)移,籽粒內(nèi)的Cd來自根部源源不斷地從土壤的吸收,而且籽粒內(nèi)Cd積累與籽粒生物量的積累呈現(xiàn)正相關(guān)。此外,籽粒Cd轉(zhuǎn)運的動態(tài)變化過程與整個植株Cd的變化以及Cd在組織間的分配之間有何關(guān)系也還有待進(jìn)一步探究。Fujimaki[17]等研究發(fā)現(xiàn),Cd轉(zhuǎn)運到籽粒的一個關(guān)鍵過程是發(fā)生在倒一節(jié)節(jié)點處的木質(zhì)部到韌皮部轉(zhuǎn)移。X射線熒光探究表明,Cd在倒一節(jié)節(jié)點處積累,既能與木質(zhì)部的S配體結(jié)合,也能與韌皮部的S配體、0配體結(jié)合[18]。在韌皮部汁液內(nèi),Cd與一個13kDa的蛋白和一個低分子SH蛋白結(jié)合,從而實現(xiàn)其在韌皮部的轉(zhuǎn)運[19]。Cd一旦進(jìn)入籽粒,就被固定,幾乎不再向其他部位運輸,這種特征使得有些學(xué)者推測,它從韌皮部到籽粒的運輸可能與光合產(chǎn)物的運輸具有極強的關(guān)聯(lián)性而且,韌皮部卸出本身指的就是裝載在韌皮部的同化產(chǎn)物輸出到庫的接受細(xì)胞(莖、葉、種子等)的過程。2遺傳因素對植物吸收和運輸鎘的影響植物對Cd的吸收、運輸與積累受到多方面的影響。包括,土壤、水、溫度等非生物因素,根際微生物等生物因子,以及植物本身的基因型等遺傳特性。植物品種基因型是一個影響Cd吸收和運輸?shù)闹匾蛩?。在有限的Cd污染濃度下,不同基因型品種因為基因的差異,可以使得植物體內(nèi)Cd積累表現(xiàn)出差異,因此有所謂低鎘、高鎘基因型。但環(huán)境中Cd濃度較高,超過植物對體內(nèi)鎘穩(wěn)態(tài)的調(diào)節(jié)能力時,低鎘基因型品種也會積累高量的鎘,表明遺傳因子對環(huán)境Cd的調(diào)控能力是有一定閾值的。近幾年,已鑒定出多個與Cd吸收和轉(zhuǎn)運有關(guān)的基因或QTL。其中,多個基因家族的成員參與了植物中Cd的吸收轉(zhuǎn)運和積累過程,包括P型ATP酶、ABC、MATE、NRAMP、CE、CAX、ZIP、OPT、LCT等12個基因家族(表1)。在已鑒定的Cd運輸?shù)鞍字?,既有?xì)胞膜蛋白,也有液泡膜蛋白。細(xì)胞膜蛋白調(diào)控胞間Cd的跨膜運輸,而液泡膜蛋白在維持胞內(nèi)Cd穩(wěn)態(tài)中起作用。在水稻中,除第1、9和10號染色體外,其余9條染色體上均鑒定出了一些與Cd相關(guān)的QTLsoIshikawa[14]等用Koshihikari和Kasalath水稻構(gòu)建的39個染色體置換系(CSSLs),分別在第3、6和8號染色體上鑒定到了一個影響糙米Cd含量的QTL利用Sasanishiki和Habataki衍生的85個回交重組自交系群體(BILs),他們又分別在第2和7號染色體上鑒定到一個可以增加糙米Cd含量的QTL,,在幾乎相同的位點分別鑒定到一個可以增加莖桿Cd含量的QTL[42]。Ueno[43]等在水培條件下用BadariDhan和ShweWar構(gòu)建的F2代群體,分別在第2、5和11號染色體上鑒定出一個與莖桿Cd濃度相關(guān)的QTL,其中位于第11號染色體的QTL與莖桿Cd濃度的相關(guān)性最大。利用AnjanaDhan和日本晴(Nipponbare)所衍生的F2代群體,他們又在7號染色體的短臂上鑒定出一個控制根和莖桿Cd分配的QTLi'KashiwagP利用Kasalath和日本晴構(gòu)建的回交重組自交系群體(BILs),鑒定到3個QTL與水稻地上部分Cd含量相關(guān),其中2個位于第4號染色體,1個位于第11號染色體。Xue[46]等用JX17和ZYQ8構(gòu)建的加倍單倍體群體(DH)在第7號染色體上鑒定出一個與莖桿Cd濃度相關(guān)的QTL。3環(huán)境因子對植物吸收和運輸鎘的影響植物吸收和運輸鎘受溫度、光照的影響,但主要受土壤現(xiàn)化性質(zhì)的影響。土壤中鎘的存在形態(tài)分為水溶性和非水溶性鎘。離子態(tài)Cd如CdCl2、Cd(NO3)2,CdCO3,和絡(luò)合態(tài)Cd如Cd(OH)2呈水溶件,易遷移,可被植物吸收;而難溶性鎘的化合物如鎘沉淀物(CdS)、膠體吸附態(tài)鎘等,不易遷移,難被植物吸收。但這兩種形態(tài)的鎘在一定條件下4相互轉(zhuǎn)化植物吸收的主要是水溶態(tài)和交換態(tài)Cd,即具生物有效性的Cd[47]。在總Cd濃度相同的土壤環(huán)境中種植的同一基因型的水稻,其籽粒中積累的CD含量可能存在很大差異,甚至將同一基因型的水稻種植在總Cd濃度較低和總Cd濃度較高的土壤環(huán)境中時,前者籽粒中積累的Cd含量反而更高,就是因為土壤的理化性質(zhì)不同,使得有效Cd含量存在差異。在有效Cd背景不同的土壤中牛長的同一基因型的水稻品種,其水稻籽粒中積累的Cd含量存在差異。對于Cd非超積累植物,Uraguchi[5]等認(rèn)為,土壤pH值和有機質(zhì)含量是兩個最重要的控制Cd生物有效性的參數(shù)。此外,含水量、螯合劑、根際微生物、根系分泌物、溫度、土壤類銦、植物離子交換能力等都會影響植物根系對Cd的吸收[13,48]。降低根際土壤的pH值可以增加Cd的溶解和釋放,提高它的生物有效性硫結(jié)合成CdS,不易被植物吸收。相反,土壤在長期干旱條件下,處于氧化狀態(tài),Cd以CdS04的形式存在,易被植物吸收。張磊[49]研究了東北地區(qū)的黑土、鹽堿土、暗棕壤和草甸白菜土的Cd吸附動力學(xué)特征,表明種植在黑土和鹽堿土上的作物,它們對重金屬Cd的吸收量都要高于另外兩種土。Stanhope[50-53]等研究表明,隨著EDTA、DTPA、檸檬酸、蘋果酸、草酸、谷氨酸、天冬氨酸、酒石酸等螯合劑濃度的增加,土壤中可溶態(tài)Cd的含量占總重金屬含量的比例呈線性增加。根系周圍土壤中的多種金屬元素(Fe、Zn、Mn等)對Cd的吸收起到促進(jìn)或者阻礙作用。Nakan-ishi[54]等研究發(fā)現(xiàn),當(dāng)土壤中具有生物有效性的Fe含量下降時,水稻吸收的Cd量會隨之增加。但是,常學(xué)秀[55]等則認(rèn)為,水稻缺Fe時,其根部表面會形成一層由其自身分泌的粘膠狀物質(zhì)構(gòu)成的根殼,根系吸收的Cd量反而減少。關(guān)于離子間的相互影響還有太多工作值得去開展。根際微生物和根系分泌物與植株根吸收Cd有密切的相關(guān)性以根際微生物為例,寄生在根系中的菌根真菌能夠減少植物對Cd的吸收如,叢枝菌根真菌(Arbuscular MycorrhizalFungi,AMF)可以減少水稻對Cd吸收[58];另一方面,Cd脅迫下,根系細(xì)胞被動滲漏低分子量化合物(如co2、hco-3、h+)以及酒石酸、草酸、乙酸、內(nèi)'酸、富馬酸和蘋果酸等化合物使根際微環(huán)境發(fā)生變化,影響根際土壤中重金屬Cd的生物有效性。如,當(dāng)小麥?zhǔn)艿紺d脅迫時,其根際pH值會升高,造成根際Cd的生物有效性降低,植物吸Cd就相應(yīng)減少[55]??傊H微生物及植物根系可通過酸化、螯合、絡(luò)合、還原以及活化等過程改變上壤重金屬Cd的形態(tài),繼而影響植物對G1的吸收。因此,目前有的學(xué)者期望通過改善根際微環(huán)境來進(jìn)行Cd的生物修復(fù)。水是Cd在土壤中遷移轉(zhuǎn)化的媒介,也是Cd危害環(huán)境、作物和人體健康的重要載體如果沒打水的運移,Cd的危害會顯著地降低。蒸騰作用是植物吸收水和Cd的主要動力過程:高溫和強光照會增強植物的蒸騰作用,導(dǎo)致植物從土壤中吸收更多的水,進(jìn)而吸收更多的Cd。水稻整個生長期,土壤中Cd以碳酸鹽結(jié)合態(tài)和鐵錳氧化物結(jié)合態(tài)為主,占Cd總量50%以上[61]。