潘章源,狄 冉,劉秋月,儲明星
(中國農業(yè)科學院 北京畜牧獸醫(yī)研究所,農業(yè)部畜禽遺傳資源與種質創(chuàng)新重點實驗室,北京 100193)
?
學科動態(tài)
綿羊多羔主效基因BMPR1B的研究進展
潘章源,狄 冉,劉秋月,儲明星*
(中國農業(yè)科學院 北京畜牧獸醫(yī)研究所,農業(yè)部畜禽遺傳資源與種質創(chuàng)新重點實驗室,北京 100193)
骨形態(tài)發(fā)生蛋白受體1B(Bone morphogenetic protein receptor 1B,BMPR1B)是一種重要的跨膜受體蛋白,主要參與轉化生長因子β(TGF-β)通路,其在調控成骨分化、細胞擴散以及卵巢卵泡發(fā)育等過程中起重要作用,并直接影響如綿羊等動物的繁殖性狀。綿羊BMPR1B基因發(fā)生A746G突變(命名為FecB突變),導致第249位氨基酸由谷氨酰胺(Q)轉變?yōu)榫彼?R),進而使得綿羊排卵數(shù)和產羔數(shù)顯著增加,因此BMPR1B成為目前最受關注的綿羊多羔主效基因。論文就綿羊BMPR1B基因定位、功能機制研究進展及其對高繁殖力綿羊的影響進行了綜述,同時也對BMPR1B功能研究中一些亟待解決的問題展開了討論。
BMPR1B基因;FecB;綿羊;多羔
BMPR1B是多種骨形態(tài)發(fā)生蛋白的膜受體,廣泛存在于機體各種組織中,但主要在卵巢中表達。FecB是BMPR1B基因上的一個突變位點,攜帶FecB等位基因的綿羊具有高排卵現(xiàn)象,有研究推測可能是因為該突變改變了卵巢對激素的敏感性[1],也有研究推測該突變導致了激素分泌的增加[2],但由于BMPR1B配體多樣、功能多樣和通路復雜,目前對其影響產羔數(shù)的機制尚不明確。對綿羊BMPR1B基因定位、表達規(guī)律、功能和效應機制的最新研究進展進行綜述,將有助于進一步探究BMPR1B調控綿羊繁殖力的機制。
1982年,Davis等[3-4]在對Booroola羊高繁殖力原因進行研究時,發(fā)現(xiàn)了一個常染色體突變位點,該突變對綿羊排卵數(shù)具有加性效應,即每增加一個拷貝將額外多排卵1.65枚[5]。1989年,該突變基因被綿、山羊遺傳命名委員會正式定名為FecB基因(即Fec=fecundity, B=Booroola),F(xiàn)ecB基因存在三種基因型,產羔數(shù)BB型(突變型)>B+型>++型(野生型)。在接下來的研究中,主要對FecB通過微衛(wèi)星OarAE101和OarHH55[6]、OarAE101[7]、OarAE101和BM1329[8]進行了連鎖不平衡定位。隨后,由于人BMPR1B基因被定位于第4號常染色體4q22-24的區(qū)間[9],Mulsant等、Wilson等和Souza等[10-12]證明FecB基因位于綿羊第6號染色體與人BMPR1B基因相對應的區(qū)域,進一步分析發(fā)現(xiàn)Booroola 綿羊BMPR1B基因高度保守的胞內激酶信號區(qū)域A746G突變就是FecB突變,其導致谷氨酰胺轉變成精氨酸,最終導致綿羊排卵數(shù)增加。
骨形態(tài)發(fā)生蛋白受體(BMPR)分為I型和II型,其中BMPR1B屬于I型受體[13]。綿羊BMPR1B基因位于6q23-31,全長20 K,包含10個外顯子,大部分為內含子,編碼區(qū)僅長1 509 bp,編碼503個氨基酸。綿羊BMPR1B蛋白空間結構的構建主要是根據(jù)人TGF-β受體(TβR-I)和克莫司結合蛋白-12(FKBP-12)復合物模型[14],綿羊和人BMPR1B蛋白結構具有高度的相似性(68%),綿羊BMPR1B的FecB突變(即Q249R)位于GS結構域和L45環(huán)之間,與人TGF-β受體結構域中的Q250殘基相對應,Q250殘基位于與抑免蛋白(Immunophilin)FKBP-12分子相連的α-C螺旋的C末端。FKBP-12是人TβR-I家族成員活性的反饋調節(jié)劑[15],能與BMPR1B受體結合,抑制BMPR1B與配體的結合能力。Booroola綿羊的Q249R突變使得BMPR1BQ250與FKBP-12 P88形成氫鍵,增強了FKBP-12和BMPR1B之間π電子的相互作用,進而結合更加緊密,導致對BMPR1B受體活性的抑制作用增加[10]。因此,可以認為,Q249R突變使得FKBP-12對BMPR1B活性抑制作用增強,細胞對BMPR1B特異性配體的敏感性下降,最終可能導致細胞內一系列的變化,如信號轉導的強度差異、轉錄本的表達差異。
