白林利,韓文嬌,李昌曉
(西南大學(xué) 生命科學(xué)學(xué)院 三峽庫區(qū)生態(tài)環(huán)境教育部重點實驗室,重慶 400715)
前期水淹對水杉樹苗響應(yīng)干旱脅迫的影響
白林利,韓文嬌,李昌曉
(西南大學(xué) 生命科學(xué)學(xué)院 三峽庫區(qū)生態(tài)環(huán)境教育部重點實驗室,重慶 400715)
水分脅迫;水杉;生理生化;消落帶;三峽庫區(qū)
三峽工程建成蓄水后,由于其“冬蓄夏排”的反季節(jié)水位調(diào)度管理方式,使庫岸消落帶處于被淹沒與出水暴露的周期性更替變化環(huán)境之中[1-2]。消落帶水分條件的周期性變化使原有植被消失殆盡。因此,修復(fù)與重建消落帶植被要求所栽種的植物不僅具有適應(yīng)水分飽和與過剩的能力,還要具有適應(yīng)水分虧缺與干旱的能力。水杉(Metasequoiaglyptostroboides)是三峽庫區(qū)庫岸消落帶典型的鄉(xiāng)土樹種,別稱水沙,是中國特有孑遺珍貴樹種。水杉根系發(fā)達(dá),耐寒且耐受多種水分逆境的能力較強(qiáng),是亞熱帶地區(qū)平原綠化的優(yōu)良樹種,為園林植物造景中的精品[3]。目前,關(guān)于水杉的研究主要集中在基因結(jié)構(gòu)[4-6]、無性繁殖[7]、苗木營養(yǎng)特性[3]、葉片化學(xué)成分[8-9]和光合作用[10-11]等方面。而關(guān)于水杉如何應(yīng)對水分脅迫,尤其是自然生長或人工栽植于三峽庫岸的水杉,其所經(jīng)歷的水淹脅迫是否會對隨后的干旱脅迫耐受性產(chǎn)生影響,至今未見相關(guān)報道。
本研究以水杉樹苗為試驗材料,通過模擬三峽庫區(qū)消落帶土壤水分的變化格局,研究水杉樹苗各項生理生化指標(biāo)在水分脅迫處理下的變化規(guī)律,探討其對水分脅迫的生理生化響應(yīng)及耐受程度,旨在揭示水分脅迫對水杉樹苗生理生化特性的傷害機(jī)制及植株自身的抗逆機(jī)制,為三峽庫區(qū)庫岸消落帶的植被恢復(fù)與重建提供候選植物材料。
1.1 材料及處理
考慮到三峽庫區(qū)庫岸防護(hù)林體系建設(shè)多采用2年生苗木,因此,本試驗以2年生水杉(Metasequoiaglyptostroboides)樹苗為材料。2012-11-20將生長基本一致的72株樹苗帶土盆栽,土壤性質(zhì)為:pH 8.26±0.04,有機(jī)質(zhì)(11.62±0.56) g/kg,全氮(1.11±0.04) g/kg,全磷(1.11±0.10) g/kg,全鉀(53.61±5.24) g/kg,堿解氮(76.70±3.78) mg/kg,有效磷(0.85±0.16) mg/kg,速效鉀(161.02±4.08) mg/kg,每盆1株(盆中央內(nèi)徑20 cm,盆高17 cm),置于西南大學(xué)三峽庫區(qū)生態(tài)環(huán)境教育部重點實驗室實驗基地大棚(海拔249 m)內(nèi)進(jìn)行相同的光照和水分管理。2013-01-18開始試驗,此時水杉苗高為(97.05±1.53) cm。
1.2 試驗設(shè)計
結(jié)合三峽庫區(qū)消落帶水位變化的實際情況,將試驗分為3個階段。第1階段為淹水處理期,共設(shè)3個處理組,分別為對照組(Control,C)、半淹組(Half-submersion,HS)和全淹組(Full-submersion,FS),每組試驗苗木24株,共72株。其中,C組為常規(guī)供水,保持土壤含水量為田間持水量的75%~80%[12];HS組苗盆放入水池中,池水保持淹沒至植物中段;FS組苗盆也放入水池中,但池水保持沒過植物頂端20 cm。75 d后,進(jìn)行第2階段試驗。