水稻在全生育期淹水栽培方式下,糙米中Cd含量最低,旱作和不同生育期烤田,根系、莖葉、籽粒中Cd的含量會增加,其中旱作方式下糙米中Cd增加最多,達(dá)166.31%[62、63]。玉米生長過程中,土壤溶液Cd濃度隨土壤水分變化的大小順序為:65%>75%>85%。玉米地上部Cd含量在田間持水量55%~85%之間隨著土壤水分的增加而降低,其地下部Cd含量也表現(xiàn)出相同的趨勢[64]。上述結(jié)果的出現(xiàn)是因為Cd在土一水界面發(fā)生遷移轉(zhuǎn)化,包括吸附與解吸、沉淀與溶解、配位與螯合。淹水條件下土壤Eh、PH、交換性亞鐵、鹽基離子、S2-、C1-、鐵錳氧化物和可溶性有機質(zhì)(DOM)是影響此過程的主要因素[65]。4植物拒鎘的機理根部外排是植物拒Cd的第一步。AtDTXl、OsMTPX和OsHMA9是已經(jīng)鑒定出來的能夠有效促進(jìn)Cd外排的基因[34、37、38]。AtPDR8,主要在根表皮細(xì)胞表達(dá),109Cd通量分析發(fā)現(xiàn)過表達(dá)株系,根部外排Cd的能力強于野生型,而AtP-DR8沉默株系,缺失根部外排Cd的能力[39]。其次,植物體內(nèi)的特定結(jié)構(gòu)也能夠?qū)d阻滯在根部,從而減少Cd在地上部組織器官中積累。植物主要是通過與細(xì)胞壁的結(jié)合、與有機化合物形成Cd-螯合物及液泡區(qū)室化等途徑阻滯Cd向地上部的運輸。重金屬Cd在植物細(xì)胞中的積累主要發(fā)生在液泡及質(zhì)外體。細(xì)胞壁是重金屬Cd進(jìn)入細(xì)胞內(nèi)部的第一道屏障,細(xì)胞壁在植物耐重金屬脅迫中起到不可忽視的作用。一方面,細(xì)胞壁中的纖維素、果膠和糖蛋白等相互交錯,形成網(wǎng)孔大小不一的網(wǎng)架結(jié)構(gòu),能吸收和固定Cd2+;另一方面,細(xì)胞壁中這些物質(zhì)含有大量羥基、羧基、醛基、胺基或磷酸基等配位基團,能與合,在細(xì)胞壁上形成沉淀;再者,內(nèi)皮層細(xì)胞的徑向壁和橫向壁,被木質(zhì)化或者栓質(zhì)化,使得Cd2+無法跨壁或在壁間移動?;祀s在細(xì)胞壁內(nèi)第二層脂肪區(qū)和芳香區(qū)的薄層組織中的軟木脂,是一種蠟狀物質(zhì),也可以阻止Cd2+穿越組織,從而限制Cd2+的運輸。當(dāng)部分Cd2+穿過細(xì)胞壁和細(xì)胞膜進(jìn)入細(xì)胞后,受Cd脅迫的細(xì)胞一方面會主動產(chǎn)生有機酸、谷胱甘肽、金屬硫蛋白、植物螯合肽和尼克煙酰胺等物質(zhì)整合重金屬Cd,將離子態(tài)的Cd轉(zhuǎn)變成Cd-螯合物。另一方面會產(chǎn)生一些富含羰基和羥基的糖類化合物結(jié)合重金屬Cd,減少原生質(zhì)體內(nèi)Cd含量[66]。液泡的區(qū)室化作用是將重金屬Cd儲存在液泡。液泡是高等植物根部儲存Cd的一個重要場所,但不是唯一場所。只有當(dāng)細(xì)胞Cd濃度較高時,Cd才會被大量輸送到液泡中[67、68]。一方面,原生質(zhì)體內(nèi)的植物螯合肽、金屬硫蛋白以及類金屬硫蛋白等與Cd結(jié)合形成低分子質(zhì)量的Cd-螯合物被轉(zhuǎn)人液泡,進(jìn)而與其中的硫化物進(jìn)一步結(jié)合形成高分子復(fù)合物,存儲在液泡中[68];另一方面,液泡膜上的金屬轉(zhuǎn)運蛋白也能主動將部分Cd轉(zhuǎn)運至液泡。OsHMA3、AtCAX2、AtCAX4、YCF1和MRP3都能夠高選擇性將Cd轉(zhuǎn)運至液泡[21、22、69-73]。Cd敏感探針的微觀分析發(fā)現(xiàn),在atabccl和atabcc2的雙突變體中,Cd主要分布在細(xì)胞質(zhì),而在野生型中Cd主要分布在液泡,并且4MSCC1過表達(dá)擬南芥對Cel耐受性和積累量增加。由此推測AtABCCl和AtABCC2能夠?qū)|(zhì)內(nèi)的Cd轉(zhuǎn)移到液泡[24、74]。而鎘在根部的橫向運輸過程中,根部外皮層、內(nèi)皮層、中柱、細(xì)胞壁以及根際周圍的磷酸鹽、碳酸鹽等也能限制Cd通過質(zhì)外體途徑進(jìn)一步運輸[75]。最后,植物莖節(jié)部位對Cd有阻滯作用。Cd經(jīng)過木質(zhì)部轉(zhuǎn)運到植物地上部以后,便會在莖節(jié)點處的分散維管束內(nèi)進(jìn)行木質(zhì)部到韌皮部的Cd轉(zhuǎn)運,對于籽粒Cd積累,此過程是必須的[6]。莖節(jié)點處的維管系統(tǒng)包括5種維管束:分散維管束(0?8)、擴大橢圓維管束(EVB)、大維管束(LVB)、小維管束(SVB)、外周維管束(PCVB)。Yamaguchi等@運用同步微X射線熒光質(zhì)譜和電子探針顯微分析發(fā)現(xiàn),水稻倒一節(jié)節(jié)點處與圓錐花序相連的擴大橢圓維管束(EVB)內(nèi)Cd濃度最高,因為它有著重要的形態(tài)學(xué)特征,能阻止Cd進(jìn)一步被轉(zhuǎn)運到分散維管束(DVB)。植物體的整個維管系統(tǒng),結(jié)構(gòu)復(fù)雜,能夠有效地阻滯Cd進(jìn)一步向葉片、莖稈、籽粒的轉(zhuǎn)移??傊@些機制共同作用阻滯Cd向植物地上部的運輸,從而減輕Cd對植物的毒害。5植物富集鎘的機理截至2010年,國內(nèi)外發(fā)現(xiàn)的鎘超富集植物已達(dá)20余種。天藍(lán)遏蘭菜(Thlaspicaerulescens)是人們發(fā)現(xiàn)的第一種鎘超富集植物,鎘累積量達(dá)1800mg/kg。有關(guān)鎘超富集植物吸收、轉(zhuǎn)運、積累Cd的機制是目前研究的熱點問題之一。 首先,鎘的超富集性與植物根部吸收重金屬功能有關(guān)1761。鎘超富集植物除直接吸收水溶態(tài)和交換態(tài)重金屬鎘外,還可通過根系分泌物酸化土壤環(huán)境,提高對Cd的吸收量[77]。這類由根分泌的混合酸類物質(zhì),包括檸檬酸、草酸、富馬酸、琥珀酸及酒石酸等有機酸但是,超量吸收重金屬的根際過程并非由根際酸化機制主導(dǎo)。鎘超富集植物的根系,其形態(tài)和生長有別于其他植物。它們往往具有更加發(fā)達(dá)的根系和稠密的根毛,有利于其對Cd的吸收。如遏藍(lán)菜,根系發(fā)達(dá),根毛稠密,并且具有主動向土壤污染區(qū)伸展的特征[80]。鎘超富集植物體內(nèi)Cd的積累方式也異于其他植物。它們體內(nèi)的Cd優(yōu)先積累在莖桿的髓和皮層,而非維管束鞘,以及葉片的葉肉細(xì)胞和維管細(xì)胞,而不是表皮細(xì)胞[81]。在基因方面,那些負(fù)責(zé)Cd吸收的轉(zhuǎn)運子,ZIP家族的TclRTl、TclRT2、TcZNTl和TcZNT5僅僅在鎘超積累植物的根部表達(dá)。OsIRT1、OslRT2和OsNmmpl促進(jìn)Cd的吸收,尤其是當(dāng)土壤處于灌溉條件下時[30、31、82]。0sNramP5,主要在根部表達(dá),是水稻中一個主要的Cd的吸收轉(zhuǎn)運子,最近確定0sNmmp5基因敲除水稻在農(nóng)田Cd污染修復(fù)方面極具前景[29]。其次,根到莖桿的高轉(zhuǎn)運效率是鎘超富集植物最重要的特征。Kramer[83]據(jù)出,植物有機酸積累的能力可能決定了二價離子的最大積累量,超富集植物體內(nèi)高濃度的有機酸含量是重金屬超富集的先決條件,相比之下,對重金屬的特異性應(yīng)答或者超耐受反而不那么重要。正如Uend841所述,液泡內(nèi)Cd-有機酸的復(fù)合物形式是液泡Cd的高效轉(zhuǎn)運和液泡內(nèi)高濃度蘋果酸鹽的結(jié)果。鎘超富集植物液泡內(nèi)被束縛的Cd主要以Cd-蘋果酸鹽的形式存在[85]。