Wilson等[11]證實BMPR1B基因不僅在綿羊繁殖相關組織和器官中高表達,而且在腦、骨骼肌和腎臟中也有中度表達,同時運用原位雜交技術將BMPR1B蛋白特異地定位于卵母細胞和顆粒細胞上。最近的研究顯示,在中國美利奴中,BMPR1B基因在各組織中的表達量存在差異,由高到低依次為卵巢、耳、脊髓、垂體、骨骼、子宮、下丘腦、腎臟、骨骼肌和輸卵管,在肝臟中無表達[16]。
通常羊卵泡各發(fā)育階段均表達BMPR1B,但在卵細胞和顆粒細胞中表達模式存在一定的差異。Wilson等[11]通過原位雜交檢測了綿羊卵泡發(fā)育各階段(原始卵泡、初級卵泡、次級卵泡、有腔卵泡)顆粒細胞和卵母細胞的BMPR1B表達情況,發(fā)現(xiàn)BMPR1B在卵母細胞中一直表達,而在顆粒細胞中除了原始卵泡不表達,其余階段卵泡均表達。一般大卵泡顆粒細胞BMPR1BmRNA表達量要高于小卵泡[17-18]。
FecB是BMPR1B最重要的突變位點,其對綿羊高繁殖力的影響研究也最為廣泛和清楚。FecB對排卵數(shù)為加性效應,對產羔數(shù)為部分顯性效應。最開始鑒定FecB多態(tài)性主要是通過產羔數(shù)、排卵數(shù)的統(tǒng)計和后裔測定信息[3],而近年主要是使用DNA基因型檢測。Piper等[4]在很早的時候就對FecB基因產羔效應進行了記錄,一個拷貝的FecB增加排卵數(shù)為1.0~1.5,增加產羔數(shù)為0.8~1.2,Booroola 綿羊BB型母羊的平均排卵數(shù)4.65 枚,顯著高于對照組++型母羊的平均排卵數(shù)(1.62 枚)。隨后的大量研究驗證了Piper的結果,F(xiàn)ogarty等[19]對這些結果進行總結,表明一個拷貝將增加1.26枚排卵和0.67只產羔,兩個拷貝將增加3.61枚排卵和0.77只產羔。不同羊品種的FecB效應是不一樣的,在國外品種中,F(xiàn)ecB基因突變純合型(BB)比野生純合型(++)產羔數(shù)多0.67~1.14 只,B+型比++型產羔數(shù)多0.48~1.16 只。在國內品種中,BB 基因型比++型增加產羔數(shù)0.16(灘羊)-1.89只(小尾寒羊),B+型比++型增加產羔數(shù)0.083(灘羊)-1.110 只(小尾寒羊)。
由于BMPR1B的FecB突變能提高綿羊繁殖力,可帶來巨大的經(jīng)濟利益,因此對各綿羊品種進行FecB檢測具有重要的意義[20]。目前研究表明FecB突變存在于世界各地各種高繁殖力綿羊品種中,以下列出含有FecB突變的綿羊品種以及它們的B等位基因頻率:Booroola Merino綿羊(0.53)(澳大利亞)[10]、Garole綿羊(0.61)(印度)[21]、Kendrapada綿羊(0.73)(印度)[22]、Javanese綿羊(0.83)(印度尼西亞)[22]、Bonpala綿羊(0.87)(印度)[23]、Kalehkoohi綿羊(0.35)(伊朗)[24]、小尾寒羊(0.5~0.55)(中國)[25-29]、湖羊(0.8~1.0)(中國)[30]、中國美利奴多胎品系羊(0.2~0.5)(中國)[31-32]、多浪羊(0.13~0.17)(中國)[33-34]、策勒黑羊(0.33)(中國)[35]、洼地綿羊(0.57~0.63)(中國)[36-37]、灘羊(0.02~0.22)(中國)[38-39]、阿勒泰羊(0.168)(中國)、新疆巴音布魯克綿羊(0.01)(中國)[40]。對于其他的一些綿羊品種,目前研究表明并不存在FecB突變,如中國美利奴、Lleyn,Deccani, Bannur, Madras Red, Barbarine, Queue Fine de L'Ouest, Noire de Thibar, Sicilo-Sarde, D'Man, Dorset, Suffolk, Thoka, Coopworths, Gotland, Perindale, Romney, Texel, Merinos d'Arles, Woodlands, Lacaune, Belclare, Cambridge, Teeswater, Blueface Leicester, German Whiteheaded Mutton, Galician, Barbados Blackbelly, Sangsari綿羊[10-11,21,27,30,41-47]。
