国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

骨細(xì)胞相關(guān)因子在骨重建中的作用*

2015-02-01 07:17敏安榮澤王兆杰趙俊延
關(guān)鍵詞:骨組織骨細(xì)胞成骨細(xì)胞

安 敏安榮澤王兆杰趙俊延

骨細(xì)胞相關(guān)因子在骨重建中的作用*

安 敏①安榮澤①王兆杰①趙俊延①

骨細(xì)胞是一種動態(tài)的、具有復(fù)雜功能的細(xì)胞,也是骨組織中含量最豐富、分布最廣泛的細(xì)胞。近幾年研究發(fā)現(xiàn),骨細(xì)胞在骨重建中的調(diào)節(jié)作用越來越明顯,其分泌的骨硬化蛋白、RANKL及OPG是調(diào)節(jié)骨形成和骨吸收的重要調(diào)控因子。骨細(xì)胞特異性地分泌的骨硬化蛋白對骨形成具有特殊的抑制效果,主要機(jī)制是結(jié)合LRP5/LRP6,從而阻止經(jīng)典Wnt信號通路。而骨硬化蛋白的單克隆抗體則通過拮抗其作用而保證Wnt信號通路的正常傳導(dǎo),引起骨形成、骨密度和骨強(qiáng)度增加。骨細(xì)胞同樣會分泌RANKL及OPG,兩者在生理和病理?xiàng)l件下直接或間接調(diào)節(jié)破骨細(xì)胞分化和功能,調(diào)控骨重吸收。該文就這一領(lǐng)域近年研究現(xiàn)狀和發(fā)展方向作一綜述。

骨細(xì)胞; 骨重建; 骨硬化蛋白; RANKL; OPG

骨組織總是在連續(xù)不斷地進(jìn)行骨重建。兩種類型細(xì)胞參與到骨重建,包括來源于血液系統(tǒng)的破骨細(xì)胞和來源于骨髓基質(zhì)干細(xì)胞的成骨細(xì)胞和骨細(xì)胞。成骨細(xì)胞和破骨細(xì)胞在骨組織內(nèi)只是短暫的存在,且數(shù)量少,位置不定。骨細(xì)胞則是骨組織中含量最豐富的細(xì)胞,在骨組織中形成遍布礦化骨基質(zhì)的三維細(xì)胞網(wǎng)絡(luò)。近幾年研究發(fā)現(xiàn),骨細(xì)胞在骨重建中的調(diào)節(jié)作用越來越明顯,其分泌的骨硬化蛋白、RANKL及OPG是調(diào)節(jié)骨形成和骨吸收的重要調(diào)控因子。

1 骨細(xì)胞及其功能

骨細(xì)胞起源于成骨細(xì)胞,成熟成骨細(xì)胞的5%~20%包埋在自身分泌的基質(zhì)中,并分化為骨細(xì)胞。成骨細(xì)胞的壽命是數(shù)周,破骨細(xì)胞僅為數(shù)天,而骨細(xì)胞的平均半壽期大約為25年[1]。這使骨細(xì)胞成為骨組織中數(shù)量最多的細(xì)胞,約占骨組織中細(xì)胞總數(shù)的90%以上。骨細(xì)胞目前被認(rèn)為是骨組織中主要的應(yīng)力感受器,其通過骨基質(zhì)和骨陷窩-小管網(wǎng)絡(luò)系統(tǒng)高度的連通性,能感知來自流體的各種力[2]。