因此,那些將Cd轉(zhuǎn)運到液泡,尤其是與Ca關(guān)聯(lián)的轉(zhuǎn)運子,如Cation/H+逆向轉(zhuǎn)運子(CAXs)基因家族[86],對于今后研究植物富集Cd的分子機制有極強指導(dǎo)性。在植物裝載和卸載組織內(nèi),Cd轉(zhuǎn)運子的表達(dá)對于超富集是最基本的。例如,在天藍(lán)遏蘭菜和鼠耳芥(Araiiriopi'ishalleri)內(nèi)均發(fā)現(xiàn),表達(dá)在根中柱的HMA4,對于將Cd裝載到木質(zhì)部以完成接下來的長距離運輸非常重要[87]。寡肽轉(zhuǎn)運蛋白家族(OPTs)的TcOPT3,是一個重金屬超富集因子,主要在天藍(lán)遏蘭菜地上部分的維管系統(tǒng)表達(dá),尤其是涉及到Cd長距離運輸?shù)闹兄蕛?nèi)[88]。0sHMA2和OsHMA4,主要在水稻根部和節(jié)表達(dá),都能夠參與Cd向木質(zhì)部的裝載以及Cd從地下部向地上部的轉(zhuǎn)運[35、36]。OsLCT1,在大維管束細(xì)胞周圍及分散維管束中有豐富的表達(dá),主要在水稻倒一節(jié)節(jié)點處介導(dǎo)木質(zhì)部到韌皮部Cd轉(zhuǎn)移低鎘基因家族的Lcd是一個沒有與其他已知基因同源的新基因,定位在細(xì)胞質(zhì)和細(xì)胞核,主要在根的維管束和葉片韌皮部的伴胞中表達(dá),敲除株系莖桿Cd含量低于野生型[89]。Cd特異性轉(zhuǎn)運子TcHMA3,則能夠?qū)d扣押到葉片的液泡,對于天藍(lán)遏蘭菜來說,該基因的高表達(dá)是維持其Cd高耐受所必須的[90]。BjCET2主要在根部表達(dá),在莖桿和葉的表達(dá)很弱,酵母內(nèi)的同源表達(dá)分析發(fā)現(xiàn),BJCET2的表達(dá)能增強酵母對Cd的耐受并降低體內(nèi)Cd含量。此外,BjCET2的表達(dá)在增加芥菜對Cd的耐受以及葉內(nèi)Cd的積累起到重要作用[32]。轉(zhuǎn)BjCET3基因的番茄,嫩枝Cd含量比對照高,但兩者生物量相差不大[33]。OsDEPl編碼一個Cys含量豐富的G蛋白γ亞基,能增加酵母和植物對Cd的耐受性,轉(zhuǎn)OsDEPl基因的植物能積累更多的Cd[91]??傊?,探究鎘超富集植物對鎘的特殊響應(yīng)機制,將大大提高對鎘土壤的修復(fù)效率。6展望植物吸收、轉(zhuǎn)運和積累Cd是一個受多因素、多基因共同調(diào)控的過程。目前,對植物Cd脅迫的研究主要集中在生理生化方面,也在分子機制方面取得了一定的進(jìn)展。但是,還有很多研究工作需要開展,主要包括以下幾個方面:1)了解植物Cd脅迫的信號傳導(dǎo)途徑包括植物如何感知土壤中高濃度的Cd而分泌出有機化合物與之螯合,以及Cd脅迫的信號轉(zhuǎn)導(dǎo)途徑。2)闡明根際環(huán)境對植物吸收積累Cd的綜合影響。包括根系分泌物、根際微生物對土壤重金屬Cd的形態(tài)轉(zhuǎn)化及生物有效性的影響,Cd超富集植物的根際微生物環(huán)境與普通植物之間的差異。3)更加深入地認(rèn)識植物對Cd脅迫的解毒機制。包括植物如何將Cd區(qū)室化間定,如何精確地識別Cd離子并將其外排出根細(xì)胞,植物衍生出了哪些解除Cd毒害的結(jié)構(gòu)和物質(zhì)。4)發(fā)掘并克隆影響植物Cd的吸收、轉(zhuǎn)運和積累的關(guān)鍵基因。目前發(fā)現(xiàn)的很多基因在吸收或轉(zhuǎn)運Cd的同時也會吸收或轉(zhuǎn)運其他金屬,因此,亟待研究在多種重金屬存在的條件下,重金屬Cd在植物體內(nèi)的轉(zhuǎn)運和積累過程并發(fā)現(xiàn)相應(yīng)的基因。此外,重金屬的轉(zhuǎn)運過程受到多基因的控制,但是還不清楚這些基因是怎樣協(xié)同工作的。5)利用不同基因型的資源,篩選籽粒Cd低積累、農(nóng)藝性狀優(yōu)良的品種供食用,或者利用Cd超富集品種移去土壤中過量的Cd。同時結(jié)合目前對Cd的認(rèn)識與分子生物學(xué)方法,運用物理和化學(xué)誘變、分子標(biāo)記輔助育種、耐性基因的分離與克隆技術(shù)等,培育出新品種。6)目前對于不同生育時期Cd在植物體內(nèi)的動態(tài)變化過程認(rèn)識還不深,尤其是對籽粒Cd積累過程了解不多。特別是對重要農(nóng)作物Cd積累的途徑和再分配規(guī)律有待進(jìn)一步深入研究,以促進(jìn)我國主要農(nóng)產(chǎn)品的安全生產(chǎn)。參考文獻(xiàn)(References):[1]黃涓,劉昭兵,謝運河,等.土壤中cd形態(tài)及生物有效性研究進(jìn)展[J].湖南農(nóng)業(yè)科學(xué)(HUANG Juan, LIU Zhao-bing, XIE Yun-he, et al. Progress of form and bioavailability of cadmium in soil[J]. Hunan Agricultural Sciences),2013,(17):56-61.[2]DUDKA S, MILLER W P. Permissible concentrations of arsenic and lead in soils based on risk[J]. Water, Air, and Soil Pollution,1999,13(1-4):127-132.[3]歐陽達(dá),譚於銀,余霞,等.湘江長沙段土壤和沉積物重金屬污染模糊評價及污染源分析[J].湖南師范大學(xué)自然科學(xué)學(xué)報(OUYANG Da,TAN Chang-yin,YU Xia, et al. Fuzzy compre-hensive evaluation and analysis of the pollutant source of heavy metal in soils and sediments in Xiangjiang Changsha section[J].Journal of Natural Science of Hunan Normal Universi?ty),2014,37(5):1-7.[4]龔偉群,潘根興.中國水稻生產(chǎn)中Cd吸收及其健康風(fēng)險的有關(guān)問題[J].科技導(dǎo)報(GONG Wei-qun, PAN Gen-xing. Issues of grain Cd uptake and the potential health risk of rice production sector of China[J]. Science and Technology Review), 2006, 24(5): 43-48. [5]URAGUCHI S, MAORI S, KURAMATA M, et d. Root-to-shoot Cd translocation via the xylem is the major process de termining shoot and grain cadmium accumulation in rice[J]. Journal of Experimental Botany,2009,60(9):2677-2690.[6]TANAKA K, FUJIMAKI S, FUJIWARA T, et al. Quantitative estimation of the contribution of the phloem in cadmium transport to grains in rice plants[J].Soil Science and Plant Nutrition,2007,53(1):72-77.