BMPR1B基因除存在FecB突變位點,還存在其他突變位點。2001年,Souza等[12]發(fā)現(xiàn)了兩個突變位點,一個為FecB,另一個為C1113A。2011年,儲明星等[48]對綿羊BMPR1B基因9個外顯子的多態(tài)性進行了研究,除了FecB和C1113A,還發(fā)現(xiàn)20個新的突變位點,其中3個SNPs(G922T、 T1043C、G192A)導致了氨基酸的改變,但并沒有影響產羔數(shù)。探究微衛(wèi)星座位與FecB突變之間的連鎖關系,可為綿羊高繁殖力的標記輔助選擇提供科學依據(jù)。儲明星團隊對綿羊微衛(wèi)星BMS2508、OarJL36、LSCV043、300U、471U與FecB突變的連鎖關系開展了較全面的研究,并分別找到了與FecB的B等位基因有緊密連鎖的微衛(wèi)星片段[49-53]。
生長分化因子5(Growth differentiation factor,GDF5)和BMP4是BMPR1B的天然配體,可通過BMPR1B對綿羊顆粒細胞分泌孕酮起強烈的抑制作用。在體外試驗中,發(fā)現(xiàn)BB突變型母羊的卵巢顆粒細胞對GDF5和BMP4的敏感性顯著低于++型母羊,BB型顆粒細胞類固醇生成量顯著高于++型,表明BMPR1B突變使得其配體對顆粒細胞的類固醇生成抑制作用減弱,因此顆粒細胞可以進一步分化,并促進卵泡成熟[10]。然而類固醇激素并不具有促進顆粒細胞分化的功能,即要達到促進顆粒細胞分化,類固醇類激素需進一步刺激通路下游以發(fā)揮作用,如改變SMAD的表達或磷酸化狀態(tài),而以上均有待研究。
下丘腦-垂體-卵巢軸在調控動物排卵中起著至關重要的作用。在對Booroola綿羊研究過程中,發(fā)現(xiàn)下丘腦各FecB基因型個體間促性腺激素釋放激素(Gonadotropin-releasing hormone,GnRH)表達無顯著性差異,因此推測FecB可能主要作用于垂體和卵巢[1,54]。垂體主要分泌卵泡刺激素(Follicle-stimulating hormone,F(xiàn)SH)和黃體生成素(Luteinizing hormone,LH),大部分研究表明LH分泌不存在FecB基因型特異性;對于FSH,一些研究表明在不同時間段和不同生理狀態(tài)BB型綿羊FSH水平顯著高于++型[54-57],但也有一些研究表明無差異[58-59];在細胞水平研究發(fā)現(xiàn)BB型單個垂體細胞產生的FSH顯著高于++型個體[60-61]。因此整體上,F(xiàn)ecB突變導致FSH表達水平上升證據(jù)更為充分。在對下丘腦-垂體失聯(lián)(Hgpothalamic-pituitary disconnected,HPD)、卵巢完整的FecB++型綿羊使用促性腺激素時,發(fā)現(xiàn)++型綿羊的排卵數(shù)要高于無處理的BB型綿羊,當BB和++型綿羊具有相同濃度的FSH時,它們的排卵數(shù)相似[62],這表明BB型個體高產可能由于其更高濃度的FSH。下丘腦分泌的GnRH控制FSH的分泌,然而先前的研究表明下丘腦GnRH表達無FecB基因型差異性,一方面可能由于當時的技術相對落后靈敏度差,當前還需要從分子角度對下丘腦進行研究,另一方面可能FecB通路確實不經(jīng)過下丘腦,而是通過反饋直接作用于垂體,該機制還有待研究。
由于BMPR1B直接影響排卵數(shù),可通過觀察卵泡的形態(tài)差異來探究FecB影響排卵數(shù)的機制。有人對綿羊卵泡發(fā)育各階段表型進行觀察,發(fā)現(xiàn)BB型個體成熟卵泡直徑顯著小于B+和++型[63-64],BB型個體成熟卵泡中顆粒細胞少于++型[63]。BB型個體在保持整體顆粒細胞數(shù)量和++型一致的情況下,降低了每個卵泡顆粒細胞數(shù),增加了成熟卵泡數(shù)[59]。通過更高清的顯微觀察不同基因型卵泡形態(tài),發(fā)現(xiàn)相比++型綿羊,BB型個體初級卵泡有更大的直徑,有更多的線粒體、光滑內質網(wǎng)和核糖體,連接顆粒細胞的面積更大,表明BMPR1B從卵泡早期發(fā)育就已經(jīng)開始起作用了[65]。
