李歆躍(綜述),楊 巍(審校)
(哈爾濱醫(yī)科大學(xué)附屬第一醫(yī)院心內(nèi)六科,哈爾濱 150001)
心臟重構(gòu)中微RNA的作用
李歆躍△(綜述),楊巍※(審校)
(哈爾濱醫(yī)科大學(xué)附屬第一醫(yī)院心內(nèi)六科,哈爾濱 150001)
摘要:心臟重構(gòu)是各類心血管疾病的重要進程之一,包括心肌梗死、瓣膜疾病、心肌炎、擴張型心肌病、心房顫動和心力衰竭等。多項研究發(fā)現(xiàn),微RNA(miRNA)與此過程息息相關(guān),并且在體內(nèi)和體外實驗?zāi)P椭卸甲C實了miRNA廣泛地參與此進程。臨床上,miRNA已作為潛在的診斷指標和治療靶點被重視。該文就近年的熱點及被重點研究的幾種miRNA進行綜述。
關(guān)鍵詞:心臟重構(gòu);微RNA;纖維化;心肌肥大
微RNA(microRNA,miRNA)是一組高度保守、長度約22個核苷酸的內(nèi)源性非編碼RNA。動物細胞核內(nèi),編碼miRNA的基因首先在RNA聚合酶2的作用下發(fā)生轉(zhuǎn)錄,形成長度約為幾百個核苷酸的初級轉(zhuǎn)錄物pri-miRNA,經(jīng)核糖核酸酶Ⅲ家族的Drosha酶加工成pre-miRNA并轉(zhuǎn)運到核外;在核外經(jīng)Dicer酶加工為成熟的miRNA并與之形成RNA誘導(dǎo)沉默復(fù)合體;RNA誘導(dǎo)沉默復(fù)合體與靶基因信使RNA(mRNA)非編碼區(qū)種子序列結(jié)合,使其降解或沉默表達,從而起到調(diào)控基因和蛋白的作用[1-3]?,F(xiàn)就心臟重構(gòu)中miRNA的作用進行綜述。
1心臟重構(gòu)的病理過程
心臟重構(gòu)是心臟在對抗外界因素所致的壓力和阻力時為了維持穩(wěn)態(tài)而進行自身調(diào)節(jié)的適應(yīng)性過程,該過程存在于離子、基因、細胞和細胞外等多個水平[4]。如果所致壓力和阻力作用持續(xù)存在,這種過程可發(fā)展為不可逆作用[5],同時在細胞和細胞外水平可發(fā)生凋亡、壞死和纖維化等變化。心臟重構(gòu)過程分為兩種形式,即組織重構(gòu)和電重構(gòu)[6]。
1.1組織重構(gòu)心臟成纖維細胞是心臟組織中數(shù)量最多的細胞,其在調(diào)節(jié)心臟細胞外基質(zhì)代謝方面起重要作用。心臟間質(zhì)細胞合成的主要物質(zhì)是膠原,其可被激素、生長因子、激酶、血流動力學(xué)因素、調(diào)節(jié)蛋白(如金屬基質(zhì)蛋白及其抑制物)所控制和調(diào)節(jié)[7-8]。細胞外基質(zhì)的穩(wěn)態(tài)被膠原合成和分解的動態(tài)平衡所維持著。膠原的生物合成在轉(zhuǎn)錄水平被成纖維生長因子所調(diào)控,尤其是轉(zhuǎn)化生長因子β(transforming growth factor β,TGF-β),其通過刺激結(jié)締組織生長因子而強烈地誘導(dǎo)細胞外基質(zhì)的合成;膠原的分解主要依靠金屬基質(zhì)蛋白超家族[9]。組織纖維化伴隨著退化心肌動態(tài)的修補和替換。心肌肥大是心臟組織重構(gòu)的另一特點,它可促進心臟功能障礙、導(dǎo)致充血性心力衰竭甚至猝死等惡性事件[10]。心肌肥大這一過程通過基因被重新激活,繼而通過細胞內(nèi)信號通路影響心肌細胞正常表達蛋白的轉(zhuǎn)錄而實現(xiàn)[11]。已證實多條分子通路參與其中,包括腎素-血管緊張素-醛固酮系統(tǒng)、腎上腺素能系統(tǒng)、腦鈉肽以及細胞骨架蛋白、白細胞介素6細胞因子家族、細胞外信號調(diào)節(jié)激酶1/2信號通路、組蛋白乙?;饔煤外}離子介導(dǎo)的調(diào)控機制等[12]。