第2階段為干旱處理期,將第1階段每組的24株苗木再隨機(jī)均分為2組,其中1組進(jìn)行輕度干旱脅迫處理,另1組則繼續(xù)保持第1階段的水分處理。故第2階段共有對照-干旱組(Control followed by drought,CD)、半淹-干旱組(Half-submersion followed by drought,HSD)、全淹-干旱組(Full-submersion followed by drought,FSD)及對照組(C)、半淹組(HS)、全淹組(FS)6個處理,每組苗木12株,共72株。輕度干旱處理組土壤含水量為田間持水量的47%~50%[13]。為監(jiān)測輕度干旱處理的效果,于清晨06:00-07:00測定水杉樹苗上部成熟葉的葉水勢(用美國Wescor公司生產(chǎn)的露點水勢儀Psypro測定),以小于-0.5 MPa為標(biāo)準(zhǔn)(圖1)。60 d后,每組各取6株水杉葉片用于生理指標(biāo)的測定,其余6株用于后續(xù)試驗(第3階段試驗)。
圖1 輕度干旱處理階段水杉的清晨葉水勢
Fig.1 Changes of predawn leaf water potential ofM.glyptostroboidesduring drought stress
第3階段為恢復(fù)處理期,將HS與FS處理組苗盆從水池中取出,所有處理組均參照對照組(C)進(jìn)行常規(guī)供水,時間為21 d。第3階段試驗結(jié)束后,各組分別取6株水杉葉片用于生理指標(biāo)的測定。
1.3 生理指標(biāo)的測定
1.4 數(shù)據(jù)統(tǒng)計分析
利用SPSS 16.0軟件進(jìn)行單因素方差分析(One-way ANOVA),揭示水分處理對水杉生理生化特性的影響;并用Tukey檢驗法檢驗每個指標(biāo)在同一階段不同處理間(P=0.05)的差異顯著性。
2.1 前期水淹對水杉響應(yīng)干旱脅迫的影響
2.1.1 滲透調(diào)節(jié)物質(zhì) 水淹及干旱脅迫對水杉樹苗滲透調(diào)節(jié)物質(zhì)的影響如圖2所示。
圖2顯示,與C組相比,HS、FS組水杉樹苗脯氨酸含量顯著升高,而CD、HSD、FSD組與C組之間均無顯著性差異;CD、HSD、FSD組可溶性糖含量顯著高于C組,但與HS組之間均無顯著性差異,而FS組顯著低于C組;與C組相比,HS、FS、CD組的可溶性蛋白含量分別增加了63%,88%,48%(P<0.05),而HSD、FSD組與C組之間均無顯著性差異。就滲透調(diào)節(jié)物質(zhì)而言,CD、HSD、FSD組的脯氨酸、可溶性糖含量之間均無顯著性差異,說明前期的水淹并未增加水杉樹苗后期對干旱脅迫的敏感性。
圖3顯示,HS組水杉樹苗的MDA、超氧根離子含量顯著高于其他處理組,與C組相比分別升高了96%,24%,這與FS組顯著低于其他處理組形成鮮明對照;不同的是,與C組相比,CD、HSD、FSD組的MDA含量均顯著降低,且CD、HSD、FSD組之間均無顯著性差異;而CD、HSD、FSD組的超氧根離子與C組均無顯著差異,說明前期的水淹并未對水杉樹苗后期在干旱脅迫下的MDA、超氧根離子含量變化造成影響。
與C組相比,F(xiàn)S、CD、HSD組的SOD、POD活性均顯著升高;就SOD而言,HS組與C組之間無顯著性差異,F(xiàn)SD組顯著低于C組;HS 組的POD活性顯著低于其他各組。與C組相比,HS、FS、HSD、FSD組的ASP活性均顯著降低,而CD與C組之間無顯著性差異。HS、FS、CD、HSD、C組的CAT活性均無顯著性差異,而FSD組顯著高于其他各組。就抗氧化酶活性而言,CD、HSD組的SOD、POD、CAT活性之間均無顯著性差異,說明對照干旱組與半淹干旱組前期的水淹并未影響水杉樹苗后期抗氧化酶對干旱脅迫的響應(yīng)。
2.2 干旱脅迫后水杉對復(fù)水的生理響應(yīng)
2.2.1 滲透調(diào)節(jié)物質(zhì) 由圖4可見,在恢復(fù)正常供水之后,各個處理組水杉樹苗的脯氨酸含量之間均無顯著性差異。HS組的可溶性糖含量在所有處理中居于最高,CD、FSD組與C組及HS組與HSD組之間可溶性糖含量無顯著性差異。HS組的可溶性蛋白含量在所有處理中居于最高,HS、HSD組與C組及CD組與FSD組之間可溶性蛋白含量均無顯著性差異。
3.1 水杉對水淹脅迫的響應(yīng)