骨細(xì)胞表達(dá)成骨細(xì)胞的大多數(shù)基因,包括成骨細(xì)胞特異性的轉(zhuǎn)錄因子和蛋白,盡管表達(dá)水平可能不盡相同。骨細(xì)胞中堿性磷酸酶和Ⅰ型膠原的表達(dá)較低,而骨鈣蛋白表達(dá)較高。角膜蛋白在成骨細(xì)胞的表達(dá)顯著高于骨細(xì)胞[3]。在骨組織礦化及磷酸代謝相關(guān)基因表達(dá)上骨細(xì)胞比成骨細(xì)胞富含更多基因,如PHEX、DMP1、MEPE、FGF23[4]。骨細(xì)胞既分泌磷蛋白質(zhì)(如Dmp1),也參與骨基質(zhì)的礦物質(zhì)沉積[5]。骨細(xì)胞還參與體內(nèi)磷酸鹽平衡,作為磷元素和纖維原細(xì)胞因子(FGF)的主要供應(yīng)者[5]。骨細(xì)胞也表達(dá)某些影響骨形成的分子微粒,包括Dkk1和SOST,但Dkk1也存在于成骨細(xì)胞,而SOST僅在骨細(xì)胞表達(dá)[4]。SOST基因編碼的骨硬化蛋白對骨形成蛋白(BMP)家族的成員蛋白具有很強(qiáng)的拮抗作用。此外,骨硬化蛋白和Dkk1與LRP5和LPR6結(jié)合,阻止Wnt信號通路的激活。此類研究表明骨細(xì)胞中少量表達(dá)的基因可能作為骨組織重建過程中的分子調(diào)解者。

2 骨細(xì)胞調(diào)節(jié)骨形成和骨吸收的分子機(jī)制

2.1 骨硬化蛋白在骨細(xì)胞調(diào)節(jié)骨形成中的作用 成熟的骨細(xì)胞特異性地分泌骨硬化蛋白(Sclerostin)[6]。骨硬化蛋白由SOST基因編碼,主要對抗BMP家族成員和結(jié)合LRP5/LRP6,從而阻止經(jīng)典Wnt信號通路[7]。人的SOST表達(dá)缺失將導(dǎo)致高骨量疾病Van Buchem’s病和硬化性骨化病的發(fā)生[8]。小鼠SOST基因缺失同樣表現(xiàn)為高骨量和骨強(qiáng)度增加[9],而轉(zhuǎn)基因小鼠過表達(dá)人SOST則表現(xiàn)為低骨量[10]。這些研究證明骨硬化蛋白對骨形成具有特殊的抑制效果[11]。

骨硬化蛋白表達(dá)的變化是由于骨骼對機(jī)械刺激的適應(yīng)性反應(yīng)。研究發(fā)現(xiàn)暴露的皮質(zhì)骨在機(jī)械應(yīng)力作用下骨細(xì)胞分泌骨硬化蛋白減少,導(dǎo)致臨近骨膜表面的骨形成增多[12]。相反,當(dāng)無機(jī)械應(yīng)力刺激骨組織時,SOST基因或骨硬化蛋白表達(dá)明顯增加[12]。此類的研究表明當(dāng)機(jī)械力作用時骨細(xì)胞對骨形成的調(diào)節(jié)是通過下調(diào)骨硬化蛋白從而局部釋放Wnt信號來實(shí)現(xiàn)的。事實(shí)上,在小鼠骨細(xì)胞中過表達(dá)人SOST基因時,機(jī)械力刺激并不能下調(diào)骨硬化蛋白的表達(dá),更不能激活Wnt通路和相關(guān)骨組織合成代謝[13]。因此,下調(diào)SOST對機(jī)械刺激骨形成至關(guān)重要。此外,失重或卸載所致的骨丟失與骨細(xì)胞表達(dá)的骨硬化蛋白增加有關(guān)[4]。

研究發(fā)現(xiàn),甲狀旁腺激素和雌性激素可抑制SOST基因的表達(dá)。間斷或連續(xù)給予PTH,都將下調(diào)小鼠骨細(xì)胞中骨硬化蛋白的表達(dá),對人而言則降低骨硬化蛋白在體內(nèi)循環(huán)水平[7,14]。當(dāng)機(jī)體雌激素水平下降時,骨硬化蛋白合成增多,并通過雌激素影響骨吸收[15]。研究還發(fā)現(xiàn)骨硬化蛋白可以增加成骨細(xì)胞的Caspase活性,誘導(dǎo)成骨細(xì)胞凋亡,這可能是骨硬化蛋白抑制骨形成的另外一種機(jī)制[16]。