[7]HART J J, WELCH R M, NORVELL W A. Zinc effects on cadmium accumulation and partitioning innear-isogenic lines of durum wheat that differ in grain cadmium concentration [J]. New Phytologist,2005,167(2):391-401.[8]LIU X, PENG K, WANG A, et al. Cadmium accumulation and distribution in populations of Phytolacca americana L. and the role of transpiration [J]. Chemosphere, 2010, 78(9):1136-1141.[9]ISHIKAWA S, SUZUI N, ITO-TANABATA S, et al. Real-time imaging and analysis of differences in cadmium dynamics in rice cultivars (Oryza 5Crfwa)using positron -emitting l07Cd [J]. BMC Plant Biology,2011,11(172):1-12.[10]KASHIWAGI T, SHINDOIl K, HIROTSU N, et al. Evidence for separate translocation pathways in determining cadmium accumulation in grain and aerial plant parts in rice[J]. BMC Plant Biology,2009,9(8):1-10.[11]查燕,楊居容,劉虹,等.污染谷物中重金屬的分布及加工過程的影響[J].環(huán)境科學(xué)(ZHA Yan, YANG Ju-rong, LIU Hong, et al. Distribution of heavy metals in polluted crops seeds and the effect of heavy metals in the food processing[J]. Environmen?tal Science), 2000, 21(3): 52-55.[12]BEN Z A, VAADIA Y, HERMAN S. Nitrate uptake by roots as regulated by nitrate reduction products of the shoot[J]. Physiolo-gia Plantarum, 1971, 24(2): 288-290.[13]MARSCHNER H. KIRKBY E A, CAKMAK I. Effect of min?eral nutritional status on shoot—root partitioning of photoassim-ilates and cycling of mineral nutrients[J]. Journal of Experimental Botany,1996,47(Special Issue):1255-1263.[14]YAN Y F, CHOI D H, KIM D S, et al. Absorption, translocation, and remobilization of cadmium supplied at different growth stages of rice[J]. Journal of Agronomy and Crop Science,2010,13(2):113-119.[15]RODDA M S, LI G, REID R J. The timing of grain Cd accu-mulation in rice plants: the relative importance of remobiliza?tion within the plant and root Cd uptake post -flowering [J]. Plant Soil,2011,347(1-2):105-114 ·[16]HARRIS S N, TAYLOR G J. Cadmium uptake and partition?ing in durum wheat during grain filling[J]. BMC Plant Biology,2013,13(103):1-16.[17]FUJIMAKI S, SUZUI N, ISHIOKA N S, et al. Tracing cadmi?um from culture to spikelet: noninvasive imaging and quantita?tive characterization of absorption, transport, and accumulation of cadmium in an intact rice plant[J]. Plant Physiology,2010,152(4):1796-1806.[18]YAMAGUCHI N, ISHIKAWA S, ABE T, et al. Role of the node in controlling traffic of cadmium,zinc,and manganese in rice [J]. Journal of Experimental Botany,2012, 63 (7):2729-2737.[l9] KATO M, ISHIKAWA S, INAGAKI K, et al. Possible chemical forms of cadmium and varietal differences in cadmium concentrations in the phloem sap of rice plants[J]. Soil Science and Plant Nutrition,2010,56(6):839-847.[20]楊居榮,何孟常,查燕,等.稻、麥籽實中Cd的結(jié)合形態(tài)[J]. 中國環(huán)境科學(xué)(YANG Ju-rong, HE Meng-chang, ZHA Yan, et al. Binding forms of Cd in the rice and wheat seeds[J]. China Environmental Science),2000,20(5):404-408.[21]UENO D, YAMAJI N, KONO I, et al. Gene limiting cadmium accumulation in rice[J]. Proceedings of the National Academy of the Sciences of the United States of America, 2010,107(38): 16500-16505.[22]ZHANG Y, PENG X,CHAI T, et al.Structure and function of tonoplast Cation/H+ antiporters in plant[J]. Sheng Wu Gong Cheng Xue Bao,2011,27(4):546-560.[23] SCHNEIDER T, SCHELLENBEHG M, MEYKK S, et al. Quantitative detection of changes in the 1 eaf-mesophy 11 tonoplast proteome in dependency of a cadmium exposure of barley plants[J]. Proteomics,2009.9(10):2668-2677.