滲透調(diào)節(jié)是植物適應(yīng)逆境的重要生理機(jī)制[18]。脯氨酸作為一種重要的非酶抗氧化物質(zhì),在穩(wěn)定亞細(xì)胞結(jié)構(gòu)、清除活性氧自由基中具有重要作用[19]。本研究中,水淹脅迫下,HS、FS組水杉樹苗游離脯氨酸含量顯著增加,說明水杉樹苗通過產(chǎn)生脯氨酸來適應(yīng)水分脅迫[20],保護(hù)酶活性。同時,HS、FS組可溶性蛋白含量均顯著高于C組,說明水淹期間水杉樹苗能夠維持正常的氮代謝過程,這也可能是水杉樹苗對水淹逆境的一種內(nèi)在生理適應(yīng)機(jī)制[21]。在本研究中,F(xiàn)S組水杉樹苗可溶性糖含量顯著降低,說明全淹脅迫干擾了水杉樹苗正常的糖代謝,抑制了糖的合成并誘導(dǎo)糖的降解,從而使植株體內(nèi)的可溶性糖含量降低[22];也可能是由于水杉樹苗從有氧到無氧轉(zhuǎn)換的過程中,需要消耗大量的糖來維持發(fā)酵代謝活動的完成[23]。脯氨酸、可溶性糖與可溶性蛋白綜合作用,調(diào)節(jié)水杉樹苗的滲透勢,從而保護(hù)細(xì)胞膜免受損害[24]。
3.2 水杉對水淹后干旱脅迫的響應(yīng)
在三峽庫區(qū)水文變動條件下,庫區(qū)消落帶植被在冬季會遭受水淹脅迫;而在夏季水位下降后,由于氣溫和降雨的關(guān)系又可能面臨短暫的輕度干旱脅迫。干旱是限制植物生長的重要非生物因子[33],了解鄉(xiāng)土樹種對干旱脅迫的生理響應(yīng)有益于植被恢復(fù)工作的進(jìn)行[34]。
滲透調(diào)節(jié)是植物對干旱的關(guān)鍵響應(yīng)之一[35]。在干旱脅迫條件下,游離脯氨酸的積累對植物的適應(yīng)能力起到關(guān)鍵作用,其是有效的滲透調(diào)節(jié)物質(zhì)之一[36]。本研究中,CD、HSD、FSD組水杉樹苗脯氨酸含量與C組無顯著性差異,這與Gao等[37]對高山松的研究結(jié)果相似,說明水杉樹苗對干旱脅迫的耐受有一定的局限性[38]。而CD、HSD、FSD組可溶性糖含量顯著高于C組,說明在干旱脅迫下,水杉樹苗通過升高可溶性糖含量來調(diào)節(jié)滲透勢,維持膨壓,從而使體內(nèi)各種與膨壓有關(guān)的生理過程可以正常進(jìn)行[39]。同時,CD、HSD、FSD組可溶性蛋白含量高于C或與C組相當(dāng),說明干旱并未干擾水杉樹苗的正常氮代謝[40]。從脯氨酸含量相對較低且在干旱脅迫后并未明顯增加可知,可溶性糖是水杉樹苗應(yīng)對水分脅迫的主導(dǎo)性滲透調(diào)節(jié)物質(zhì),其可以降低水勢,提高植物的吸水與保水能力[41]。
本研究發(fā)現(xiàn),雖然CD與HSD組水杉樹苗的SOD、POD活性均顯著高于C組,但CD與HSD組的SOD、POD活性無顯著差異;同樣,干旱脅迫提高了CD與HSD組的脯氨酸和可溶性糖含量,但CD與HSD組之間無顯著差異,說明前期水淹并未影響水杉樹苗后期對干旱脅迫的生理生化響應(yīng)。
3.3 水杉對干旱脅迫后復(fù)水的響應(yīng)
一個物種對脅迫的忍耐性取決于脅迫時間、脅迫強(qiáng)度以及去除脅迫后的恢復(fù)能力[48],恢復(fù)過程對物種緩解前期脅迫的影響至關(guān)重要。本試驗第3階段,移除水分脅迫后,CD、HS、HSD、FSD組水杉樹苗的CAT、ASP活性顯著降低或與C組相當(dāng),MDA含量顯著低于C組,與木果楝(Carapaguianensis)[46]的表現(xiàn)相似,表明水杉樹苗在恢復(fù)供水階段H2O2的形成量下降,對水分脅迫表現(xiàn)出良好的適應(yīng)能力[46]。
水分脅迫去除后,恢復(fù)的程度及幅度取決于脅迫的強(qiáng)度、持續(xù)時間以及受脅迫的物種種類[49]。本試驗中,在干旱脅迫下,各個處理組水杉樹苗的存活率均達(dá)100%。在去除干旱脅迫后,不同處理的水杉樹苗抗氧化酶活性及滲透調(diào)節(jié)物質(zhì)含量顯著降低或與C組相當(dāng),這與Verma等[50]對麻瘋樹(Jatrophacurcas)的研究結(jié)果相似,其原因可能是前期的干旱脅迫時間過長或是恢復(fù)時間不夠[51],具體原因還有待于進(jìn)一步研究。
