陸長安
陜西工商職業(yè)學院,陜西西安710119
?
基于算子李代數(shù)的子代數(shù)結(jié)構(gòu)研究
陸長安
陜西工商職業(yè)學院,陜西西安710119
摘要:李代數(shù)是重要的非結(jié)合代數(shù),對于代數(shù)結(jié)構(gòu)的刻劃,使用較多的是算子李代數(shù)結(jié)構(gòu),這也是李代數(shù)理論的重要組成部分。本文針對頂點算子代數(shù)的研究,提出一種基于算子李代數(shù)的子代數(shù)結(jié)構(gòu),由L1[σ]、L2[σ]兩類子代數(shù)構(gòu)造算子李代數(shù)g(G,M)[σ],論述了向量空間的生成,并根據(jù)兩類子代數(shù)的定理與結(jié)構(gòu)證明,為頂點算子代數(shù)的研究工作提供理論基礎(chǔ)。
關(guān)鍵詞:李代數(shù);代數(shù)結(jié)構(gòu);算子李代數(shù);子代數(shù)
作為非結(jié)合代數(shù)的重要理論,李代數(shù)被廣泛研究及應(yīng)用,而算子構(gòu)成的李代數(shù),則是該領(lǐng)域使用較多的代數(shù)結(jié)構(gòu),因此對算子李代數(shù)的代數(shù)結(jié)構(gòu)進行探討研究,有著一定的實踐意義.當前研究較多的算子李代數(shù)結(jié)構(gòu)是g(G,M)與g(G,M)[σ],例如Andrea、Ando等人使用算子李代數(shù)g(G,M)對無扭量子環(huán)面李代數(shù)進行刻劃[1,2],Gordina等人使用算子李代數(shù)g(G,M)刻劃了部分無限維李代數(shù)的頂點算子[3],也有學者對算子李代數(shù)g(G,M)[σ]進行構(gòu)造[4,5].此次研究提出了基于算子李代數(shù)g(G,M)[σ]的子代數(shù)構(gòu)造,分別為L1[σ]和L2[σ]兩類子代數(shù),并采用實例深入探討了算子李代數(shù)g(G,M)[σ]的子代數(shù)結(jié)構(gòu),從而為頂點算子代數(shù)的研究工作提供理論基礎(chǔ).
向量空間的計算是研究頂點算子代數(shù)的基本步驟,此處假設(shè)M為一個正整數(shù)集,C×的允許子群為G,頂點算子代數(shù)的向量空間為V,根據(jù)李代數(shù)理論,可得以下方程:
式(1)中,a,b?G,i,j?M,形式變量為z,xij(k,a,b)?EndV.
設(shè)頂點算子代數(shù)的向量空間為算子李代數(shù)g(G,M)[σ],該向量空間由1和頂點算子的系數(shù)構(gòu)成,其中頂點算子的系數(shù)表達式為(a,b, z),1≤i,j≤M,a,b?G,根據(jù)文獻X可知,算子李代數(shù)結(jié)構(gòu)之
一為g(G,M)[σ].
若a1a2≠b1b2,可以得出下式:
1
若a1a2=b1b2,可以得出下式:
當M,N(≥2)為整數(shù)時,G=(ξ,q)為C×的允許子群,其生成條件有2個:(1)非單位根q(≠0);(2)N次本原單位根ξ.文獻X對算子李代數(shù)g(G,M)[σ]的代數(shù)結(jié)構(gòu)進行了深入討論,此次研究基于前人的理論,提出g(G,M)[σ]子代數(shù)的結(jié)構(gòu)推斷.
定義1:根據(jù)Yσ=(a,b,z),a,b?G的系數(shù)生成的算子李代數(shù)g(G,M)[σ]的子代數(shù)稱為L1[σ].
定理1:子代數(shù)L1[σ]的代數(shù)結(jié)構(gòu)如下:
則算子李代數(shù)g(G,M)[σ]的子代數(shù)L1[σ]是由頂點算子代數(shù)的系數(shù)生成的,系數(shù)表達式為:
由式(1)和式(2)可知:
(2)若r+s=0,且i+j=0(mod N),則:
根據(jù)以上推算,設(shè):
由此可知,定理1成立.
設(shè)g(?q?,M)[σ]=span{1 and xij(m,1,qr)|m,r?Z,1≤i,j≤M}
定義2:L2[σ]=span{1,xij(Nm,1,qr)|m,r?z,1≤i,j≤M}
定理2:L2[σ]作為算子李代數(shù)g(?q?,M)[σ]的子代數(shù),并且與算子李代數(shù)g(?q?,M)[σ]同構(gòu),根據(jù)相同結(jié)構(gòu)的映射:
定理3:設(shè)m,n,r,s?Z, i≠0(modN),1≤k≠l≤M,可得出下式:
證明:由式(1)和式(2)可知:
根據(jù)以上推斷,定理3成立,令:
則:g1[σ]?Li[σ]?g(?ξ,q?,M)[σ],i=1,2
定理4:算子李代數(shù)g(?ξ,q?,M)[σ]的子代數(shù)g1[σ]和g2[σ]分別表示level M、level N的扭仿射李代數(shù)?lN(C)[σ]和?lM(C)[σ].
證明:令:
根據(jù)文獻6的推論1,2[6],可知定理4成立.
參考文獻
[1] Andrea B. An ODE's Version of the Formula of Baker, Campbell, Dynkin and Hausdorff and the Construction of Lie Groups with Prescribed Lie Algebra[J]. Mediterranean journal of mathematics, 2010,7(3):105-108
[2] Ando H. Yasumichi M. Lie group-Lie algebra correspondences of unitary groups in finite von Neumann algebras[J]. Hokkaido Mathematical Journal, 2012,40(1):66-70
[3] Gordina M. Melcher T. A subelliptic Taylor isomorphism on infinite-dimensional Heisenberg groups[J]. Probability Theory and Related Fields, 2013,155(2):321-325
[4] Martini A.Analysis of joint spectral multipliers on Lie groups of polynomial growth[J]. Annales de l'Institut Fourier,2012,62(4):395-398
[5] Sun Siling, Ma Xiaofang. Lie Subalgebras in a Certain Operator Lie Algebra with Involution[J]. Acta Mathematica Sinica English Series, 2011,27(8):214-219
[6]李立,王輝.扭量子環(huán)面李代數(shù)LQ[σ]的代數(shù)結(jié)構(gòu)[J].數(shù)學的實踐與認識,2011,41(9):225-228
Study on the Sub-algebra Structure Based on Operator Lie Algebra
LU Chang-an
Shanxi Business College, Xi’an 710119, China
Abstract:The Lie algebra is important non-associative algebra, its algebraic structure to be used more is the operator Lie algebra, it is an important part of the theory of lie algebra. According to the research of vertex operator algebra, this paper put forward a kind of sub-algebra structure based on operator Lie algebra structure, L1[σ]、L2[σ] two kinds of sub-algebra structure made of operator Lie algebra g(G,M)[σ] to discuss the generation of vector space and take the theorem and structure of two classes of sub-algebra as the proof to provide the theoretical basis for the research work of vertex operator algebra.
Keywords:Lie algebra; algebraic structure; operator lie algebra; sub-algebra
作者簡介:陸長安(1960-),男,河北省景縣人,漢族,副教授,研究方向:高等數(shù)學、初等數(shù)學教學與研究.E-mail:lucaan@163.com
收稿日期:2014-06-20修回日期: 2014-07-02
中圖法分類號:O171
文獻標識碼:A
文章編號:1000-2324(2015)04-0618-03