[24]PARK J, SONG WY, KO D, el al. The phytochelatin trans?porters AtABCCl and AtABCC2 mediate tolerance to cadmium and mercury[J]. The Plant Journal, 2012,69(2):278-288.[25]SASSER T L, LAWRENCE G, KARUNAKARAN S, et al. The yeast ATP-binding cassette (ABC) transporter Ycflp enhances the recruitment of the soluble SNARE Vam7p to vacuoles for efficient membrane fusion[J].Journal of Biological Chemistry,2013,288(25):18300-18310.[26]THOMINE S, LELIEVRE F, DEBARBIEUX E, et al. At-NRAMP3, a multispecific vacuolar metal transporter involved in plant responses lo iron deficiency[J]. The Plant Journal,2003,34(5):685-695.[27]MOLINS H, MICHELET L, LANQUAR V, et al. Mutants impaired in vacuolar melal mobilization identify chloroplasts as a target for cadmium hypersensitivity in Arabidopsis thaliana[J] Plant Cell and Environment,2013,36(4):804-817.[28]TAKAHASHI R, ISHIMARU Y, SENOURA T, et al. The Os-NRAMP1 iron transporter is involved in Cd accumulation in rice[J]. Journal of Experimental Botany,2011,62(14): 4843-4850.[29]SASAKI A, YAMAJI N, YOKOSHO K, et al. Nramp5 is a ma?jor transporter responsible for manganese and cadmium uptake in rice[J]. Plant Cell,2012,24(5):2155-2167.[30]LEE S,AN G. Over—expression of OsIRTl leads to increased iron and zinc accumulations in rice[J]. Plant Cell and Environment,2009,32(4):408-416.[31] NAKANISHI H, OGAWA I,ISHIMARU Y, et al. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRTl and OsIRT2 in rice[J]. Soil Science and Plant Nutrition,2006,52(4):464-469.[32]XU J, CHAI T, ZHANG Y, et al. The cation-dTlux transporter BjCET2 mediates zinc and cadmium accumulation in Bras sic a juncea L. leaves[J]. Plant Cell Reports,2009, 28(8):1235-1242.[33]LANG M, HAO M, FAN Q, et al. Functional characterization of BjCET3 and BjCET4, iwo new cation-efflux transporters from Brassica juncea L[J]. Journal of Experimental Botany,2011,62(13):4467-4480.[34]YUAN L, YANG S, LIU B, et al. Molecular characterization of a rice metal tolerance protein, OsMTPl[J]. Plant Cel] Reports,2012, 31(1): 67-79.[35] YAMAJI N, XIA J, MITANI U N, et al. Preferential delivery oi zinc to developing tissues in rice is mediated by P-type heavy metal ATPase 0sHMA2[J]. Plant Physiology, 2013,162(2):927-929.[36]VKHRET F, GRAVOT A, AUROY P, et al. Over–expression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal to lerance[J]. FEBS Letters,2004,576(3): 306-312.[37]LEE S, KIM Y Y,LEE Y, et al. Rice PIB-type heavy-metal ATPase, 0sHMA9, is a metal efflux protein[J]. Plant Physiology,2007,145(3):831-842.[38]U L, HE Z, PANDEY G K, et al. Functional cloning and characterization of a plant efflux carrier for multidrug and heavy metal detoxification[J].Journal of Biological Chemistry,2002,277(7):5360-5368.[39]KIM D Y, BOVET L, MAESHIMA M, et al. The ABC trans-porter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance[J]. The Plant Journal,2007,50(2): 207-218.[40]URAGUCH1 S, KAMIYA T, SAKAMOTO T, et al. Low-affinity cation transporter (OsLCT 1) regulates cadmium transport into rice grains[J]. Proceedings of the National Academy of the Sciences of the United States of America, 2011, 108(52): 20959- 20964.[41]ISH1KAWA S, AE N, YANO M. Chromosomal regions with quantitative trait loci controlling cadmium concentration in hrown rice[J].New Phytologist,2005,168(2): 345-350.[42]ISHIKAWA S, ABE T, KURAMATA M, et al. Major quantitative trail locus for increasing cadmium specific concentration in rice grain is located on the short arm of chromosome 7[J].Journal of Experimental Botany,2010,61(3):923-934.