本研究發(fā)現(xiàn),前期水淹并未影響水杉樹苗對后期干旱脅迫的生理生化響應(yīng)。水杉樹苗對土壤水分變化具有較強(qiáng)的生理生化響應(yīng)能力,不僅表現(xiàn)出耐水濕的特點,而且表現(xiàn)出一定的耐旱性。在水分脅迫下,水杉樹苗能有效誘導(dǎo)體內(nèi)的保護(hù)酶系統(tǒng),清除體內(nèi)的活性氧等自由基,在一定程度上維持了植株正常的生理代謝活動。同時,其還通過體內(nèi)滲透調(diào)節(jié)物質(zhì)的積累,降低了細(xì)胞的水勢,起到了滲透調(diào)節(jié)的作用。正是保護(hù)酶系活性的啟動以及滲透調(diào)節(jié)物質(zhì)的產(chǎn)生,使得水杉樹苗的耐淹性和耐旱性得以提高,從而具有較強(qiáng)的滲透脅迫耐受能力。因此,在三峽庫區(qū)植被恢復(fù)建設(shè)中,可以考慮將水杉樹苗作為候選樹種之一。
[1] 類淑桐,曾 波,徐少君,等.水淹對三峽庫區(qū)秋華柳抗性生理的影響 [J].重慶師范大學(xué)學(xué)報:自然科學(xué)版,2009,26(3):30-33.
Lei S T,Zeng B,Xu S J,et al.Effects of submergence on resistance physiology ofSalixvaregataFranch in Three Gorges Reservoir Region [J].Journal of Chongqing Normal University:Natural Science Edition,2009,26(3):30-33.(in Chinese)
[2] Jiang H T,Xu F F,Cai Y,et al.Weathering characteristics of sloping fields in the Three Gorges Reservoir area,China [J].Pedosphere,2006,16(1):50-55.
[3] 白 禎,黃建國.三峽庫區(qū)護(hù)岸林主要樹種的耐濕性和營養(yǎng)特性 [J].貴州農(nóng)業(yè)科學(xué),2011,39(6):166-169.
Bai Z,Huang J G.Waterlogging tolerance and nutritional characteristics of main tree species in bank forest in Three Gorges Reservoir Area [J].Guizhou Agricultural Sciences,2011,39(6):166-169.(in Chinese)
[4] Chen X Y,Li Y Y,Wu T Y,et al.Size-class differences in genetic structure ofMetasequoiaglyptostroboidesHu et Cheng (Taxodiaceae) plantations in Shanghai [J].Silvae Genetica,2003,52(3/4):107-109.
[5] Cui M Y,Yu S,Liu M,et al.Isolation and characterization of polymorphic microsatellite markers inMetasequoiaglyptostro-boides(Taxodiaceae) [J].Conservation Genetics Resources,2010,2(1):19-21.
[6] Zhao Y,Thammannagowda S,Staton M,et al.An EST dataset forMetasequoiaglyptostroboidesbuds:The first EST resource for molecular genomics studies in Metasequoia [J].Planta,2013,237(3):755-770.