1.2電重構(gòu)心臟擁有隨時調(diào)節(jié)其功能從而快速適應(yīng)身體需要的潛能。在面對快速變化的外界環(huán)境時,心肌細胞需要有快速增加或減少其離子通道的能力;在心房或者心室,電重構(gòu)都可發(fā)生;最初的代償期里心臟尚能維持其電行為,一旦失代償就會引發(fā)進一步的泵衰竭或惡性心律失常[13-14]。心臟的電活動由一系列的離子通道活動所協(xié)調(diào)完成;控制離子跨膜轉(zhuǎn)運的跨膜蛋白和轉(zhuǎn)運蛋白對維持心臟自主節(jié)律、電傳導(dǎo)以及膜的復(fù)極化很重要;通道疾病主要由基因水平異常所致的離子通道功能障礙所引起[15-16]。
2心臟重構(gòu)中涉及的miRNAs
2.1miR-133miR-133是在人類心臟中最廣泛表達的miRs,其家族包括miR-133a-1、miR-133a-2、miR-133b三個成員;在體內(nèi)過表達miR-133被認為可阻止心臟重構(gòu)的發(fā)生[17]。最新的研究顯示,在肌組織的發(fā)生和成熟中,miR-133直接調(diào)控N端結(jié)合多聚嘧啶束蛋白;N端結(jié)合多聚嘧啶束蛋白和其同系物參與調(diào)節(jié)許多肌組織特異的外顯子(如肌鈣蛋白T和原肌球蛋白);miR-133還聯(lián)合miR-1通過調(diào)節(jié)嚴格肌源性轉(zhuǎn)錄因子血漿應(yīng)答因子和去乙?;?對骨骼肌原細胞增殖和分化進行調(diào)控[10]。在miR-133的雙重突變型小鼠中觀察到,控制細胞周期的基因異常,且平滑肌基因組被異常激活,這可能可以歸因于其靶基因的上調(diào)(如血漿應(yīng)答因子、細胞周期調(diào)節(jié)蛋白D2)[2]。在大鼠的心肌細胞中發(fā)現(xiàn)了miR-133的抗凋亡作用[10]。目前對miR-133的研究存有爭議[18]。在兩種嚙齒類動物的左心室肥大模型以及9例心力衰竭受試者中證實,成熟的miR-133減少;同樣,細胞實驗中下調(diào)的miR-133可以引起心肌肥大相關(guān)基因的表達;但有實驗顯示,在缺失miR-133a的轉(zhuǎn)基因小鼠中心臟表型正常;此外,在主動脈縮窄術(shù)后,miR-133a雖下降了50%,但3周后又恢復(fù)正常[19]。這提示miR-133a在心肌肥大過程中只起到了短暫和不穩(wěn)定的作用。還有實驗顯示,在小鼠體內(nèi)過表達miR-133沒有起到任何作用,而且防止miR-133下調(diào)也不能減輕心肌肥大[18]。這些相反的數(shù)據(jù)使得對miR-133在心肌肥大中真正作用的研究更有必要。
2.2miR-1miR-1雖然被預(yù)測靶向調(diào)控很多基因,但經(jīng)確認的目前只有HAND2(heart and neural crest derivatives expressed transcript 2)基因。不像miR-133,miR-1在心臟重構(gòu)中所調(diào)控的mRNAs是一致公認的[20]。在新生大鼠的心肌細胞和未受損的成人心肌中觀察到,其陰性調(diào)節(jié)肌細胞增強因子2a、GATA4(gata binding protein 4),通過鈣神經(jīng)素-NFAT(calcineurin-NFAT)通路減弱了引起心肌肥大時鈣依賴通路參與的必要性;另一個抑制心肌細胞肥大的機制是通過胰島素生長因子通路實現(xiàn)的,miR-1可以抑制胰島素生長因子1和胰島素生長因子1R的轉(zhuǎn)錄[21]。在心肌細胞凋亡方面,miR-1被認為起到拮抗miR-133的作用;在大鼠凋亡的心肌細胞中,miR-1顯著升高,在熱激蛋白60和熱激蛋白70的3′非轉(zhuǎn)錄區(qū)域可能存在單一的被miR靶向調(diào)控的序列[22-24]。有實驗發(fā)現(xiàn),不論在正常還是心肌梗死后大鼠體內(nèi)應(yīng)用miR-1都可引發(fā)心律失常,說明miR-1也參與了電重構(gòu)過程;改變miR-1的水平可能是致心律失常作用的觸發(fā)器[25]。