[43]UENO D, KONO I, YOKOSHO K, et al. A major quantitative trait locus controlling cadmium translocation in rice Oryza New Phytologist,2009,182(3):644-653.[44]UENO D, KOYAMA E, KONO I, et al. Identification of a novel major quantitative trait locus controlling distribution of Cd between roots and shoots in rice[J]. Plant Cell Physiology, 2009,50(12): 2223-2233.[45]KASHIWAGI T, SHINDOH K, HIROTSU N, et al. Evidence for separate translocation pathways in determining cadmium accumulation in grain and aerial plant parts in rice[J]. BMC Plant Biology,2009,9(8):1-10.[46]X11K D, CHEN M, ZHANG G. Mapping of QTLs associated with cadmium tolerance and accumulation during seedling stage in ricelJ]. Euphytica, 2009, 165(3): 587-596.[47]ALLOW AY B J. Heavy Metal in Soils (2nd edition) [M]. London: Blackie, 1995.[48]KIHKHAM M B. Cadmium in plants on polluted soils: Effects of soil factors, hyper-accumulation and amendments[J].Geoderma,2006,137(1):19-32.[49]張高.Cd在東北地區(qū)4種土壤中的吸附動力學(xué)[J].中國農(nóng)學(xué)通報(ZHANG Lei. Study on kinetics of adsorption of cadmium on four types of soils in northeast China[J]. Chinese Agricultural Science Bulletin),2009,25(9):273-276.[50]STANHOPE K G, YOUNG S D, HUTCHINSON J J. Use of isotopic: dilution techniques to assess the mobilization of nonlabile Cd by chelating agents in phytoremediation[J].Environ-mental Science and Technology,2000,34(19): 4123-4127.[51]吳龍平,駱永明.銅污染旱地紅壤的絡(luò)合誘導(dǎo)植物修復(fù)作用[J].應(yīng)用生態(tài)學(xué)報(WU Long-hua, LUO Yong-ming. Chelate-in?duced phytoextraction of copper contaminated upland red soil[J].Chinese Journal ol Applied Ecology),2001,12(3):435—438.[52]楊仁斌,曾清如,周細(xì)紅,等.植物根系分泌物對鉛鋅尾礦污染土壤中重金屬的活化效應(yīng)[J].農(nóng)業(yè)環(huán)境保護(hù)(YANG Ren-bin, ZENG Qing-ru, ZHOU Xi-hong, et al. The activated impact of plant root exudates on heavy metals in soils contaminated by tailing of lead-zinc ore[J]. Agro Environmental Protection),2000,19(3):152-155.[53]HUANG J W, BLAYLOCK M J, KAPULNIK Y, et al. Phy-toremediation of uranium contaminated soils role of organic acids in triggering uranium hyper—accumulation in plants [J].Kuvironmental Science and Technology, 1998, 32 (13): 2004-2008.[54]OGO Y, KAKEI Y, ITAI R N, et al. Spatial transcriptomes of iron—deficient and cadmium—stressed rice[J].New Phytologist,2014,201(3):781-794.[55]常學(xué)秀,段昌群,王煥校.根分泌作用與植物對金屬毒害的抗性[J].應(yīng)用生態(tài)學(xué)報(CHANG Xue-xiu, DUAN Chang-qun, WANG Huan—xiao. Root excretion and plant resistance to metal toxicity[J], Chinese Journal of Applied Ecology),2000,11(2):315-320:[56]吳佳,涂書新.植物根系分泌物對污染脅迫響應(yīng)的研究進(jìn)展[J].核農(nóng)學(xué)報(WU Jia, TU Shu-xin. Research progress on response of plant root exudates to pollution stress[J]. Journal of Nuclear Agricultural Sciences),2010,24(6):1320-1327.[57]江行玉,趙可夫.植物重金屬傷害及其抗性機理[J].應(yīng)用與環(huán)境生物學(xué)報(JIANG Xing—yu, ZHAO Ke-fu. Mechanism of heavy metal injury and resistance of plants[J]. Chinese Journal of Applied and Environmental Biology),2001,7(1):92-99.[58]謝翔宇,翁鉑森,趙素貞,等.Cd脅迫下接種叢枝菌根真菌對秋茄幼苗生長與抗氧化酶系統(tǒng)的影響[J]。廈門大學(xué)學(xué)報(XIE Xiang-yu, WEN Bai -sen. ZHAO Su -zhen, et al. Impact of arbuscular mycorrhizal fungi on seedling growth and antioxi-dant enzyme system under Cd stress[J].Journal of Xiamen University),2013,52(2):244-253.[59]林琦,陳懷滿,鄭春榮,等.