[7] Kolasinski M.How can we propagate theMetasequoiaglyptostroboidesHu et Cheng [J].Horticulture,2012,15(2):1-7.
[8] Bajpai V K,Rahman A,Kang S C.Chemical composition and anti-fungal properties of the essential oil and crude extracts ofMetasequoiaglyptostroboidesMiki ex Hu [J].Industrial Crops and Products,2007,26(1):28-35.
[9] Mou X L,Fu C,Wu H K,et al.Composition of essential oil from seeds ofMetasequoiaglyptostroboidesgrowing in China [J].Chemistry of Natural Compounds,2007,43(3):334-335.
[10] Equiza M A,Day M E,Jagels R.Physiological responses of three deciduous conifers (Metasequoiaglyptostroboides,TaxodiumdistichumandLarixlaricina) to continuous light:Adaptive implications for the early tertiary polar summer [J].Tree Physiology,2006,26(3):353-364.
[11] Equiza M A,Day M E,Jagels R,et al.Photosynthetic down-regulation in the coniferMetasequoiaglyptostroboidesgrowing under continuous light:The significance of carbohydrate sinks and paleo-ecophysiological implications [J].Canadian Journal of Botany,2006,84(9):1453-1461.
[12] 李昌曉,魏 虹,呂 茜,等.不同水分處理對濕地松幼苗生長與根部次生代謝物含量的影響 [J].生態(tài)學(xué)報,2010,30(22):6154-6162.
Li C X,Wei H,Lü Q,et al.Effects of different water treatments on growth and contents of secondary metabolites in roots of slashpine (PinuselliottiiEngelm.) seedlings [J].Acta Ecologica Sinica,2010,30(22):6154-6162.(in Chinese)
[13] Li C X,Zhong Z C,Geng Y,et al.Comparative studies on ph-ysiological and biochemical adaptation ofTaxodiumdistichumandTaxodiumascendensseedlings to different soil water regimes [J].Plant and Soil,2010,329(1/2):481-494.
[14] 李合生,孫 群,趙世杰,等.植物生理生化實驗原理和技術(shù) [M].北京:高等教育出版社,2000.
Li H S,Sun Q,Zhao S J,et al.Principle and technology of plant physiological and biochemical experiments [M].Beijing:Higher Education Press,2000.(in Chinese)
[15] 張志良.植物生理學(xué)實驗指導(dǎo) [M].北京:高等教育出版社,1990.
Zhang Z L.Plant physiology experiment instruction [M].Beijing:Higher Education Press,1990.(in Chinese)
[16] 高俊鳳.植物生理學(xué)實驗指導(dǎo) [M].北京:高等教育出版社,2006.
Gao J F.Plant physiology experiment instruction [M].Beijing:Higher Education Press,2006.(in Chinese)
[17] 張以順,黃 霞,陳云鳳.植物生理學(xué)實驗教程 [M].北京:高等教育出版社,2009.
Zhang Y S,Huang X,Chen Y F.Plant physiology experiment tutorial [M].Beijing:Higher Education Press,2009.(in Chinese)
[18] Li X,Yan X,Yu T.Effects of water stress on protective enzyme activities and lipid peroxidation inPhellodendronamurenseseedlings [J].Journal of Applied Ecology,2005,16(12):2353-2356.
[19] Ashraf M,Foolad M R.Roles of glycine betaine and proline in improving plant abiotic stress resistance [J].Environmental and Experimental Botany,2007,59(2):206-216.
[20] 蔣明義,郭紹川,張學(xué)明.氧化脅迫下稻苗體內(nèi)積累的脯氨酸的抗氧化作用 [J].植物生理學(xué)報,1997,23(4):347-352.
Jiang M Y,Guo S C,Zhang X M.Proline accumulation in rice seedlings exposed to oxidative stress in relation to antioxidation [J].Acta Phytoghysiologica Sinica,1997,23(4):347-352.(in Chinese)
[21] 湯玉喜,劉友全,吳 敏,等.淹水脅迫下美洲黑楊無性系生理生化指標(biāo)的變化 [J].中國農(nóng)學(xué)通報,2008,24(8):156-161.
Tang Y X,Liu Y Q,Wu M,et al.The variation of inner physiological and biochemical characters under flooding stress ofPopulusdeltoidesclones [J].Chinese Agricultural Science Bulletin,2008,24(8):156-161.(in Chinese)
[22] 王義強(qiáng),谷文眾,姚水攀,等.淹水脅迫下銀杏主要生化指標(biāo)的變化 [J].中南林學(xué)院學(xué)報,2006,25(4):78-80.