2.3miR-21miR-21是在心臟重構(gòu)中表達水平上調(diào)最高的miR,但其確切的機制存在爭議且目前尚不明確。在心肌肥大方面,有實驗發(fā)現(xiàn),用膽固醇修飾的antagomiRs剔除miR-21后能有效減輕心臟纖維化和心肌肥大[26];與其相反,在另一個實驗中,通過鎖基因技術(shù)剔除miR-21后引起了心肌細胞的肥大[27]。最近有學(xué)者認為,由于心臟對小片段核酸的快速清除作用,缺少鎖基因技術(shù)的antagomiRs的應(yīng)用需要進一步被解釋[26-28]。miR-21在纖維化方面的作用已經(jīng)基本明確,PTEN(Phosphatase and tensin homologue)和SPRY1(sprouty1)被認為是miR-21的靶基因;miR-21通過抑制SPRY1增進了胞外信號調(diào)節(jié)激酶/絲裂原活化蛋白激酶通路的作用;在心臟成纖維細胞中,上調(diào)miR-21可以通過增強ERK/MAPK通路致成纖維細胞增殖,從而引起心臟重構(gòu)和纖維化[29]。
2.4miR-208實驗觀察到,過表達miR-208a可以充分激活鈣神經(jīng)素通道,并通過抑制甲狀腺激素相關(guān)蛋白1引起心肌肥大[30]。在小鼠中,筒箭毒堿和甲狀腺激素相關(guān)蛋白1的相繼失活與心肌肥大關(guān)系密切[31]。在剔除miR-208a基因的小鼠中,抗纖維化的分子在轉(zhuǎn)錄水平大量表達[32]。另外一個重要的發(fā)現(xiàn)是,在擴張型心肌病中,高水平的miR-208表達多與較差的預(yù)后相關(guān)[30]。這提示miR-208可以作為疾病預(yù)后和心力衰竭進展的預(yù)測指標。
2.5miR-29miR-29在心臟成纖維細胞中廣泛表達,與miR-133和miR-30一起被認為是與纖維化關(guān)聯(lián)最密切的miRNAs。其可靶向調(diào)控許多與細胞外基質(zhì)相關(guān)的mRNAs(包括彈性蛋白、原纖維蛋白1、膠原蛋白Ⅰ、膠原蛋白Ⅲ等);在體內(nèi)下調(diào)miR-29能顯著上調(diào)上述蛋白,并能引起大量的膠原沉積[33]。研究發(fā)現(xiàn),心肌梗死后鹽酸普萘洛爾給藥組瘢痕組織miR-29增多,這可能是β受體阻滯劑能改善心肌梗死預(yù)后的可能原因之一[33-35]。
2.6其他高通量實驗顯示,許多miRNAs在心臟重構(gòu)進程中發(fā)生了變化。其中,在小鼠心臟中過表達miR-195引起了嚴重的心肌肥大;另外,上調(diào)miR-24、miR-214、miR-23a也引起了心肌肥大;miR-328通過靶向調(diào)控L型鈣通道參與逆轉(zhuǎn)心房電重構(gòu)的作用;miR-30也被預(yù)測參與阻斷了L型鈣通道;而miR-499和miR-199a在抑制心肌凋亡方面起到重要作用;與之相反,miR-320發(fā)揮了刺激心肌細胞凋亡的作用[36-41]。
3小結(jié)
miRNAs的生物學(xué)研究是一個相對新的研究領(lǐng)域,近幾年對miRNAs的研究急速發(fā)展。從miRNAs擬似物,到反義核苷酸抑制序列,再到antagomiR和鎖基因技術(shù)的應(yīng)用,使得體內(nèi)miRNAs的研究成為可能[42]。近期在小鼠模型中數(shù)目可觀的研究顯示了miRNAs靶基因治療的可行性。由于一種miRNAs可調(diào)控上百種基因,人們曾擔憂其靶基因治療所帶來的不可預(yù)知的不良反應(yīng),使其前景受限。目前一種miRMask被設(shè)計出來,其可準確地結(jié)合目標mRNA而防止miRNAs與其他未知靶基因結(jié)合[43]。與其相反,同時靶向多種miRNAs的技術(shù)—miRNAs海綿技術(shù),也被發(fā)明出來[44]。未來的研究應(yīng)以miRNAs靶基因治療為目標,更深入地了解miRNAs是如何整合并參與到疾病中去的[45-48]。為了更好地靶向患病器官,針對不同的細胞類型、組織或器官,特異的miRNAs研究也是挑戰(zhàn)之一。雖然還有很長的路要走,但理論上miRNAs仍是征服心臟重構(gòu)的有力武器。