根際環(huán)境中鉛的形態(tài)轉(zhuǎn)化[J]應(yīng)用生態(tài)學(xué)報(LIN Qi,CHEN Huai-man, ZHENG Chun-rong, et al. Conformation transformation of lead in rhizosphere [J].Chinese Journal of Applied Ecology),2002.13(9):1145-1149. [60]徐衛(wèi)紅,黃河,王愛華,等.根系分泌物對土壤重金屬活化及其機理研究進(jìn)展[J].生態(tài)環(huán)境(XU Wei-hong, HUANG He, WANG Ai-hua, et al. Progress on root exudates activation of heavy metal and its mechanism[J]. Ecology and Environment), 2006,15(1): 184-189.[61]許仙菊,陳丹艷,張永春,等.水稻不同生育期重金屬污染土壤中鎘鉛的形態(tài)分布[J].江蘇農(nóng)業(yè)科學(xué)(XU Xian-ju, CHEN Dan-yan, ZHANG Yong-chun, et al. Distribution form of Cd and Ph in heavy metal contaminated soil at different rice growth stages[J]. Jiangsu Agricultural Science),2008,(6):253-255.[62]張麗娜,宗良綱,付世景,等.水分管理方式對水稻在GI污染土壤h生長及其吸收Cd的影響[J].安全與環(huán)境學(xué)報(ZHANG Li-na, ZONG Liang-gang, FU Shi-jing, et al. Effects of water control on rice growth and its absorption of Cd on Cd contaminated soil[J]. Journal of Safety and Environment),2006,6(5):49-52. [63]紀(jì)雄輝,梁永超,魯艷紅,等.污染稻田水分管理對水稻吸收積累鎘的影響及其作用機理[J].生態(tài)學(xué)報(JI Xiong-hui, LIANG Yong—chao, LU Yan—hong, et al. Absorption and accumulation of Cd in rice : effects by management of contaminated paddy[J].Acta Ecologica Sinica),2007,27(9):3930—3939.[64]黃益宗,朱永官,童依平,等.上壤水分變化對玉米苗期吸收積累鎘的影響[J].生態(tài)學(xué)報(HUANG Yi-zong, ZHU Yong- guan, TONG Yi-ping, et al. Absorption and accumulation of Cd in corn: effects by soil water contents[J]. Acta Ecologica Sinica),2004,24(12):2832-2836.[65]李義純,葛瀅.淹水土壤中鎘活性變化及其制約機理[J]. 土壤學(xué)報(LI Yi-chun, GE Ying. Cadmium activity of waterlogged soil and the restriction mechanism[J]. Acta Pedologica Sinica),2011,48(4):840-845.[66]MENCH M, MOREL J L, GUCKERT A. Metal binding prop?erties of high molecular weight soluble exudates from maize (Zea mays L.) roots [J]. Biology and Fertility of Soils, 1987,3(3):165-169.[67]VANGRONSVELD J, HAEN J. Cadmium tolerance in Thlaspi caemlescens II. localization of cadmium in Thlaspi caerulescens[J]. Environmental and Experimental Botany,2005,53(2):163-171.[68]BAZEL Y, ZHUIKOVA T V, POZOLOTINA V N. The structure of dandelion ceno populations and specific features of heavy metal accumulation[J]. Russian Journal of Ecology,1998,29(5):331-337.[69]SHIGAKI T, PITTMAN J K, HIRSCH1 K D. Manganese specificity determinants in the A rahidopsis ihaluuia metal/H * antiporter CAX2[J].Journal of Biological Chemistry. 2003,278(8):6610-6617 .[70]HIRSCHI K D, KORENKOV V D, WILGANOWSKI N L, et al. Expression of Arabidopsis thaliana CAX2 in tobacco altered metal accumulation and increased manganese tolerance[J]. Plcint Physiology,2000,124(1):125-133.[71]MEI H,CHENG N H, ZHAO J, et al. Root development under metal stress in Arabidopsis thaliana requires tlie HVcation antiporter CAX4[J].New Phytologist,2009,183(1):95-105. [72]GAILLARD S, JACQUET H, VAVASSEUR A, et al. AtMKP6/ AtABCC6, an ATP-Binding cassette transporter gene expressed during early steps of seedling development and up-regulated by cadmium in Arabidopsis thaliond[J].BMC Plant Biology,2008,8(22): 1-11.[73]LI Z S, SZCZYPKA M, LU Y P, et al. The yeast Cd factor [83] protein (YCFl)is a vacuolar glutathione S-conjugate pump[J].Journal of Biological Chemistry, 1996, 271(11):6509-6517. [74]THEODOULOU F L. Plant ABC transporters [J]. Biochimica et Biophysica Acta (BBA)-Biomembranes,2000,1465(1):79-103.[75]JALIL A, SELLES F, CLARKE J M. Effect of cadmium on growth and the uptake of cadmium and other elements by durum wheat[J]. Plant Nutrition,1994,17(11): 1839-1858.