通常運用模式生物研究基因功能是最佳選擇,然而攜帶FecB基因突變的模式生物小鼠無多排卵功能[66],在模式生物上研究FecB效應機制的思路無法實現(xiàn);選擇在綿羊中研究FecB機制又受困于綿羊屬于大型動物,功能機制更為復雜。因此目前對BMPR1B基因機制研究比較困難,然而隨著分子技術的發(fā)展,可以從以下幾點進行突破。
6.1 綿羊BMPR1B突變影響排卵數(shù)的機制
如上述,無論是通過GDF5和BMP4通路提高孕酮水平,還是通過增加FSH水平,都未能對FecB突變影響排卵數(shù)的機制給出非常合理的解釋。最近的研究發(fā)現(xiàn)BMP15多態(tài)性與綿羊高產密切相關[67-69],BMP15能抑制顆粒細胞FSH受體的表達,從而抑制FSH誘導的StAR(Steroidogenic acute regulatory protein)、P450scc(P450 side-chain cleavage en zyme)、3β-HSD(3β-hydroxy-steroid dehydrogenase)、LH受體、抑制素/激活素亞基(α、βA和 βB)和孕酮的合成[70]。因此,猜測FecB突變可導致BMP15與BMPR1B的結合能力下降,使得BMP15對顆粒細胞的FSH受體生成抑制能力下降,顆粒細胞表達更多的FSH受體來增強對FSH的敏感性,進而使得多個卵泡可以同時發(fā)育成熟增加排卵。但目前尚無文獻表明BB型個體FSH受體表達上調,因此該推論還有待研究。
6.2 綿羊BMPR1B受表觀調控機制
最近有研究對人BMPR1B調控區(qū)進行分析,發(fā)現(xiàn)BMPR1B上游調控區(qū)的一個突變與小RNA miR-125 b顯著相關,該突變能打斷miR-125b與BMPR1B的結合,導致BMPR1B的表達上升,進而導致細胞擴散障礙,該突變可能有助于防止子宮內膜異位和乳腺癌[71-72]。該突變位點是否在綿羊中存在,是否具有類似功能,從表觀調控上探究BMPR1B的功能機制或許是一條全新的途徑。甲基化是表觀調控的重要方式之一,而目前未見BMPR1B基因甲基化相關研究報道,當前對BMPR1B啟動子區(qū)的結構、轉錄因子結合位點等研究并不全面。
6.3 綿羊BMPR1B通路
BMPR1B是骨形態(tài)發(fā)生蛋白信號通路的一個關鍵節(jié)點,其具有多個配體,因此其突變不僅影響單個基因,推測FecB突變導致綿羊高產很可能是多基因共同效應的結果,而通路也可能不止一條。Miao等[73]用轉錄組測序方法對BB型和++型綿羊卵巢進行研究,以期篩選影響綿羊高產的BMPR1B信號通路,但可能是測序量小和混池測序的原因,文中并未提出BMPR1B確切的信號通路[73]。
[1] Montgomery G,McNatty K,Davis G.Physiology and molecular genetics of mutations that increase ovulation rate in sheep[J].Endocrine Reviews,1992,13(2):309-328.
[2] Montgomery G W,Galloway S M,Davis G H,et al. Genes controlling ovulation rate in sheep[J].Reproduction,2001,121(6):843-852.
[3] Davis G H,Montgomery G W,Allison A J,et al.Segregation of a major gene influencing fecundity in progeny of Booroola sheep[J].New Zealand Journal of Agricultural Research,1982, 25(4):525-529.
[4] Piper L R,Bindon B M.The Booroola Merino and the performance of medium non-Peppin crosses at Armidale[M]∥Piper L R,Bindon B M,Nethery R D.The Booroola Merino. Melbourne,Australia:CSIRO,1982:9-20.