參考文獻
[1]Grey F,Tirabassi R,Meyers H,etal.A viral microRNA down-regulates multiple cell cycle genes through mRNA 5′UTRs[J].PLoS Pathog,2010,6(6):e1000967.
[2]Ono K,Kuwabara Y,Han J.MicroRNAs and cardiovascular diseases[J].FEBS J,2011,278(10):1619-1633.
[3]Chen CZ.An unsolved mystery:the target-recognizing RNA species of microRNA genes[J].Biochimie,2013,95(9):1663-1676.
[4]Nattel S.Electrophysiologic remodeling:are ion channels static players or dynamic movers?[J].J Cardiovasc Electrophysiol,1999,10(11):1553-1556.
[5]Wyse DG,Anter E,Callans DJ.Cardioversion of atrial fibrillation for maintenance of sinus rhythm:a road to nowhere[J].Circulation,2009,120(14):1444-1452.
[6]Schoonderwoerd BA,Van Gelder IC,Van Veldhuisen DJ,etal.Electrical and structural remodeling:role in the genesis and maintenance of atrial fibrillation[J].Prog Cardiovasc Dis,2005,48(3):153-168.
[7]Tonge DP,Tugwood JD,Kelsall J,etal.The role of microRNAs in the pathogenesis of MMPi-induced skin fibrodysplasia[J].BMC Genomics,2013,14:338.
[8]Rutnam ZJ,Wight TN,Yang BB.miRNAs regulate expression and function of extracellular matrix molecules[J].Matrix Biol,2013,32(2):74-85.
[9]Jiang X,Tsitsiou E,Herrick SE,etal.MicroRNAs and the regulation of fibrosis[J].FEBS J,2010,277(9):2015-2021.
[10]Orenes-Pinero E,Montoro-Garcia S,Patel JV,etal.Role of microRNAs in cardiac remodelling:new insights and future perspectives[J].Int J Cardiol,2013,167(5):1651-1659.
[11]Orenes-Pinero E,Hernandez-Romero D,Jover E,etal.An insight of novel pharmacological therapies in hypertrophic cardiomyopathy[J].Med Chem,2011,7(4):275-285.