[76]CHANEY R L, MALIK M,LI Y M. Phytoremediation of soil metals[J]. Current Opinion in Biotechnology, 1997, 8(3): 279-284. [77]YANAI J, ZHAO F J, MC GRATH S P, et al. Effect of soil characteristics on Cd uptake by the hyperaccumulator Thlaspi caerulescens[J].Environ Pollution,2006, 139(1):167-175. [78]MCGRATH S P, LOMBI E, GRAY C W, et al. Field evaluation of Cd and Zn phytoextraction potential by the hyperaccu?mulators Thlaspi caerulescens and Arabidopsis holleri[J].Environ Pollution,2006,141(1):115-125.[79] CIESLINSKI G, VAN REES K C J, SZMIGIELSKA A M, et al. Low-molecular-weight organic acids in rhizosphere soils of durum wheat and their effect on cadmium bioaccumulation [J].Plant Soil, 1998,203(1):109-117.[80]WHITING S N, LEAKE J R, MC GRATH S P, et al. Positive responses to Zn and Cd by roots of the Zn and Cd hyperaccu-mulator Thlaspi caerulescens[J]. New Phytologist, 2000,145(2): 199-210.[81]TIAN S, LU L, LABAVITCH J, YANG X, et al. Cellular se-questration of cadmium in the hyperaccumulator plant species Sedum alfrediifj]. Plant Physiology,2011,157(4):1914-1925. [82]THOMINE S, WANG R, WARD J M, et al. Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis thaliana with homology to Nramp genes[J]. Proceedings of the National Academy of the Sciences of the United States of America,2000,97(9):4991-4996.[83]KRAMER U. Metal hyperaccumulation in plants[J]. Annual re?view of Plant Biology, 2010,61:517-534.[84]UENO D, MA J F, IWASHITA T, et al. Identification of the form of Cd in the leaves of a superior Cd-accumulating ecotype of Thlaspi caerulescens using 113 Cd-NMR[J]. Planta,2005,221(6):928-936.[85]VOGEL M K, ARGON I, KODRE A. Complexation of cadmium in seeds and vegetative tissues of the cadmium hyperaccu?mulator Thlaspi praecox as studied by x-ray absorption spec-troscopy[J]. Plant Soil,2010,331(1-2):439—451. [86]VERBRUGGEN N, HERMANS C, SCHAT H. Molecular mechanisms of metal hyperaccumulation in plants[J]. New Phytologist,2009,181(4):759-776.[87]HANIKENNE M, TALKE I N, HAYDON M J, el al. Evolution of metal hyperaccumulation required cisregulatory changes and triplication of HMA4[J].Nature,2008,453(7193): 391-395. [88]HU Y T, MING F, CHEN W W, et al. TcOPT3, a member of oligopeptide transporters from the hyperaccumulator Thlaspi caerulescens, is a novel Fe/Zn/Cd/Cu transporter[J]. PLoS One, 2012,7(6):38535.[89]SHIMO H, ISHIMARU Y, AN G, et al. Low cadmium(LCD), a novel gene related to cadmium tolerance and accumulation in rice[J]. Journal of Experimental Botany, 2011, 62(15):5727-5734.[90]UENO D, MILNER MJ, YAMAJI N, et al. Elevated expression of TcHMA3 plays a key role in the extreme Cd tolerance in a Cd hyperaccumulating ecotype of Thlaspi caerulescens[J]. Plant Journal,2011,66(5):852-862.[91]KUNIHIRO S, SAITO T, MATSUDA T, et al. Rice DEP1, encoding a highly cysteine -rich G protein y subunit, confers cadmium tolerance on yeast cells and plants[J]. Journal of Experimental Botany,2013,64(14):4517-4527.

猜你喜歡
液泡韌皮部木質(zhì)部
不同品種吊蘭根初生木質(zhì)部原型的觀察與比較
植物研究(2021年2期)2021-02-26 08:40:10
植物液泡膜H+-ATPase和H+-PPase 研究進(jìn)展
白念珠菌液泡的致病性作用
鎘污染來源對蘿卜鎘積累特性的影響
蘋果樹木質(zhì)部及韌皮部組織基因組DNA的提取及質(zhì)量檢測
農(nóng)用紙膜破損試驗
木薯塊根膨大期韌皮部和木質(zhì)部比較蛋白組學(xué)初步研究
鹽分脅迫對2種楊樹次生木質(zhì)部導(dǎo)管特征的影響
秋季斷根有利于渭北黃土高原蘋果安全越冬
兩個連通球形液膜有平衡狀態(tài)
物理教師(2010年5期)2010-05-10 07:14:24
庆安县| 江安县| 文登市| 通许县| 陵川县| 岐山县| 常山县| 惠来县| 石泉县| 镇赉县| 呼玛县| 米易县| 应用必备| 信阳市| 石阡县| 洛川县| 南宫市| 土默特右旗| 金昌市| 皮山县| 伊金霍洛旗| 象州县| 垦利县| 宜丰县| 福安市| 黎城县| 毕节市| 卢湾区| 当雄县| 武穴市| 开化县| 宕昌县| 偃师市| 新和县| 托克托县| 平顶山市| 旬邑县| 巴林右旗| 浪卡子县| 叙永县| 环江|