[5] Piper L R,Bindon B M,Davis G H.Single gene inheritance of the high litter size of the Booroola Merino[M]∥Land R B,Robinson D W.Genetics of Reproduction in Sheep. London:Butterworths,1985:115-125.
[6] Montgomery G,Crawford A,Penty J,et al.The ovine Booroola fecundity gene (FecB) is linked to markers from a region of human chromosome 4q[J].Nature Genetics,1993,4(4):410-414.
[7] Montgomery G W,Lord E A,Penty J M,et al.The Booroola fecundity (FecB) gene maps to sheep chromosome 6[J].Genomics,1994,22(1):148-153.
[8] Lord E A,Davis G H,Dodds K G,et al.Identification of Booroola carriers using microsatellite markers (Reprinted)[J].Wool Technology and Sheep Breeding,1998,46(3):245-249.
[9] Astrom A K,Jin D,Imamura T,et al.Chromosomal localization of three human genes encoding bone morphogenetic protein receptors[J].Mammalian Genome,1999,10(3):299-302.
[10] Mulsant P,Lecerf F,Fabre S,et al.Mutation in bone morphogenetic protein receptor-IB is associated with increased ovulation rate in Booroola Merino ewes[J].Proc Natl Acad Sci USA,2001,98(9):5 104-5 109.
[11] Wilson T,Wu X Y,Juengel J L,et al.Highly prolific Booroola sheep have a mutation in the intracellular kinase domain of bone morphogenetic protein IB receptor (ALK-6) that is expressed in both oocytes and granulosa cells[J].Biology of Reproduction,2001,64(4):1 225-1 235.
[12] Souza C J H,MacDougall C,Campbell B K,et al.The Booroola (FecB) phenotype is associated with a mutation in the bone morphogenetic receptor type 1 B (BMPR1B) gene[J].Journal of Endocrinology,2001,169(2):R1-R6.
[13] Rosenzweig B L,Imamura T,Okadome T,et al.Cloning and characterization of a human Type-II receptor for bone morphogenetic proteins[J].Proc Natl Acad Sci U S A,1995,92(17):7 632-7 636.
[14] Huse M,Chen Y G,Massague J,et al.Crystal structure of the cytoplasmic domain of the type I TGF beta receptor in complex with FKBP12[J].Cell,1999,96(3):425-436.
[15] Inada M,Katagiri T,Akiyama S,et al.Bone morphogenetic protein-12 and -13 inhibit terminal differentiation of myoblasts, but do not induce their differentiation into osteoblasts[J].Biochemical and Biophysical Research Communications,1996,222(2):317-322.
[16] 楊 華,劉守仁,鐘發(fā)剛,等.BMPR-IB基因在綿羊不同組織的表達差異性研究[J].中國畜牧雜志,2009,45(11):6-8.
[17] Lima I M,Brito I R,Rossetto R,et al.BMPRIB and BMPRII mRNA expression levels in goat ovarian follicles and the in vitro effects of BMP-15 on preantral follicle development[J].Cell and Tissue Research,2012,348(1):225-238.
[18] Chen A Q,Yu S D,Wang Z G,et al.Stage-specific expression of bone morphogenetic protein type I and type II receptor genes: Effects of follicle-stimulating hormone on ovine antral follicles[J].Animal Reproduction Science,2009,111(2-4):391-399.
[19] Fogarty N M.A review of the effects of the Booroola gene (FecB) on sheep production[J].Small Ruminant Research,2009,85(2-3):75-84.
[20] 儲明星,狄 冉,葉素成,等.綿羊多胎主效基因FecB分子檢測方法的建立與應用[J].農業(yè)生物技術學報,2009,17(1):52-58.
[21] Davis G H,Galloway S M,Ross I K,et al.DNA tests in prolific sheep from eight countries provide new evidence on origin of the Booroola (FecB) mutation[J].Biology Of Reproduction,2002,66(6):1 869-1 874.
[22] Kumar S,Mishra A K,Kolte A P,et al.Screening for Booroola (FecB) and Galway (FecXG) mutations in Indian sheep[J].Small Ruminant Research,2008,80(1-3):57-61.
[23] Roy J,Polley S,De S,et al.Polymorphism of fecundity genes (FecB, FecX, and FecG) in the Indian Bonpala sheep[J].Animal Biotechnology,2011,22(3):151-162.