[12]Barry SP,Davidson SM,Townsend PA.Molecular regulation of cardiac hypertrophy[J].Int J Biochem Cell Biol,2008,40(10):2023-2039.
[13]Duffy HS.The ever-shrinking world of cardiac ion channel remodeling:the role of microRNAs in heart disease[J].Heart Rhythm,2009,6(12):1810-1811.
[14]Marban E.Cardiac channelopathies[J].Nature,2002,415(6868):213-218.
[15]Cutler MJ,Jeyaraj D,Rosenbaum DS.Cardiac electrical remodeling in health and disease[J].Trends Pharmacol Sci,2011,32(3):174-180.
[16]Luo X,Zhang H,Xiao J,etal.Regulation of human cardiac ion channel genes by microRNAs:theoretical perspective and pathophysiological implications[J].Cell physiol Biochemi,2010,25(6):571-586.
[17]Topkara VK,Mann DL.Clinical applications of miRNAs in cardiac remodeling and heart failure[J].Per Med,2010,7(5):531-548.
[18]Matkovich SJ,Wang W,Tu Y,etal.MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts[J].Circ Res,2010,106(1):166-175.
[19]Liu N,Bezprozvannaya S,Williams AH,etal.microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart[J].Genes Dev,2008,22(23):3242-3254.
[20]Wang DZ.MicroRNAs in cardiac development and remodeling[J].Pediatr Cardiol,2010,31(3):357-362.
[21]Ikeda S,He A,Kong SW,etal.MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes[J].Mol Cell Biol,2009,29(8):2193-2204.
[22]Elia L,Contu R,Quintavalle M,etal.Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions[J].Circulation,2009,120(23):2377-2385.
[23]Tang Y,Zheng J,Sun Y,etal.MicroRNA-1 regulates cardiomyocyte apoptosis by targeting Bcl-2[J].Int Heart J,2009,50(3):377-387.
[24]Shan ZX,Lin QX,Fu YH,etal.Upregulated expression of miR-1/miR-206 in a rat model of myocardial infarction[J].Biochem Biophys Res Commun,2009,381(4):597-601.
[25]Terentye D,Belevych AE,Terentyeva R,etal.miR-1 overexpression enhances Ca(2+) release and promotes cardiac arrhythmogenesis by targeting PP2A regulatory subunit B56alpha and causing CaMKII-dependent hyperphosphorylation of RyR2[J].Circ Res,2009,104(4):514-521.
[26]Kumarswamy R,Volkmann I,Jazbutyte V,etal.Transforming growth factor-β-induced endothelial-to-mesenchymal transition is partly mediated by microRNA-21[J].Arterioscler Thromb Vasc Biol,2012,32(2):361-369.
[27]Thum T,Chau N,Bhat B,etal.Comparison of different miR-21 inhibitor chemistries in a cardiac disease model[J].J Clin Invest,2011,121(2):461-462; author reply 462-463.
[28]Obad S,dos Santos CO,Petri A,etal.Silencing of microRNA families by seed-targeting tiny LNAs[J].Nat Genet,2011,43(4):371-378.
[29]Thum T,Gross C,Fiedler J,etal.MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts[J].Nature,2008,456(7224):980-984.
[30]Satoh M,Minami Y,Takahashi Y,etal.Expression of microRNA-208 is associated with adverse clinical outcomes in human dilated cardiomyopathy[J].J Card Fail,2010,16(5):404-410.
[31]Nakao K,Minobe W,Roden R,etal.Myosin heavy chain gene expression in human heart failure[J].J Clin Invest,1997,100(9):2362-2370.
[32]Callis TE,Pandya K,Seok HY,etal.MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice[J].J Clin Invest,2009,119(9):2772-2786.
[33]van Rooij E,Sutherland LB,Thatcher JE,etal.Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis[J].Proc Natl Acad Sci U S A,2008,105(35):13027-13032.