隨著現(xiàn)代分子生物學(xué)的發(fā)展,現(xiàn)已研制出對抗骨硬化蛋白作用的生物制品——骨硬化蛋白單克隆抗體,其主要作用機(jī)制是拮抗骨硬化蛋白保證Wnt信號通路的正常傳導(dǎo),使骨形成活動順利進(jìn)行[17]。研究發(fā)現(xiàn),骨硬化蛋白單克隆抗體不論對絕經(jīng)后骨質(zhì)疏松大鼠還是對衰老雄性大鼠均可以使它們骨形成和骨強(qiáng)度增加[18-19]。此外,采用骨硬化蛋白單克隆抗體處理大鼠骨折模型時發(fā)現(xiàn)其可增加骨折愈合處的橋接與骨強(qiáng)度,對骨折愈合有顯著促進(jìn)作用[20-21]。近年的臨床試驗(yàn)也證實(shí),骨硬化蛋白抗體能增加絕經(jīng)后的骨質(zhì)疏松患者的骨量和骨強(qiáng)度[22]。盡管以上實(shí)驗(yàn)均為短期試驗(yàn),但都提示了骨硬化蛋白單克隆抗體可增加骨形成的作用以及其在臨床應(yīng)用治療骨質(zhì)疏松的可能。

2.2 骨細(xì)胞通過RANKL和OPG調(diào)節(jié)骨吸收

2.2.1 RANKL與骨吸收 目前對骨吸收調(diào)節(jié)機(jī)制的研究尚不明確。不少學(xué)者認(rèn)為骨細(xì)胞凋亡可能通過誘導(dǎo)基質(zhì)細(xì)胞或成骨細(xì)胞分泌RANKL間接刺激破骨細(xì)胞生成,從而影響骨吸收。但近來在骨重建研究中發(fā)現(xiàn)骨細(xì)胞能直接產(chǎn)生和可能分泌核因子NF-KB受體活化因子配體(Receptor activator ofnuclear kappa B ligand,RANKL),并證實(shí)其參與到骨吸收的調(diào)節(jié)。早期研究普遍認(rèn)為,成骨細(xì)胞是為破骨前體細(xì)胞提供RANKL的主要來源[23]。但最新研究發(fā)現(xiàn)骨改建過程中骨細(xì)胞也是RANKL的主要來源之一[24-25]。體外實(shí)驗(yàn)甚至還發(fā)現(xiàn)純化的骨細(xì)胞RANKL表達(dá)均比成骨細(xì)胞和骨髓間充質(zhì)干細(xì)胞高[24]。在骨細(xì)胞中,RANKL主要位于其溶酶體中[26]。條件性敲除小鼠基因會抑制由尾部懸吊方法導(dǎo)致的骨丟失,表明骨細(xì)胞的RANKL促進(jìn)廢用性骨量減少[25]。然而,骨細(xì)胞膜結(jié)合的或可溶性的RANKL是否與骨細(xì)胞驅(qū)使的骨重吸收有關(guān),目前尚不明確。缺乏骨細(xì)胞RANKL的小鼠表現(xiàn)出骨重吸收的減少,伴隨著骨組織中RANKL的低表達(dá),但循環(huán)中可溶性RANKL并沒有減少[25]。而在尾懸吊的小鼠中也發(fā)現(xiàn)循環(huán)中可溶性RANKL沒有改變[27]。此外,可溶性RANKL對破骨細(xì)胞形成有意想不到的作用,而對在3D共培養(yǎng)系統(tǒng)中的骨細(xì)胞和破骨前體細(xì)胞作用并不明顯。相反,骨細(xì)胞樹突表達(dá)的膜結(jié)合的RANKL和破骨前體細(xì)胞表達(dá)的RANK的直接接觸被認(rèn)為是破骨細(xì)胞分化所需要的[26]。當(dāng)RANKL與破骨前體細(xì)胞膜上RANK的受體結(jié)合后,從而啟動破骨細(xì)胞內(nèi)特異性基因表達(dá)的關(guān)鍵信號,進(jìn)一步誘導(dǎo)破骨前體細(xì)胞分化為成熟的破骨細(xì)胞,繼而發(fā)揮溶骨效應(yīng),最終導(dǎo)致骨質(zhì)破壞。Masashi Honma等[26]將破骨前體細(xì)胞和骨細(xì)胞在膠原蛋白凝膠中共培養(yǎng),發(fā)現(xiàn)RANKL信號在骨細(xì)胞樹突形成的輸出調(diào)節(jié)機(jī)制對于調(diào)節(jié)破骨細(xì)胞形成程度尤為重要。研究者還發(fā)現(xiàn)轉(zhuǎn)基因小鼠骨細(xì)胞中甲狀旁腺激素受體的單獨(dú)激活誘導(dǎo)骨重吸收也與RANKL增加有關(guān)[28]。哺乳期誘發(fā)的骨丟失,伴隨著PTHrP增加,是依賴于骨細(xì)胞PTH受體的表達(dá)[28-29]。