[24] Mahdavi M,Nanekarani S,Hosseini S D.Mutation in BMPR-IB gene is associated with litter size in Iranian Kalehkoohi sheep[J].Animal Reproduction Science,2014,147(3-4):93-98.
[25] 孫洪新,敦偉濤,陳曉勇,等.不同品種BMPR-IB基因多態(tài)性與產羔數(shù)及發(fā)情季節(jié)的相關性研究[J].湖南農業(yè)科學,2011,(2):147-149.
[26] Yue Y J,Yang B H,Liang X,et al.Simultaneous identification ofFecBand FecXG mutations in Chinese sheep using high resolution melting analysis[J].Journal of Applied Animal Research,2011,39(2):164-168.
[27] Davis G H,Balakrishnan L,Ross I K,et al.Investigation of the Booroola (FecB) and Inverdale (FecXI) mutations in 21 prolific breeds and strains of sheep sampled in 13 countries[J].Animal Reproduction Science,2006,92(1-2):87-96.
[28] Chu M X,Liu Z H,Jiao C L,et al.Mutations in BMPR-IB and BMP-15 genes are associated with litter size in Small Tailed Han sheep (Ovis aries)[J].Journal of Animal Science,2007,85(3):598-603.
[29] 閆亞東,儲明星,曾勇慶,等.小尾寒羊和湖羊高繁殖力候選基因BMPR-IB的研究[J].農業(yè)生物技術學報,2005,13(1):66-71.
[30] Guan F,Liu S R,Shi G Q,et al.Polymorphism ofFecBgene in nine sheep breeds or strains and its effects on litter size, lamb growth and development[J].Animal Reproduction Science,2007,99(1-2):44-52.
[31] 朱二勇,史洪才,武 堅,等.BMPR-IB基因作為綿羊多胎性能候選基因的研究[J].西北農業(yè)學報,2006,15(6):20-23.
[32] 劉鳳麗,劉永斌,王 峰,等.中國部分綿羊品種 BMPR-IB 基因 RFLP 多態(tài)性的研究[J].華北農學報,2007,22(4):151-154.
[33] 王 旭,巴拉提·買買提伊明.BMPR-IB基因作為多浪羊高繁殖力候選基因的研究[J].新疆農業(yè)科學,2010,47(9):1 813-1 818.
[34] 史洪才,高志英,牛志剛,等.新疆多浪羊FecB突變檢測及與產羔數(shù)的關系[J].農業(yè)生物技術學報,2011,19(2):330-334.
[35] 史洪才,牛志剛,白 杰,等.BMPR1B基因突變對策勒黑羊產羔數(shù)的影響及其遺傳規(guī)律的研究[J].中國畜牧雜志,2012,48(3):14-17.
[36] 任艷玲,沈志強,李敏,等.洼地綿羊FecB基因多態(tài)性與其產羔數(shù)關系的研究[J].中國畜牧獸醫(yī),2011,38(7):159-162.
[37] 李 達,孫 偉,倪 榮,等.綿羊FecB基因遺傳多樣性及其產羔數(shù)的關聯(lián)分析[J].畜牧獸醫(yī)雜志,2012,31(2):1-5.
[38] 田秀娥,孫紅霞,王永軍.3 個綿羊群體BMPR-IB基因的遺傳多態(tài)性及其對產羔數(shù)的影響[J].西北農林科技大學學報: 自然科學版,2009,37(11):31-36.
[39] 額爾和花,黃順國,丁偉,等.灘羊及其雜改群體中BMRP-IB基因的研究[J].寧夏農林科技,2009(3):6-7.
[40] Zuo B,Qian H,Wang Z,et al.A study onBMPR-IBgenes of Bayanbulak sheep[J].Asian-Australasian Journal of Animal Sciences,2013,26(1):36-42.
[41] 陳勇,雒秋江,李登忠,等.6 群不同品種 (系) 綿羊BMPR1B基因多態(tài)性及與產羔數(shù)的關系研究[J].新疆農業(yè)大學學報,2008,31(2):12-16.
[42] Pardeshi V,Sainani M,Maddox J,et al.Assessing the role ofFecBmutation in productivity of Indian sheep[J].Current Science,2005,89(5):887-890.
[43] Vacca G M,Dhaouadi A,Rekik M,et al.Prolificacy genotypes at BMPR 1B, BMP15 and GDF9 genes in North African sheep breeds[J].Small Ruminant Research,2010,88(1):67-71.