Wang Y Q,Gu W Z,Yao S P,et al.Variation of the main biochemistry index ofGinkgounder flooding stress [J].Journal of Central South Forestry University,2006,25(4):78-80.(in Chinese)
[23] Sairam R K,Kumutha D,Ezhilmathi K,et al.Physiology and biochemistry of waterlogging tolerance in plants [J].Biologia Plantarum,2008,52(3):401-412.
[24] 張 烈,沈秀瑛,孫彩霞.脯氨酸對玉米抗旱性影響的研究 [J].華北農(nóng)學(xué)報,1999,14(1):38-41.
Zhang L,Shen X Y,Sun C X.Studies on effects of proline on drought resistance in maize [J].Acta Agriculturae Boreali-Sinica,1999,14(1):38-41.(in Chinese)
[25] Peng Y,Dong Y,Tu B,et al.Roots play a vital role in flood-tolerance of poplar demonstrated by reciprocal grafting [J].Flora-Morphology,Distribution,Functional Ecology of Plants,2013,208(8):479-487.
[26] Yin D,Chen S,Chen F,et al.Morpho-anatomical and physiological responses of twoDendranthemaspeciesto waterlogging [J].Environmental and Experimental Botany,2010,68(2):122-130.
[27] Alves J D,Zanandrea I,Deuner S,et al.Antioxidative responses and morpho-anatomical adaptations to waterlogging inSesbaniavirgata[J].Trees,2013,27(3):717-728.
[28] Pyngrope S,Bhoomika K,Dubey R S.Oxidative stress,protein carbonylation,proteolysis and antioxidative defense system as a model for depicting water deficit tolerance inIndicarice seedlings [J].Plant Growth Regulation,2013,69(2):149-165.
[29] 蔡志全,曹坤芳.遮蔭下2種熱帶樹苗葉片光合特性和抗氧化酶系統(tǒng)對自然降溫的響應(yīng) [J].林業(yè)科學(xué),2004,40(1):47-51.
Cai Z Q,Cao K F.The response of photosynthetic characteristics and enzymatic antioxidant system in leaves of two tropical seedlings growing in shade conditions as temperature fall [J].Scientia Silvae Sinicae,2004,40(1):47-51.(in Chinese)
[30] Hossain A,Uddin S N.Mechanisms of waterlogging tolerance in wheat:Morphological and metabolic adaptations under hypoxia or anoxia [J].Australian Journal of Crop Science,2011,5(9):1094-1101.
[31] Gill S S,Tuteja N.Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants [J].Plant Physiology and Biochemistry,2010,48(12):909-930.
[32] Blokhina O,Virolainen E,Fagerstedt K V.Antioxidants,oxidative damage and oxygen deprivation stress:A review [J].Annals of Botany,2003,91(2):179-194.
[33] Riaz A,Younis A,Hameed M,et al.Morphological and biochemical responses of turf grasses to water deficit conditions [J].Pakistan Journal of Botany,2010,42(5):3441-3448.
[34] Liu C C,Liu Y G,Guo K,et al.Comparative ecophysiological responses to drought of two shrub and four tree species from karst habitats of southwestern China [J].Trees,2011,25(3):537-549.
[35] Corcuera L,Gil-Pelegrin E,Notivol E.Aridity promotes diffe-rences in proline and phytohormone levels inPinuspinasterpopulations from contrasting environments [J].Trees,2012,26(3):799-808.
[36] Molinari H B C,Marur C J,Bespalhok J C,et al.Osmotic adjustment in transgenic citrus rootstockCarrizocitrange(CitrussinensisOsb.×PoncirustrifoliateL.Raf.) overproducing proline [J].Plant Science,2004,167:1375-1381.
[37] Gao D,Gao Q,Xu H Y,et al.Physiological responses to gradual drought stress in the diploid hybridPinusdensataand its two parental species [J].Trees,2009,23(4):717-728.
[38] Shvaleva A L,Costa E,Silva F,et al.Metabolic responses to water deficit in twoEucalyptusglobulusclones with contrasting drought sensitivity [J].Tree Physiology,2006,26(2):239-248.