2.2.2 OPG與骨吸收 骨細(xì)胞同樣會分泌骨保護(hù)素(Osteoprotegerin, OPG),OPG和RANKL競爭受體,當(dāng)0PG搶先占領(lǐng)RANKL后,間接就阻斷了RANKL與破骨前體細(xì)胞表面的RANK受體結(jié)合,從而抑制破骨前體細(xì)胞的成熟分化,達(dá)到防止骨質(zhì)過度吸收的目的。正如成骨細(xì)胞一樣,骨細(xì)胞中OPG分泌受Wnt/ β-catenin通路的調(diào)節(jié);小鼠骨細(xì)胞中缺乏β-catenin表現(xiàn)為骨質(zhì)疏松,這是由于破骨細(xì)胞數(shù)量的增加和骨重吸收的增加[30]。最新研究指出,骨細(xì)胞也分泌巨噬細(xì)胞集落刺激因子(Macrophage colony-stimulating factor, M-CSF),使其成為骨組織中M-CSF另一重要來源[31]。

綜上所述,作為骨組織中含量最多的骨細(xì)胞在骨重建中的作用已被學(xué)者所認(rèn)可,其活性可直接或間接調(diào)節(jié)骨形成和骨吸收。骨細(xì)胞中表達(dá)的少許基因已經(jīng)被確認(rèn)為是骨細(xì)胞促使骨重建的分子介質(zhì)。骨細(xì)胞分泌的骨硬化蛋白抑制骨形成,采用骨硬化蛋白單克隆抗體抑制骨硬化蛋白的生物學(xué)作用,已進(jìn)入臨床實(shí)驗(yàn)階段,有望成為一種新的治療骨質(zhì)疏松及骨折愈合的有效藥物。骨細(xì)胞還分泌RANKL和OPG,它們在生理和病理?xiàng)l件下直接或間接調(diào)節(jié)破骨細(xì)胞分化和功能,顯示骨細(xì)胞有調(diào)控骨重吸收的潛能。但骨細(xì)胞調(diào)控骨吸收和骨形成還有哪些具體機(jī)制?調(diào)控過程中有無信號通路的反饋調(diào)節(jié)?解決好這些問題將有助于深入研究骨細(xì)胞對骨重建的作用,為骨科基礎(chǔ)研究和骨組織工程研究提供新的思路。

[1]Knothe Tate M L, Adamson J R, Tami A E, et al. The osteocyte[J]. The International Journal of Biochemistry & Cell Biology,2004,36(1):1-8.

[2]孟芮,王海芳,續(xù)惠云,等.骨細(xì)胞功能研究進(jìn)展[J].細(xì)胞生物學(xué)雜志,2008,30(2):161-165.

[3]Igwe J C, Gao Q, Kizivat T, et al. Keratocan is expressed by osteoblasts and can modulate osteogenic differentiation[J]. Connective Tissue Research,2011,52(5):401-407.

[4]Bonewald L F. The amazing osteocyte[J]. Journal of Bone and Mineral Research,2011,26(2):229-238.

[5]Liu S, Gupta A, Quarles L D. Emerging role of fibroblast growth factor 23 in a bone–kidney axis regulating systemic phosphate homeostasis and extracellular matrix mineralization[J]. Current Opinion in Nephrology and Hypertension,2007,16(4):329-335.

[6]Poole K E S, van Bezooijen R L, Loveridge N, et al. Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation[J]. The FASEB Journal,2005,19(13):1842-1844.

[7]Bellido T, Ali A A, Gubrij I, et al. Chronic elevation of parathyroid hormone in mice reduces expression of sclerostin by osteocytes:a novel mechanism for hormonal control of osteoblastogenesis[J]. Endocrinology,2005,146(11):4577-4583.

[8]Moester M J C, Papapoulos S E, L?wik C, et al. Sclerostin: current knowledge and future perspectives[J]. Calcified Tissue International,2010,87(2):99-107.