[44] Polley S,De S,Brahma B,et al.Polymorphism ofBMPR1B, BMP15 and GDF9 fecundity genes in prolific Garole sheep[J].Trop Anim Health Prod,2010,42(5):985-993.
[45] Ganai T A,Misra S S,Shabir M.Polymorphism analysis ofBMPR1Bgene by forced RFLP and PCR-SSCP techniques and expression of the mutation in introgressed sheep[J].Trop Anim Health Prod,2012,44(2):277-283.
[46] Jamshidi R,Kasirian M M,Rahimi G A.Application of PCR-RFLP technique to determine Booroola gene polymorphism in the Sangsari sheep breed of Iran[J].Turkish Journal of Veterinary & Animal Sciences,2013,37(2):129-133.
[47] Mullen M P,Hanrahan J P,Howard D J,et al.Investigation of prolific sheep from UK and Ireland for evidence on origin of the mutations in BMP15 (FecX(G), FecX(B)) and GDF9 (FecG(H)) in Belclare and Cambridge sheep[J].PLoS one,2013,8(1):e53 172.
[48] Chu M,Jia L,Zhang Y,et al.Polymorphisms of coding region of BMPR-IB gene and their relationship with litter size in sheep[J].Molecular Biology Reports,2011,38(6):4 071-4 076.
[49] 李延璐,儲明星,陳宏權,等.綿羊微衛(wèi)星BMS2508 和FecB基因的多態(tài)及連鎖分析[J].遺傳,2009,31(5):500-507.
[50] 儲明星,張寶云,王憑青,等.綿羊微衛(wèi)星OarJL36 和FecB基因的多態(tài)及連鎖分析[J].中國農業(yè)科學,2009,42(6):2 133-2 141.
[51] 張 林,李春苗,儲明星,等.小尾寒羊微衛(wèi)星座位 LSCV043 與FecB基因的連鎖分析[J].農業(yè)生物技術學報,2009,17(4):621-628.
[52] 張寶云,儲明星,王憑青,等.綿羊微衛(wèi)星 300U 和FecB基因的多態(tài)及連鎖分析[J].中國農業(yè)大學學報,2009,14(5):86-92.
[53] 吳舒潔,張寶云,儲明星,等.綿羊微衛(wèi)星471U和FecB基因多態(tài)性及連鎖分析[J].揚州大學學報:農業(yè)與生命科學版,2014,35(2):38-43.
[54] McNatty K P,Hudson N L,Lun S,et al.Gonadotrophin-releasing hormone and the control of ovulation rate by theFecBgene in Booroola ewes[J].Journal of Reproduction And Fertility,1993,98(1):97-105.
[55] Braw-Tal R,McNatty K P,Smith P,et al.Ovaries of ewes homozygous for the X-linked Inverdale gene (FecXI) are devoid of secondary and tertiary follicles but contain many abnormal structures[J].Biology of Reproduction,1993,49(5):895-907.
[56] Phillips D J,Hudson N L,McNatty K P.Effects of ovariectomy and genotype on bioactive FSH in plasma and pituitary of Booroola ewes[J].Journal of Reproduction and Fertility,1993,98(2):559-565.
[57] Isaacs K L,McNatty K P,Condell L,et al.Plasma FSH, LH and immunoreactive inhibin concentrations inFecBB/FecBB andFecB+/FecB+ Booroola ewes and rams from birth to 12 months of age[J].J Reprod Fertil,1995,103(1):89-97.
[58] Wheaton J E,Thomas D L,Kusina N T,et al.Effects of passive immunization against inhibin-peptide on secretion of follicle-stimulating hormone and ovulation rate in ewes carrying the Booroola fecundity gene[J].Biology of Reproduction,1996,55(6):1 351-1 355.
[59] Souza C J H,Campbell B K,Webb R,et al.Secretion of inhibin A and follicular dynamics throughout the estrous cycle in the sheep with and without the Booroola gene (FecB)[J].Endocrinology,1997,138(12):5 333-5 340.
[60] McNatty K P,Hudson N L,Shaw L,et al.GnRH-induced gonadotrophin secretion in ovariectomized Booroola ewes with hypothalamic-pituitary disconnection[J].Journal of Reproduction and Fertility,1991,91(2):583-592.
[61] Heath D A,Caldani M,McNatty K P.Relationships between the number of immunostaining gonadotropes and the plasma concentrations of gonadotrophins in ewes with and without theFecBB gene[J].Journal of Reproduction and Fertility,1996,106(1):73-78.