[39] Hsiao T C.Plant responses to water stress [J].Annual Review of Plant Physiology,1973,24(1):519-570.
[40] 魏良民.幾種旱生植物碳水化合物和蛋白質(zhì)變化的研究 [J].干旱區(qū)研究,1991,8(4):38-41.
Wei L M.A study on carbohydrate and protein of several xerophytes [J].Research in Arid Areas,1991,8(4):38-41.(in Chinese)
[41] Dure L.Plant responses to cellular dehydration during environment tress [J].Plant Physiology,1993,103(10):91-93.
[42] Yildiz-Aktas L,Dagnon S,Gurel A,et al.Drought tolerance in cotton:Involvement of non-enzymatic ROS-scavenging compounds [J].Journal of Agronomy and Crop Science,2009,195(4):247-253.
[43] Bacelar E A,Santos D L,Moutinho-Pereira J M,et al.Immediate responses and adaptive strategies of three olive cultivars under contrasting water availability regimes:Changes on structure and chemical composition of foliage and oxidative damage [J].Plant Science,2006,170:596-605.
[44] Lima A L S,DaMatta F M,Pinheiro H A,et al.Photochemical responses and oxidative stress in two clones ofCoffeacanephoraunder water deficit conditions [J].Environmental and Experimental Botany,2002,47(3):239-247.
[45] Wolkerstorfer S V,Wonisch A,Stankova T,et al.Seasonal variations of gas exchange,photosynthetic pigments,and antioxidants in Turkey oak (QuercuscerrisL.) and Hungarian oak (QuercusfrainettoTen.) of different age [J].Trees,2011,25(6):1043-1052.
[46] Costa M A,Pinheiro H A,Shimizu E S C,et al.Lipid peroxidation,chloroplastic pigments and antioxidant strategies inCarapaguianensis(Aubl.) subjected to water-deficit and short-term rewetting [J].Trees,2010,24(2):275-283.
[47] Ma C,Wang Z,Kong B,et al.Exogenous trehalose differentially modulate antioxidant defense system in wheat callus during water deficit and subsequent recovery [J].Plant Growth Regulation,2013,70(3):275-285.
[48] Finin A,Bellasio C,Pollastri S,et al.Water relations,growth,and leaf gas exchange as affected by water stress inJatrophacurcas[J].Journal of Arid Environments,2013,89(2):21-29.
[49] Xu Z,Zhou G,Shimizu H.Plant responses to drought and rewatering [J].Plant Signaling and Behavior,2010,5(6):649-654.
[50] Verma K K,Singh M,Gupta R K,et al.Photosynthetic gas exchange,chlorophyll fluorescence,antioxidant enzymes,and growth responses ofJatrophacurcasduring soil flooding [J].Turkish Journal of Botany,2013,38(1):130-140.
[51] Galle A,Haldimann P,Feller U.Photosynthetic performance and water relations in young pubescent oak (Quercuspubescens) trees during drought stress and recovery [J].New Phytologist,2007,174(4):799-810.
Effects of flooding on responses ofMetasequoiaglyptostroboidessaplings to drought
BAI Lin-li,HAN Wen-jiao,LI Chang-xiao
(KeyLaboratoryfortheEco-EnvironmentoftheThreeGorgesReservoirRegionoftheMinistryofEducation,CollegeofLifeSciences,SouthwestUniversity,Chongqing400715,China)
water stress;Metasequoiaglyptostroboides;physiology and biochemistry;the hydro-fluctuation belt;the Three Gorges Reservoir Area
2014-07-16
重慶市基礎(chǔ)與前沿研究計劃重點項目(CSTC2013JJB00004);中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(XDJK2013A011);國家林業(yè)公益性行業(yè)科研專項(201004039);留學(xué)回國人員科研啟動基金項目(教外司留[2010-1561])
白林利(1990-),女,山西呂梁人,在讀碩士,主要從事環(huán)境生態(tài)學(xué)研究。E-mail:895845358@qq.com
李昌曉(1972-),男,重慶人,教授,博士生導(dǎo)師,主要從事生態(tài)修復(fù)研究。E-mail:lichangx@swu.edu.cn
時間:2015-04-13 12:59
10.13207/j.cnki.jnwafu.2015.05.023
S718.51+2.3;Q945.78
A
1671-9387(2015)05-0042-09
網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/61.1390.S.20150413.1259.023.html