[9]Lin C, Jiang X, Dai Z, et al. Sclerostin Mediates bone response to mechanical unloading through antagonizing Wnt/β-catenin signaling[J]. Journal of Bone and Mineral Research,2009,24(10):1651-1661.

[10]Rhee Y, Allen M R, Condon K, et al. PTH receptor signaling in osteocytes governs periosteal bone formation and intracortical remodeling[J]. Journal of Bone and Mineral Research,2011,26(5):1035-1046.

[11]Cejka D, J?ger-Lansky A, Kieweg H, et al. Sclerostin serum levels correlate positively with bone mineral density and microarchitecture in haemodialysis patients[J]. Nephrology Dialysis Transplantation,2012,27(1):226-230.

[12]Robling A G, Niziolek P J, Baldridge L A, et al. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/ sclerostin[J]. Journal of Biological Chemistry,2008,283(9):5866-5875.

[13]Tu X, Rhee Y, Condon K W, et al. Sost down regulation and local Wnt signaling are required for the osteogenic response to mechanical loading[J]. Bone,2012,50(1):209-217.

[14]Drake M T, Srinivasan B, M?dder U I, et al. Effects of parathyroid hormone treatment on circulating sclerostin levels in postmenopausal women[J]. The Journal of Clinical Endocrinology & Metabolism,2010,95(11):5056-5062.

[15]Genetos D C, Toupadakis C A, Raheja L F, et al. Hypoxia decreases sclerostin expression and increases Wnt signaling in osteoblasts[J]. Journal of Cellular Biochemistry,2010,110(2):457-467.

[16]Sutherland M K, Geoghegan J C, Yu C, et al. Sclerostin promotes the apoptosis of human osteoblastic cells: a novel regulation of bone formation[J]. Bone,2004,35(4):828-835.

[17]Mosekilde L, Torring O, Rejnmark L. Emerging anabolic treatments in osteoporosis[J]. Current Drug Safety,2011,6(2):62-74.

[18]Li X, Ominsky M S, Warmington K S, et al. Increased bone formation and bone mass induced by sclerostin antibody is not affected by pretreatment or cotreatment with alendronate in osteopenic,ovariectomized rats[J]. Endocrinology,2011,152(9): 3312-3322.

[19]Li X, Warmington K S, Niu Q T, et al. Inhibition of sclerostin by monoclonal antibody increases bone formation, bone mass, and bone strength in aged male rats[J]. Journal of Bone and Mineral Research,2010,25(12):2647-2656.

[20]Ominsky M S, Li C, Li X, et al. Inhibition of sclerostin by monoclonal antibody enhances bone healing and improves bone density and strength of nonfractured bones[J]. Journal of Bone and Mineral Research,2011,26(5):1012-1021.

[21]Tian X Y, Jee W S S, Li X, et al. Sclerostin antibody increases bone mass by stimulating bone formation and inhibiting bone resorption in a hindlimb-immobilization rat model[J]. Bone,2011,48(2):197-201.

[22]Paszty C, Turner C H, Robinson M K. Sclerostin: a gem from the genome leads to bone-building antibodies[J]. Journal of Bone and Mineral Research,2010,25(9):1897-1904.

[23]Jimi E, Nakamura I, Amano H, et al. Osteoclast function is activatedby osteoblastic cells through a mechanism involving cell-to-cell contact[J]. Endocrinology,1996,137(8):2187-2190.

[24]Nakashima T, Hayashi M, Fukunaga T, et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression[J]. Nature Medicine,2011,17(10):1231-1234.

[25]Xiong J, Onal M, Jilka R L, et al. Matrix-embedded cells control osteoclast formation[J]. Nature Medicine,2011,17(10):1235-1241.

[26]Honma M, Ikebuchi Y, Kariya Y, et al. RANKL subcellular trafficking and regulatory mechanisms in osteocytes[J]. Journal of Bone and Mineral Research,2013,28(9):1936-1949.

[27]Aguirre J I, Plotkin L I, Stewart S A, et al. Osteocyte apoptosis is induced by weightlessness in mice and precedes osteoclast recruitment and bone loss[J]. Journal of Bone and Mineral Research, 2006,21(4):605-615.

[28]Bellido T, Saini V, Pajevic P D. Effects of PTH on osteocyte function[J]. Bone,2013,54(2):250-257.