[34]Divakaran V,Adrogue J,Ishiyama M,etal.Adaptive and maladptive effects of SMAD3 signaling in the adult heart after hemodynamic pressure overloading[J].Circ Heart Fail,2009,2(6):633-642.
[35]Zhu W,Yang L,Shan H,etal.MicroRNA expression analysis:clinical advantage of propranolol reveals key microRNAs in myocardial infarction[J].PLoS One,2011,6(2):e14736.
[36]Lu Y,Zhang Y,Wang N,etal.MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation[J].Circulation,2010,122(23):2378-2387.
[37]Wang JX,Jiao JQ,Li Q,etal.miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1[J].Nat Med,2011,17(1):71-78.
[38]Rane S,He M,Sayed D,etal.Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes[J].Circ Res,2009,104(7):879-886.
[39]Ren XP,Wu J,Wang X,etal.MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20[J].Circulation,2009,119(17):2357-2366.
[40]Fiedler J,Jazbutyte V,Kirchmaier BC,etal.MicroRNA-24 regulates vascularity after myocardial infarction[J].Circulation,2011,124(6):720-730.
[41]van Mil A,Grundmann S,Goumans MJ,etal.MicroRNA-214 inhibits angiogenesis by targeting Quaking and reducing angiogenic growth factor release[J].Cardiovasc Res,2012,93(4):655-665.
[42]Krutzfeldt J,Rajewsky N,Braich R,etal.Silencing of microRNAs in vivo with ′antagomirs′[J].Nature,2005,438(7068):685-689.
[43]Xiao J,Yang B,Lin H,etal.Novel approaches for gene-specific interference via manipulating actions of microRNAs:examination on the pacemaker channel genes HCN2 and HCN4[J].J Cell Physiol,2007,212(2):285-292.
[44]Ebert MS,Neilson JR,Sharp PA.MicroRNA sponges:competitive inhibitors of small RNAs in mammalian cells[J].Nat Methods,2007,4(9):721-726.
[45]Pan ZW,Lu YJ,Yang BF.MicroRNAs:a novel class of potential therapeutic targets for cardiovascular diseases[J].Acta Pharmacol Sin,2010,31(1):1-9.
[46]Tijsen AJ,Pinto YM,Creemers EE.Circulating microRNAs as diagnostic biomarkers for cardiovascular diseases[J].Am J Physiol Heart Circ Physiol,2012,303(9):1085-1095.
[47]Xu J,Zhao J,Evan G,etal.Circulating microRNAs:novel biomarkers for cardiovascular diseases[J].J Mol Med (Berl),2012,90(8):865-875.
[48]Fichtlscherer S,Zeiher AM,Dimmeler S.Circulating microRNAs:biomarkers or mediators of cardiovascular diseases?[J].Arterioscler Thromb Vasc Biol,2011,31(11):2383-2390.
The Role of MicroRNAs in the Cardiac Remodeling
LIXin-yue,YANGWei.
(DepartmentSixofCardiology,theFirstAffiliatedHospitalofHarbinMedicalUniversity,Harbin150001,China)
Abstract:Cardiac remodeling is the key process in cardiovascular diseases including myocardial infarction,valvular disease,myocarditis,dilated cardiomyopathy,atrial fibrillation and heart failure.Both in vitro and vivo models have proved that microRNAs play an important role in a wide range of processes.Clinically,miRNAs have been attached much attention as the potential diagnostic biomarkers and novel therapeutic target recently.Here is to make a review of the focal points and mostly studied miRNA in the recent years.
Key words:Cardiac remodeling; MicroRNAs; Fibrosis; Myocyte hypertrophy
收稿日期:2014-01-15修回日期:2014-07-30編輯:鄭雪
基金項目:國家自然科學(xué)基金(81271676)
doi:10.3969/j.issn.1006-2084.2015.04.003
中圖分類號:R541
文獻標識碼:A
文章編號:1006-2084(2015)04-0582-03