[62] Hudson N L,O'Connell A R,Shaw L,et al.Effect of exogenous FSH on ovulation rate in homozygous carriers or noncarriers of the BooroolaFecBgene after hypothalamic-pituitary disconnection or after treatment with a GnRH agonist[J].Domestic Animal Endocrinology,1999,16(1):69-80.
[63] McNatty K P,Henderson K M.Gonadotrophins, fecundity genes and ovarian follicular function[J].J Steroid Biochem,1987,27(1-3):365-373.
[64] Baird D T,Campbell B K.Follicle selection in sheep with breed differences in ovulation rate[J].Molecular and Cellular Endocrinology,1998,145(1-2):89-95.
[65] Reader K L,Haydon L J,Littlejohn R P,et al.BooroolaBMPR1Bmutation alters early follicular development and oocyte ultrastructure in sheep[J].Reproduction Fertility and Development,2012,24(2):353-361.
[66] Ho C C,Bernard D J.Bone morphogenetic protein 2 signals viaBMPR1Ato regulate murine follicle-stimulating hormone beta subunit transcription[J].Biology of Reproduction,2009,81(1):133-141.
[67] Bodin L,Di Pasquale E,Fabre S,et al.A novel mutation in the bone morphogenetic protein 15 gene causing defective protein secretion is associated with both increased ovulation rate and sterility in Lacaune sheep[J].Endocrinology,2007,148(1):393-400.
[68] Martinez-Royo A,Jurado J J,Smulders J P,et al.A deletion in the bone morphogenetic protein 15 gene causes sterility and increased prolificacy in Rasa Aragonesa sheep[J].Animal Genetics,2008,39(3):294-297.
[69] Monteagudo L V,Ponz R,Tejedor M T,et al.A 17bp deletion in the Bone Morphogenetic Protein 15 (BMP15) gene is associated to increased prolificacy in the Rasa Aragonesa sheep breed[J].Animal Reproduction Science,2009,110(1):139-146.
[70] Shimasaki S,Moore R K,Otsuka F,et al.The bone morphogenetic protein system in mammalian reproduction[J].Endocrine Reviews,2004,25(1):72-101.
[71] Chang C Y,Chen Y,Lai M T,et al.BMPR1Bup-regulation via a miRNA binding site variation defines endometriosis susceptibility and CA125 levels[J].PLoS One,2013,8(12):e80630.
[72] Saetrom P,Biesinger J,Li S M,et al.A risk variant in an miR-125b binding site inBMPR1Bis associated with breast cancer pathogenesis[J].Cancer Research,2009,69(18):7 459-7 465.
[73] Miao X,Luo Q.Genome-wide transcriptome analysis between Small-tail Han sheep and the Surabaya fur sheep using high-throughput RNA sequencing[J].Reproduction,2013,145(6):587-596.
Advances in Ovine Prolificacy GeneBMPR1B
PAN Zhang-yuan, DI Ran, LIU Qiu-yue, CHU Ming-xing*
(KeyLaboratoryofFarmAnimalGeneticResourcesandGermplasmInnovationofMinistryofAgriculture,InstituteofAnimalScience,ChineseAcademyofAgriculturalSciences,Beijing100193,PRChina)
Bone morphogenetic protein receptor 1B (BMPR1B) is a transmembrane receptor protein primarily involved in TGF-β pathway and plays an important role in the regulation of osteoblast differentiation, cell proliferation and development of ovarian follicles. The sheepBMPR1Bgene, when A746G mutation (FecB) happens, results in one amino acid substitution (arginine to glutamate) increasing the ovulation rate and litter size significantly in ewes. Therefore,BMPR1Bis one of most important high fecundity major genes. The paper reviewed recent progress in the research on gene mapping, effect on reproduction, functional mechanism ofBMPR1Band discussed on some unresolved issues in the research ofBMPR1Bgene function.
BMPR1Bgene;FecB;sheep;prolificacy
2014-10-16
2015-01-04
中國農業(yè)科學院科技創(chuàng)新工程(ASTIP-IAS13);國家肉羊產業(yè)技術體系專項(CARS-39);新疆維吾爾自治區(qū)科技支疆項目(2013911056)資助
潘章源(1986-),男,江西贛州人,博士,主要從事動物遺傳育種與繁殖研究。E-mail:pzq170450077@163.com
*[通訊作者] 儲明星(1968-),男,安徽貴池人,研究員,博士生導師,主要從事動物遺傳育種與繁殖研究。E-mail:mxchu@263.net
S811.6
A
1005-5228(2015)05-0001-06