[29]Qing H, Ardeshirpour L, Divieti Pajevic P, et al. Demonstration of osteocytic perilacunar/canalicular remodeling in mice during lactation[J]. Journal of Bone and Mineral Research,2012,27(5):1018-1029.

[30]Kramer I, Halleux C, Keller H, et al. Osteocyte Wnt/β-catenin signaling is required for normal bone homeostasis[J]. Molecular and Cellular Biology,2010,30(12):3071-3085.

[31]Harris S E, MacDougall M, Horn D, et al. Meox2Cre-mediated disruption of CSF-1 leads to osteopetrosis and osteocyte defects[J]. Bone,2012,50(1):42-53.

The Role of Osteocyte-related Factors in the Bone Remodeling

AN Min, AN Rong-ze, WANG Zhao-jie, et al.//Medical Innovation of China,2015,12(07):150-153

As the most abundant and the most widely distributed in bone tissue, osteocytes are dynamic cells, with complex function. Recent studies have revealed that osteocytes play multiple important physiological roles, secreting many regulatory factors, such as osteosclerosis protein, receptor activator of the NF-kB ligand (RANKL) and osteoprotegerin(OPG). These factors play important roles in regulating bone formation and bone resorption. The sclerostin, is expressed at significant levels by osteocytes, interacts with Lrp5 and Lrp6 and inhibits the canonical Wnt signaling pathway. Sclerostin monoclonal antibody ensures Wnt pathway conducting normally by inhibiting sclerostin, increasing bone formation, bone mineral density and bone strength. Osteocytes also secretes RANKL and OPG, both of which regulating differentiation and function of osteoclasts directly or indirectly, in Physiological and pathological conditions, regulating bone reabsorption. In this paper, we make a review about the research status and development direction.

Osteocyte; Bone remodeling; Sclerostin; RANKL; OPG

10.3969/j.issn.1674-4985.2015.07.051

2014-11-20) (本文編輯:王宇)

2013年貴州省科技廳、遵義醫(yī)學(xué)院、遵義市科技局聯(lián)合基金項(xiàng)目(黔科合J字LKZ[2013]43號)

①遵義醫(yī)學(xué)院第五附屬(珠海)醫(yī)院 廣東 珠海 519100

安榮澤

First-author’s address: The Fifth Affiliated Hospital of Zunyi Medical College, Zhuhai 519100, China

猜你喜歡
骨組織骨細(xì)胞成骨細(xì)胞
微小核糖核酸-1205沉默Cullin-RING泛素E3連接酶4A激活A(yù)MPK信號傳導(dǎo)保護(hù)人成骨細(xì)胞免受地塞米松損傷的研究
wnt經(jīng)典信號通路在酸性pH抑制成骨細(xì)胞功能中的作用
成骨細(xì)胞調(diào)節(jié)破骨細(xì)胞功能的機(jī)制及途徑研究進(jìn)展
一種小鼠骨組織中RNA的提取方法
中藥(趕黃草+波棱瓜子)提取物對小鼠維生素A急性中毒早期的治療效果
骨細(xì)胞在正畸牙移動骨重塑中作用的研究進(jìn)展
不同脫鈣條件對骨組織免疫組織化學(xué)染色抗原性的影響淺析
土家傳統(tǒng)藥刺老苞總皂苷對2O2誘導(dǎo)的MC3T3-E1成骨細(xì)胞損傷改善
氟病區(qū)成人雌激素受體α基因PvuⅡ多態(tài)性與骨組織異常的關(guān)系*
骨細(xì)胞網(wǎng)絡(luò)結(jié)構(gòu)對骨形成和骨吸收的影響
四平市| 从化市| 建水县| 河池市| 洛阳市| 鄂伦春自治旗| 大同市| 恭城| 永新县| 莫力| 乳山市| 营山县| 绥江县| 福海县| 光泽县| 信阳市| 贺州市| 三台县| 东明县| 进贤县| 扬州市| 东乌珠穆沁旗| 肇东市| 隆德县| 固原市| 通山县| 蓬莱市| 九江市| 西贡区| 普兰县| 滁州市| 仁布县| 吕梁市| 祁东县| 西城区| 上思县| 塔城市| 阿拉尔市| 都兰县| 酉阳| 罗甸县|